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Adaptive immune recognition is mediated by specific interactions between heterodimeric
T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the
methods to accurately predict TCR:pMHC interaction would have profound clinical,
therapeutic and pharmaceutical applications. Herein, we review recent developments
in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss
current experimental and computational approaches to investigate cross-reactivity
and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and
structural features may offer valuable insights in modeling immunogenicity. We further
underscore the close inter-relationship of these two interconnected notions and the
need to investigate each in the light of the other for a better understanding of T cell
responsiveness for the effective clinical applications.

Keywords: T cell cross reactivity, T cell specificity, epitope, antigen presentation, adaptive immune system, antigen
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INTRODUCTION

Specific molecular interactions between heterodimeric T cell receptors (TCRs) and their cognate
peptide-MHC (pMHC) ligands contribute to the nature of ensuing adaptive immune response. A
better understanding of TCR:pMHC interaction is required to be able to harness adaptive T cell
immunity effectively for vaccines and therapeutics. Unfortunately, the mechanisms underpinning
cross-reactivity and antigen specificity of peptide-specific TCRs remain puzzling, and leaves the
community with an incomplete picture of T cell recognition.

Cross-reactivity is defined as the capacity of a TCR to recognize more than one peptide-MHC
molecule. The idea was first postulated by Matzinger and Bevan (1) and later gained traction via
Don Mason who challenged the dominant clonal selection theory arguing a highly incompetent
immune system if a TCR was able to recognize only a single pMHC complex (2), and Andrew
Sewell who empirically measured the necessity of cross-reactivity given the insufficient number
of TCRαβ to protect against a wide spectrum of pathogen by comparing the number of potential
foreign pMHC complexes a T cell might encounter and the number of TCRs available (3).

Although it is known that T cells can recognize peptide and non-peptide antigens, it is now
well-accepted that peptide-specific TCRs exhibit high levels of cross-reactivity. In fact, it has been
proposed that a single TCR can recognize 104-107 differentMHC-associated epitopes (2). However,
it has also been illustrated that once a TCR reacts with a specific peptide-MHC complex, the
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probability of it reacting with another randomly chosen peptide
reduces to ∼10−4 (4). Thus, TCR recognition of pMHC
complexes is both cross-reactive, given the high number of total
epitopes that could be bound, and at the same time, highly
specific considering the low frequency of epitopes that can be
recognized by a given TCR.

Recent biological and computational advances to screen
antigenic peptides and profile TCR repertoires have greatly
improved our understanding of the TCR:pMHC interaction.
However, the picture is far from complete. As yet it is not
possible to, (a) predict TCRs recognizing a given antigen, or
(b) predict antigens recognized by a given TCR. Methods
to accurately predict biological specificity or cross-reactivity
would have profound clinical, therapeutic and pharmaceutical
applications in designing cellular therapies for fighting cancer,
autoimmune and infectious diseases.

New biological methodologies have enabled definition of
cross-reactive peptides using high throughput screens against
a series of TCR molecules and some can screen whole cells
(5–14). In fact, recently developed labeled pMHC multimers
coupled with single cell sequencing facilitated screening of an
array of immunogenic peptides in a relatively high-throughput
manner, but this is still limited by practical synthesis of pMHC
multimers (6). Additionally, kinetic, biophysical and structural
studies provide insights on the complex landscape of TCR:pMHC
interaction from different angles. However, apart from few
attempts to predict immunogenicity, algorithms to predict
breadth and/or constituents of the cross-reactome are still in
their infancy.

Understanding the underlying mechanisms of common
antigen specificity of TCRs, on the other hand, has been the
focus of key research over the past few years. A number of recent
studies have demonstrated the plausibility of identifying shared
motifs amongst tetramer-specific TCRs (15–18) to explain shared
antigen specificity. By the advancement of high throughput
sequencing technologies for both bulk and single cell immune
repertoire profiling, lack of biological data is becoming less of
a challenge, allowing us to simultaneously project TCR profiles
of T cells along with their antigen specificity, functional states
and gene expression levels (19, 20). Therefore, part of the
challenge turns into developing sophisticated mathematical and
computational models to understand high dimensional and
occasionally sparse datasets.

Although cross-reactivity and common antigen-specificity
have been investigated individually, understanding the
relationship of the two closely interconnected notions seems
to be underrepresented in the research community. Whereas,
in order to set a foundation for better understanding T cell
responsiveness for effective clinical applications, these two pillars
of the adaptive immunity can be and should be investigated
together and each in the light of the other.

Here we review the recent advances in the understanding
of both cross-reactivity and common specificity of T cell
recognition mainly from a computational perspective. We will
discuss current experimental and computational approaches to
investigate cross-reactivity, and highlight how integrating kinetic,
biophysical and structural features may offer valuable insights in

modeling immunogenicity against TCRs. We will then discuss
the progress and limitations in assigning antigen-specific TCRs
based on their shared features. Lastly, we will underscore the
close inter-relationship of these two principles and how recent
single cell technologies are poised to shed further in this area.

PREDICTING CROSS-RECOGNITION
POTENTIAL OF T CELL RECEPTORS

Cross-Reactivity of TCR Is a Double-Edged
Sword
TCR cross-reactivity, which was coined in the late twentieth
and early twenty first century, has become recognized as a
common feature of TCR recognition (2, 3, 21–23) and a single
TCR is estimated to bind >106 different MHC-bound peptides
(24). A repertoire of highly cross-reactive T cells can effectively
screen for numerous antigenic peptides and minimize the risk of
pathogen escape from immune surveillance. Nonetheless, cross-
reactivity is a double-edged sword: while a highly cross-reactive
T cell can effectively screen for a wide spectrum of epitopes,
this may also lead to dysregulated T cell responses potentially
contributing to allergy, immunopathology, autoimmunity and
chronic infection (25–28).

Prior exposure of degenerate T cells can induce polarized
response to a pathogen or vaccination (29, 30). Heterologous
immunity has been reported between related pathogens with
high sequence similarity as well as unrelated pathogens with
minimal sequence overlap (31–35) giving both positive and
negative effects (36, 37). There is accumulating evidence that
genetic background, private TCR specificities and immunological
history are key factors contributing to the final outcome of
antigen exposure—whether to confer protective immunity or
induce damaging immunopathology (25, 38, 39). It is of note
that peptide recognition is not a simple on/off event, and that the
same T cell can respond in different ways to modified peptides,
by for example, pMHC affinity and dose thresholds (40, 41),
co-stimulatory molecules (42), and hierarchical organization of
thresholds (43, 44).

While naïve T cells expressing self-reactive TCRs survive due
to the low avidity or low expression of peptides derived from
self-proteins (45), immune tolerance may be broken if T cells
are activated by cross-recognition of pathogenic peptides. This
results in memory T cells that are potentially stimulated even at
50x lower peptide concentrations (46, 47). Such a phenomenon,
known as molecular mimicry, may occur via induced fitting
by TCR or pMHC, altered TCR:pMHC docking geometry,
and/or structural degeneracy leading to cross-recognition of low-
affinity TCR:pMHC, thus potentially leading to breakdown of
tolerance (48–53).

From a clinical perspective, recent immunotherapy trials have
highlighted off-target toxicities triggered by cross-reactivity of
high affinity TCRs, where adoptive T cell transfer trials with
high-avidity DMF5 TCR targeting the HLA-A∗02:01 MART-1
melanoma peptide showed a greater promise than DMF4 TCR
for cancer treatment but also triggered autotoxicities (54). In
addition, adoptive T cell transfer targeting melanoma-associated

Frontiers in Immunology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 565096

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

antigen 3 (MAGE-A3) peptide demonstrated severe cardiac
toxicity, attributed to recognition of unrelated peptide derived
from self-protein Titin displayed on HLA-A∗01:01 on the surface
of healthy cardiac cells (55). This seemingly unpredictable off-
target toxicity mediated by T cell cross-reactivity highlights the
requirement to mitigate against autoimmunity deriving from
TCR-based immunotherapy.

Technologies to Elucidate the Landscape
of Cross-Reactivity
Inability to detect potential toxicities through initial safety
evaluation highlighted the need to develop technologies to
assess the cross-recognition potential of each TCRs engineered
for clinical uses. In recent years, technologies to extensively
characterize the recognition pattern of TCR:pMHC have
emerged [reviewed in (56)].

Briefly, large combinatorial peptide libraries (8, 9, 24)
along with peptide-MHC display systems (7, 10–13) enabled
unbiased screening of pooled pMHCs against TCRs to determine
positional amino acid preferences. Combinatorial peptide
libraries containing thousands to millions of peptides have
been utilized to identify cognate peptides, estimate the cross-
recognition potential of TCRs, and further characterize structural
and/or biochemical relatedness between peptides recognized by
the same TCR (10, 57–60).

With the help of combinatorial peptide libraries and single
amino acid analogs, the “hotspots” crucial for potential off-target
cross-reactivity have been characterized (61–63). For instance,
Border et al. demonstrated the capability of single amino
acid analogs (called “X-scans”) to differentiate cross-recognition
potential of two affinity-enhanced TCRs which would otherwise
appear similarly potent and specific (64).

While binding of recombinant TCR and pMHC molecules
provide essential information, previous studies reported high-
affinity, yet non-stimulatory, interactions occur with high
frequency in the human T cell repertoire (65, 66). In recent
years, several cell-based platforms have been developed for TCR
antigen discovery, using T cell clones or TCR-transduced T cells,
for a better reflection of in vivo systems without requirement
for a soluble TCR (7, 11–14). One example is signaling and
antigen-presenting bifunctional receptors (SABRs), where a
signaling domain has been introduced to in theMHC-I molecule,
leading to green fluorescence protein (GFP) expression following
TCR:pMHC interaction (11). Compared to conventional yeast
display system, these approaches enabled a rapid identification of
antigens expressed from large peptide libraries transduced into
the target cells. However, there remains a number of limitations.

Limitations of the Current Technologies
Although recent approaches provide increased flexibility to
investigate the degeneracy of TCRs, they remain limited in
(i) the number of possible TCRs that can be tested against
peptide libraries in a single experiment, (ii) the number of
peptides compared to the actual number of ligands that might
be encountered, (iii) the need to prepare a new peptide library
for each analysis of pMHC specificity, (iv) the high number of
false positive and negative peptides resulted from screening, and

(v) often the requirement to generate individual recombinant
TCR, T cell clones, or reporter cells expressing TCR for
screening. Some approaches in ongoing development do offer
the potential to obtain high-throughput biological data using
primary unmodified polyclonal T cells (7).

Moreover, current strategies of generating a single amino
acid analog library rely on replacing a pre-established peptide
target with one amino acid at a time. However, such an
approach may underscore the possibility of duplex or triplex
amino acid substitutions or even largely different peptides to
trigger a TCR response (67). Therefore, interpretation of the
results should reflect that it may merely be a window of
estimated cross-reactivity.

Expanding Knowledge of TCR:pMHC
Interactions by in silico Modeling
In silico modeling may enhance the utility of experimental
data for assessing TCR binding degeneracy. Associating the
information gained from the aforementioned technologies with
the knowledge of the human proteome and the HLA presentation
potential through implementation of mathematical modeling
approaches might provide valuable insights on the relationship
between antigen specificity and cross-recognition potential
of TCRs.

Moreover, in silico investigations may suggest clues to yet
unsolved problems and help define how ubiquitous previously
observed phenomena are, such as publicness of cross-reactive
TCRs, different extent of cross-reactivity between featured
and featureless peptides, the role of dominant peptides in
TCR repertoire organization and preferential directionality of
antigen specificity.

For example, Kasprowicz et al. observed preferential
directionality from Hepatitis C Virus (HCV) to Influenza A
Virus (IAV) i.e., a T cell primed with an HCV-derived peptide
was capable of recognizing an IAV-derived peptide but the
opposite was not true (68). Correspondingly, recent studies
suggest that heterologous immunity is greatly influenced by
private specificities and immunological history (39, 69, 70).
However, due to scarcity of data and cost associated with
generating the data, it is difficult to assay the prevalence and
understand the underlying principle of antigen-driven repertoire
convergence in an experimental setup. In this regard, in silico
approaches may be more suitable for identifying patterns and
testing hypotheses on factors driving observed phenomena.

Indeed, several groups have started to use modeling
approaches to test various hypotheses on TCR:pMHC interaction
propensities (38, 71, 72). For instance, Xu and Jo utilized a simple
string model to evaluate a trade-off between rapid screening and
dissociation penalty, and have shown that while a highly cross-
reactive TCR detects correct peptides in a short period of time
with the help of its degeneracy, it takes much longer to release
from an incorrectly bound peptide (71).

In addition to models predicting TCR:pMHC interactions,
models to relate TCR:pMHC binding parameters and antigen
doses to T cell response have also been proposed [reviewed
in (73)]. Recently, Fernandes et al. utilized partial differential
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equations to study the underlying mechanism of ligand
discrimination and TCR triggering based on two physical
properties, (i) TCR dwell time in the absence of large tyrosine
phosphatase, and (ii) spatial constraints on the contact area,
and found that topographically constrained T cell contacts
allow, and may even be essential, for ligand discrimination
by T cells (72). Although these mathematical models are
built upon underlying assumptions e.g., a positive correlation
between binding affinity and the extent of TCR cross-reactivity,
provided that assumptions are evidence-based and reasonable,
such modeling approaches will be a valuable strategy to quickly
test hypothesis on cross-recognition potential.

Approaches to Predict Immunogenicity
From Experimental Data
In 1998, Don Mason argued in favor of the necessity for
cross-reactivity (2) with an incredibly high number of peptides
potentially generated from the 20 amino acids (>1018 peptides)
and a relatively limited number of unique TCRs in an individual
(in the range of 106-108) (3, 74, 75). Moreover, the possibility
of post-translational modification, peptide processing, HLA
presentation and altered T cell functions attributes additional
factors to deciphering T cell targets (76–82).

Several attempts to estimate the polyspecificity of TCRs
have been performed. These include: (i) generation of mutant
peptides with amino acid substitutions and testing the impact
of substitution on T cell activation and/or cytotoxicity (83–
85), (ii) scanning combinatorial peptide libraries to find cross-
reactive peptides against a TCR of known antigen specificity
(24, 57, 59, 60, 86, 87), and (iii) scanning peptides or pMHC
multimers derived from the host (e.g., human) or pathogen
proteome to test cross-recognition potential (5–7, 88–92).
Although functional readouts may not have captured all binding,
the readout from these approaches allowed identification of
essential interaction residues in TCR:pMHC, which were applied
to predict polyspecificity.

For instance, in a recent TCR fingerprinting study, Karapetyan
et al. investigated which amino acids at each position are essential
for 1G4 TCR binding, activation and killing by sequentially
replacing every amino acid position outside of anchor positions 2
and 9with 19 alternative amino acids. The peptides were analyzed
using three in vitro assays examining binding of NY-ESOc259

TCR to peptide-MHC complexes, activation of TCR-expressing
cells and killing of target cells. Based on the experimental
measurements, they constructed positional weight matrices
(PWMs) for three in vitro assays and utilized PWM-defined
kernel along with NetMHCpan v3.0, an algorithm to predict
MHC binding, to predict peptides with high TCR recognition
score. By applying the algorithm to 336,921 predicted HLA-
A∗02:01 binding 9-mer peptides, they demonstrated a strong
activation of primary T cells out of the top scoring peptides.

Instead of scanning a single TCR, a few algorithms have been
designed to predict immunogenicity of a peptide against a pool
of TCRs by the use of sequences (93), positional information
(94, 95) and/or physicochemical properties (96, 97) (Table 1).
Pogorelyy et al. classified immunogenic vs. non-immunogenic

peptides in Kidera feature space by transforming epitope
sequences into a vector of sum for each of 10 Kidera factors
that encode physicochemical properties of amino acids. Similarly,
Ogishi et al. incorporated Amino Acid index database (AAindex)
(110) and other physicochemical properties describing features
determinant of immunogenicity, then compressed the most
predictive peptide descriptors and contact potential profiling
(CPP)-based features into a linear coordinate system through a
machine-learning technique known as Extremely Randomized
Tree (ERT) algorithm (96). Of interest, they hypothesized
that immunodominant epitopes share intrinsic patterns which
render them more prone to be recognized by the immune
system of multiple individuals and focused on identifying these
prominent features.

In order to predict antigens with high potential for cross-
reactivity and off-target toxicity, Jaravine et al. developed
Expitope 2.0 that allow analysis of tissue-specific gene expression
pattern and prediction of potential side effect in normal tissue,
with the ultimate aim of selecting a safer pool of vaccine
targets for personalized immunotherapy (89, 111). Zhang et al.
applied tetramer-associated T cell receptor sequencing (TetTCR)
to resolve up to five cross-reactive peptides per cell and identified
patterns associated with TCR cross-reactivity (6). Similarly,
Bentzen et al. utilized experimental data and developed an
algorithm named Find Individual Motif Occurrence (FIMO)
software to create a priority score inferring the likelihood of
cross-recognition (5). From each Shannon logo, cross-reactive
peptides were predicted from corresponding position-specific
scoring matrix (PSSM) using FIMO, and the human proteome
was searched for sequences that match each logo.

Discriminative Features Governing
TCR:pMHC Interaction
Although there have been several attempts to predict
immunogenicity, the dual nature of the peptide-specific
TCR recognition interface, comprised of both peptide and MHC,
makes predicting interaction between TCR and pMHC uniquely
challenging. While much of T cell specificity is determined by the
promiscuous peptides due to a relatively invariant interaction
with MHC molecule (112, 113), it has been demonstrated
that TCR:pMHC recognition is influenced by peptide length,
physicochemical properties, amino acid sequence especially at
central and anchor residues, MHC haplotype and structural
landscape (114). Over the years, TCR:pMHC interactions have
been extensively studied, thus providing a wealth of data for
modeling to be performed from different perspectives (Figure 1).
In the following subsections, we will describe a number of
discriminative features shown to associate with immunogenicity.

Biophysical and Kinetic Features
In addition to the discovery of hotspot residues through TCR
sequence alignments (16), biophysical studies revealed that
some interactions at the pMHC surface seem more important
in triggering a T cell responses (112, 115). This raised a
hypothesis that even TCRs sharing a similar TCR footprint
may have their unique “interaction profile” (38), and claimed
that while conventional hotspots were attributed to amino

Frontiers in Immunology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 565096

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee
etal.

C
ross-R

eactivity
and

S
pecificity

ofTC
R

TABLE 1 | List of algorithms to predict immunogenicity.

References Training data Algorithm Discriminative features (Immunogenicity)

Tung et al. (95) Trained on 9-mer HLA-A2 restricted peptides. From MHCPEP,
SYFPEITHI and IEDB, consist of 558 immunogenic, 527
non-immunogenic peptides

Decision tree learning methods to identify informative
physicochemical properties from 531 physicochemical properties
retrieved from version 9.0 of amino acid index (AAindex) database.
Support vector machine with a weighted string kernels for
immunogenicity prediction (named POPISK)

Top AAindex contributors: (i) Retention coefficient in
HPLC, pH2.1, (ii) Principal property value z2, (iii)
Hydrophobicity scale from native proteins, (iv) Normalized
composition of membrane proteins, and (v) pK-C. Found
positions 4, 6, 8, and 9 critical for 9-mer peptide

Calis et al. (98) Trained on 9-mer from MHC-I associated peptides. From IEDB
and three immunogenicity studies in mice (99, 100), and
unpublished data on Coxiella Burnetti-derived peptides), consist of
600 immunogenic and 181 non-immunogenic peptides

Per non-anchor residue of the presented peptide, log enrichment
score calculated as ratio between the fraction of specific amino
acid in immunogenic vs. non-immunogenic data, then score
weighted to the importance of that position measured as
Kullback-Leibler divergence. The weighted log enrichment scores
of all (non-anchor) residues summed as immunogenicity score

Preference for residues with larger or aromatic side
chains Positions 4–6 critical for 9-mer peptide

Trolle and
Nielsen (101)

Trained on 9-mer peptides covering 9 HLA alleles. From 295T cell
epitopes from SYFPEITHI and 1,216 T cell epitopes from IEDB,
allele-balanced training data created by randomly selecting 50
epitopes from each of 9 HLA alleles except 2 alleles having 14
epitopes each, Total 378 epitopes

Weighted sum of pMHC binding affinity [NetMHCcons (102)],
pMHC stability [NetMHCstab (103)] and T cell propensity
prediction (98) (integrated algorithm named NetTepi). Optimal
relative weights obtained

Performance gain obtained by summing pMHC binding
affinity, pMHC stability predictions and T cell propensity
than individual predictions

Chowell et al.
(104)

Trained on 9-mer H-2Db and HLA-A2 restricted peptides
(separately for two ANN-Hydro models). From IEDB, 204
immunogenic and 232 non-immunogenic (self-peptides from MHC
ligand elution experiment with no known immunogenicity) for
H-2Db, and 372 immunogenic and 201 non-immunogenic
peptides for HLA-A2

Hydrophobicity-based artificial neural network (ANN-Hydro) based
on numeric sequence of amino acid hydrophobicity

Strong bias toward hydrophobic amino acids at TCR
contact residues (P4, P6, P7, and P8 for 9-mers) within
immunogenic epitopes. Negative correlation between
polarity of amino acids and immunogenicity

Łuksza et al.
(105)

Trained on 2,552 MHC-I immunogenic peptides from IEDB.
Neoantigens with mutations generated from non-hydrophobic,
wild-type residues at positions 2 and 9 excluded (as prediction of
MHC affinities for wild-type peptides with non-hydrophobic anchor
residues led to non-informative amplitudes)

Recognition potential of a neoantigen = A × R, where amplitude
(A) is relative probability that a neoantigen is presented on MHC-I
whereas its wild-type counterpart is not, and R is probability that
neoantigen will be recognized by TCR repertoire. R defined by a
multistate thermodynamic model, treating sequence similarity as
proxy for binding energies

High sequence similarity of a given neoantigen with
epitopes in IEDB by gapless alignment with BLOSUM62
amino acid similarity matrix

Bjerregaard et al.
(106)

From 13 publications, analyzed total 1,948 peptide-HLA
complexes, of which 53 reported immunogenic

HLA binding prediction by NetMHCpan-4.0. Similarity between
each neo- and normal peptide using kernel similarity measure
proposed by Shen et al. (107)

High predicted binding score (HLA binding strength).
Peptide sequence dissimilarity to self (wild-type
counterpart of the neopeptide), especially for those with
comparable HLA binding

Pogorelyy et al.
(97)

Trained on 9-mer peptides. From (104), 3,671 immunogenic and
3,911 non-immunogenic peptides

Principal component analysis and dimensionality reduction on
10-dimensional vectors of Kidera factor sums for each epitope. Fit
multinomial Gaussian model using expectation maximization to
estimate probability of being immunogenic

Distinct physicochemical properties in Kidera space

Jurtz et al. (93) Trained on 8,920 TCRβ CDR3 sequences and 91 HLA-A2
cognate peptides obtained from IEDB. 379 TCR and 16 peptides
from the MIRA assay in (108). Negative data from eluted peptide
ligands from self (i.e., human) proteins, a set of 200,000 TCR
CDR3 sequences from 20 healthy donors and creating internal
incorrect combinations of TCRs and peptides

Convolutional neural networks (CNN) to predict whether a given
TCR is able to recognize a specific peptide, with amino acid
sequences of peptide and CDR3 region of TCRβ chain as input.
CNNs scans the input and detects pattern to be integrated into
network (named NetTCR)

Conserved sequence patterns of peptide-TCR pairs
encoded by BLOSUM50 matrix

Smith et al. (94) Trained on 8-11mer 141 epitopes from MHC-I H2b and H2d

haplotypes
Using amino acid features (tiny, small, aliphatic, aromatic,
non-polar, polar, charged, basic and acidic), variables derived by
presence/absence of each feature at each absolute and relative
position,

Peptide biochemical features: valine at position 1, valine
at last position, small amino acids at the last position,
basic amino acids of the reference at
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acid residues, the concept of hotspot should be expanded
to account for interaction features, such as hydrogen bonds,
van der Waals forces, pockets and coordination of water
molecules (115, 116).

A collective effort has identified biological and physical
parameters that modulate TCR:pMHC engagement and T cell
response [reviewed in (117)], which include binding affinity,
association and dissociation rates, half-life of interaction,
changes in heat capacity, competition for CD3 molecules and
conformational adaptability of TCRs (117–132). Taking these
biophysical and kinetic features into account may help to
effectively reflect the two-dimensional (2D) and dynamic in vivo
system whilst modeling TCR:pMHC interactions.

Although we are not currently in the position to perform an
ab initio prediction based on biophysical and/or structural data,
recent studies have started to incorporate physical and chemical
properties in developing a generalized TCR scoring function. In
a multi-linear regression model, Riley et al. utilized 16 full-atom
Rosetta terms (133, 134) and six flexibility terms as predictor
variables and experimental binding energies as response variables
to estimate the effect of point mutations on thermodynamic
stability of the TCR. They identified six significant features,
4 structural terms (van der Waals attractive and repulsive
forces, solvation energies and sidechain hydrogen bonding) and
2 flexibility terms (root mean square (RMS) fluctuations for
α-carbons of the free and bound structures) contributing to
improved performance of the scoring function.

In another application, Haider et al. aimed to engineer
an affinity enhanced A6 TCR targeting Tax peptide/HLA-A2
complex (135). They created a set of 219 fitted scoring functions
using kinetic and potential energy terms and identified a function
(named ZAFFI score) best capable of reproducing affinity
changes upon 648 mutations on ovomucoid turkey inhibitor
molecule. This work was followed by Pierce et al. identifying
an improved scoring function (ZAFFI 1.1) having a higher
correlation for a set of DF5 point mutations (136). ZAFFI
1.1 includes six terms: van der Waals attractive and repulsive
components, desolvation, intra-residue clash, hydrogen bonding
and Coulombic electrostatic force.

In a recent review, Spear et al. have highlighted the
significance of considering the previously unappreciated complex
relationship between kinetic, cellular and structural patterns
that modulate antigen specificity and TCR cross-reactivity in
designing TCRs (117). Likewise, such parameters should be
taken into account in modeling TCR:pMHC cross-recognition
propensities as well as antigen specificity.

Features From Structural Modeling
The 3D crystal structures of T cell receptor and their cognate
pMHCs have been resolved and deposited in protein database
(PDB) (137). The structural T cell receptor database (STCRDab)
contains >340 PDB entries and >480 αβTCR structures and
facilitates analysis and visualization of TCR structures as well as
individual CDR loops (138). This database includes information
about MHC type, antigen specificity, Vα-Vβ pairing, orientation,
dissociation rate (Kd) and CDR type. Additionally, TCR3d
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FIGURE 1 | Features associated with TCR:pMHC interaction. Description of sequence-based, structural, kinetic, and biophysical features previously found to be
associated with pMHC recognition by TCR The diagram is 1G4 TCR bound to NY-ESO-1/HLA-A*02:01 (PDB 2BNR) where TCRα, TCRβ, MHC, β2-microglobulin and
peptide are colored in orange, red, blue, light blue, and yellow, respectively.

provides information on germline gene usage, antigen binding
mode and interface features (139).

Based on the cognate peptide, MHC and TCR structures
in the aforementioned database, there have been a number
of attempts to accurately predict peptide-MHC conformations,
including docking algorithms (140, 141), protein threading
(142), all-atom molecular dynamics (MD) simulations (143–
145), energy minimization (146) and hybrid of these approaches
(147). Likewise, approaches to model pMHC-TCR include
MD or Monte Carlo simulations, TCR:pMHC hydrogen bond
network analysis (148, 149), binding free energy simulation (150)
and CDR loop characterization (130). Both rigid and flexible
docking protocols have been proposed to assemble unbound
structures (151).

The features retrieved from structural modeling were utilized
to predict TCR:pMHC complex formation (151, 152). Mendes
et al. applied electrostatic potential and topography data
to conduct structure-based prediction among viral epitopes.
By using structural features as input for a multivariate
statistical model, they showed that use of accessible surface
area (ASA, Table 3) adds value to infer immunogenicity and
cross-recognition potential. Similarly, Riley et al. showed that
hydrophobic SASA and hydrophobic solvation energy values at
peptide positions 5, 7, and 8 were in the top 10% of all weights in
the neural network for predicting immunogenicity (109).

Recent structural studies have emphasized the importance
of structural and physicochemical homology in T cell receptor
cross-reactivity (112, 153–160). For example, screening
libraries of ligands against 2B4 and 42F3 TCRs revealed
that peptides containing sequence motifs at specific positions
were found to participate in similar TCR contact networks
(112, 153). Collectively, the shared peptide conformation and

core residues were shown to limit structural diversity and
facilitate cross-recognition.

However, Riley et al. questioned the notion that the pools of
ligands for a given TCR is built around core regions of restricted
structural and chemical space, and showed that T cell receptors
can also cross-react between ligands with little structural
or physicochemical commonalities. They demonstrated that
the DMF5 TCR can cross-react with divergent antigens by
unanticipated rearrangements in peptide and presenting MHC
molecules, including binding-induced peptide register shifts.
Although dramatic rearrangements did not translate into
molecular mimicry, this TCR was capable of cross-reacting with
distinct classes of epitopes. Likewise, cross-reactivity has been
observed from unrelated pathogens even with a low level of
structural homology (31, 33, 68, 69, 161, 162).

These findings suggest that while structural homology
may inform cross-recognition potential of peptides having
the same structural configuration, current methods are
suboptimal in predicting polyspecificity across different classes.
Moreover, amino acid mutations at positions distant from
direct recognition sites may also have a substantial effect on
TCR:pMHC interaction e.g., change in binding parameters
and/or structural conformation, and can only be validated by
experimentation (163). Altogether these may imply an immense
breadth of promiscuity beyond our expectations based on
current understanding.

Elements to Consider in Modeling
Immunogenicity or Cross-Reactivity of
TCRs
Given the limitations in the current methods to reflect and
predict TCR:pMHC recognition, here we describe a few
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considerations to make in building algorithms to predict
immunogenicity or cross-recognition potential.

First, a key challenge in developing machine learning and
statistical models to predict immunogenicity is the lack of true
negative datasets for TCR-epitope interaction as well as cross-
reactivity information. Several groups tackled this limitation by
simulating a background or negative data (93, 96, 97, 164). Jurtz
et al. approached the problem by creating incorrect combinations
of TCRs and peptides i.e., linking TCR sequences with a random
peptide different from the cognate target, and produced a
balanced set of positive and negative data. Alternatively, Ogishi
et al. retrieved the latest set of all characterized peptides and
examined coexistence of positive and negative assay results
to classify immunogenicity in a population-level (96). Given
the limited coverage of cross-reactivity spectrum, a rational
simulation would supplement the true negative data for training
a classifier.

Additionally, the existing datasets are in a binary format of
being immunogenic or non- immunogenic, whereas it is evident
that the T cell response is a continuum and comes in different
flavors from a mild to a very strong response and varies in
functional outcomes such as differential cytokine production.
Quantitative T cell response measures associated with each
epitope will open a new avenue for rigorous modeling.

Second, current distance measures are mainly context specific
and do not capture the true immunogenic capacity of the input
peptides. For example, Grouping Lymphocyte Interactions by
Paratope Hotspots (GLIPH) and TCRDist that are aimed to
detect common antigen specificity groups may not be effective
in estimating breadth and/or constituents of the cross-reactome.
Cancer specific immunogenic neoantigens that are used for
cancer vaccine targets are mainly different from the wild type
by only a single point mutation. Engineered affinity-enhanced
TCRs have recently been shown to generate unpredicted cross-
reactivity even by a single amino acid substitution (64, 165,
166). As such, a naive sequence-based metrics such as Euclidean
distance may pose limitation and thus development of a distinct
distance metric for evaluating cross-recognition potential may
be required.

Third, there is a considerable heterogeneity in the
experimental methodologies employed in assessing T cell
responses. Although standardizing T cell assays into a single
readout is practically difficult, accuracy of predictive algorithms
may be enhanced by reflecting the sensitivity and specificity of
assays employed for characterizing each epitope.

Fourth, up to date, exhaustive screenings have been performed
based on an assumption of invariant MHC interaction. However,
previous studies suggested the ability of a TCR to recognize
peptides bound by non-canonical HLA molecules (167, 168). In
addition to cross-reactivity of virus-specific T cells to HLA-A
and -B molecules, van der Zwan et al. reported cross-reactivity
of HLA-B∗08:01-restricted EBV-specific T cell against HLA-
C∗01:02 (169). From a clinical perspective, a severe off-target
toxicity was reported by adoptive cell transfer of T cells targeting
HLA-A∗01:01 MAGE-A3 complexes by binding to a Titin-
derived peptide displayed on HLA-A∗01:01 (55). Thus, it may be
necessary to screen for peptides bound on non-predicted HLA

alleles to project the complete scope of cross-reactivity, and we
need to keep in mind that the current sets of data may only reflect
the tip of an iceberg.

Lastly, we need to keep in mind that while TCR:pMHC
interactions exhibit a remarkable capacity of discrimination, they
are often sloppy and cross-reactive. Nevertheless, as exemplified
by thymic selection, weaker affinities play an essential role
in underpinning the sensitive detection of a wide range of
cognate antigens yet keeping it well-balanced from self-reactivity
(170, 171). Moreover, low and high-affinity T cells may involve
in biological processes differently in regards to e.g., effector
and memory differentiation, metabolic reprogramming, and
immune response in specific conditions (172, 173). Given
the dynamic nature of weak interactions and their potential
functional implications, we may need to divert from lessons
learned from well-optimized interfaces, such as antigen-antibody
binding. We should note that due to challenges involved in
measuring low affinity interactions, existing data may be biased
in favor of high affinity interactions (174), and may also need to
reexamine scoring functions and parameters to reflect dynamic
interplay of low and high-affinity T cells for an efficient immune
response (175).

PREDICTING COMMON SPECIFICITY
GROUP OF T CELL RECEPTORS

The amino acid sequence of paired TCR defines its binding
specificity. However, we still do not have a full understanding
of the mechanisms underpinning the recognition of pMHC
complexes by their cognate TCRs. In the last few years, there
have been mathematical and computational efforts to find
systematic ways to cluster TCRs based on their likely antigen
specificity, a phenomenon known as defining common antigen
specificity groups.

To identify TCRs specific to a given antigen, one will
require to sort and sequence naïve and antigen experienced T
cell repertoires. Recent advances in both bulk and single cell
sequencing technologies facilitates generation of such datasets
in a high throughput manner. A dedicated set of algorithms
and software tools will allow computational biologist to further
analyze and profile TCR repertoires (176–178). This includes
MIXCR and IMGT V-QUEST for assigning raw sequence reads
into VJ genes and CDR3 sequences, and VDJtools (179) to
compute VJ gene usage statistics as well as repertoire diversity.

Such complementary biological assays and computational
platforms enabled robust generation and analysis of millions of
TCRs in a single experiment. Importantly, the curated sequences
have been deposited in databases such as VDJdb (180) and
McPAS-TCR (181). The VDJdb contains>60,000 TCR specificity
records associated with their epitope andMHC, andMcPAS-TCR
holds >5,000 TCRs associated with pathogenic conditions e.g.,
pathogen infection, cancer and autoimmunity.

The accumulation of somany antigen-specific TCR sequences,
on one hand, urged the development of systematic methods to
group TCR sequences according to, for example, their shared
antigen specificity, and on the other hand, opened an opportunity
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FIGURE 2 | Current workflow for predicting antigen specificity of TCRs. The tetramer-sorted antigen specific CDR3β or TCRβ are clustered by distance measure
defined by either global sequence similarity, motif enrichment or sequence co-occurrence pattern. Then, specificity clusters are investigated for their descriptive
features, such as enrichment of common V-genes, CDR3 length, clonal expansions, and motif significance, to be considered in making the prediction of antigen
specificity. Based on the collection of identified features, previously uncharacterized CDR3βs or TCRβs are predicted for their antigen specificity. The example
sequences have been retrieved from (16, 182).

to conduct in-depth characterization of antigen-specific TCR
repertoires, find shared and conserved features and develop a
distance measure that permits clustering and visualization of the
TCR space (Figure 2). In the following subsections, we will be
looking into a number of such methods.

Algorithms to Predict Antigen-Specificity
of TCRs
The above mentioned rationales have formed the foundation
for several recent studies trying to predict specificity groups
of TCRs based on their TCR or CDR sequences (15–18, 182–
187) (Table 2). By analyzing the collection of TCR sequences,
researchers have tried to identify shared features among antigen-
specific TCRs and to develop a distance-based classifier capable
of assigning previously unobserved TCRs to characterized
repertoires. Here are examples of different approaches employed
to predict common specificity groups of TCR.

Co-occurrence Pattern of TCR Sequences
While TCRs are rarely cross-reactive across HLA haplotypes
(193), they can be highly promiscuous to different peptides
presented on the same HLA (24, 112, 113) and this invariant
interaction between TCR:pMHC also confers T cell specificity.
Based on this principle, a recent study by DeWitt et al. showed
that despite the diversity and complexity of TCR repertoire and
pMHC, there exist common patterns across individuals exposed
to the same disease. They leveraged this finding to cluster TCRs
by their co-occurrence pattern, associated TCR clusters to HLA
(i.e., HLA restriction) and predicted antigen specificity of the
TCR cluster (182). Using repertoire sequencing data coupled
with high-resolution MHC genotyping, they demonstrated
striking imprints of common pathogens and clusters of
co-occurring TCRs that may represent markers of shared
immune exposure.

CDR3β Sequence Similarity
As a result of somatic recombination, TCR sequences produce
three complementary determinant region (CDR) loops, where

CDR1 and CDR2 of α- and β-chains are conventionally
believed to govern the interaction with an MHC molecule,
and hypervariable CDR3α and CDR3β loops to guide specific
engagement of TCRs with MHC-bound cognate peptides
(194, 195). A number of studies have observed structural
rearrangement of CDR loops during TCR:pMHC interaction.
The range of motion is between 0.3 and 11.4Å, where CDR3 loop
generally undergoes the largest shifts (196).

Based on the understanding of CDR loops with pMHC
interaction, some progress has been made in predicting
specificity groups of TCRs based on the similarity of short
stretches of TCR amino acid sequences, known as motifs, mainly
within CDR3 region (15, 16, 18, 93, 192). Glanville et al.
aligned amino acid sequences of all reported TCR:pMHC crystal
structures and identified stretches of three to five contiguous
amino acids at specific positions in TCRβ CDR3 to be positioned
within 5Å of peptide residues. Building upon this finding, they
sorted Epstein-Barr virus (EBV), cytomegalovirus (CMV) and
influenza-specific T cells, performed single cell sequencing of
isolated TCRs or bulk TCRβ sequencing, then again observed
similarity in short sequences of CDR3s within hundreds of
antigen-specific T cells. The authors proceeded to incorporate
these observations into an algorithm for Grouping Lymphocyte
Interactions by Paratope Hotspots (GLIPH) that allowed them to
cluster TCRs with comparable levels of specificities. Along with
GLIPH, several algorithms have recently been proposed such as
TCRDist (15) and TCRnet (17), which also relies on CDR3s to
cluster TCRs based on the amino acid sequence similarity.

Improving Accuracy of TCR Specificity
Group Prediction
Although current algorithms have been applied in multiple
biological contexts such as Alzheimer’s disease (197), narcolepsy
(198), and PD-1 blockade treatment (199), recent studies
reported suboptimality of the algorithms (18) given the limited
number of crystal structures concentrated around a few
frequently observed viral antigens. Here we present several
elements that may facilitate improvement of predictive accuracy.
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TABLE 2 | Algorithms to predict antigen specificity of TCR repertoire.

References Data Distance measure Clustering algorithm

Thomas et al.
(183)

CDR3 sequences of CD4+ T
cell repertoire before and after
immunization

Replace each CDR3 by all possible n-mer
peptides, then convert each n-mer peptide
into numeric Atchley vectors

K-means clustering of Atchley vectors, count number of
Atchley vectors assigned to each cluster, and generate
into a feature vector. Classify the feature vector using
hierarchical clustering (unsupervised) or support vector
machine (supervised)

Dash et al. (15) pMHC-facing loop between
CDR2 and CDR3 and
trimmed CDR3 sequences
from 4,635 paired TCRαβ

sequences

Similarity-weighted mismatch distance
between the potential pMHC-contacting
loops of two TCRs, defined by BLOSUM62
(named TCRdist)

Sampling density nearby each TCR estimated by
weighted average distance to the nearest-neighbor
receptors in repertoire (a small nearest-neighbor
distance, NN-distance). Each TCR repertoire clustered
using “greedy” fixed-distance-threshold clustering
algorithm. At each step, TCR with the largest number of
neighbors within the distance threshold chosen as a
cluster center and iterated for all TCRs

Glanville et al.
(16)

CDR3 from 5,711 TCRβ

sequences
Global similarity by CDR3 hamming distance
between two TCRs with same Vβ segment
and same-length CDR3. A fold-change
enrichment of local convergence motif by
observed frequency of the motif over
expected frequency in repeat random
sampling from naïve distribution

Cluster TCRs sharing either global similarity below
Hamming distance threshold (differ <2 amino acids) or
share a significant motif (>10-fold enriched and <0.001
probability of occurring than in naïve TCR pool)

Cinelli et al. (184) CDR3 from CD4+ TCRβ

sequences before and after
immunization

CDR3β sequences deconstructed into
k-mers, then motifs ranked according to
one-dimensional Bayesian classifier score
comparing their frequency in repertoires of
two immunization classes

Top ranking motifs selected and used to create feature
vectors to train a support vector machine for classifying
into distinct clusters

Priel et al. (185) ∼360,000 TCRβ sequences
from (188)

Levenshtein distance between TCRβ and
cluster representative

UClust algorithm (189). Sort sequences according to
their length, then iteratively checks for existing cluster to
associate the next sequence whose Levenshtein
distance from cluster’s representative is smaller than a
given threshold to generate “Clone-Attractors” (CAs)
network

DeWitt et al.
(182)

TCRβ sequences from 666
healthy individuals from (190)

Co-occurrence of global TCRβ (for genetic
background) and HLA-restricted TCRβ (for
immune history and receptor specificity) by
analysis of covariation and hypergeometric
distribution to assess significance

DBSCAN algorithm (191) to cluster public TCRβ by
occurrence patterns, with (i) predefined
similarity/distance threshold and (ii) minimum number of
neighbors for a point to be considered as a core

Meysman et al.
(186)

Two independent datasets of
412 TCRβ from [(15)] and
2,835 TCRβ sequences

Investigated length-based distance, GapAlign
score, profile score, trimer score, dimer
score, Lavenshtein distance score, and VJ
edit distance

DBSCAN algorithm (191), an unsupervised clustering to
group TCRs based on a fixed distance defined in
advance

Pogorelyy and
Shugay (17)

CDR3 from TCRβ sequences
from (190)

Hamming distance, allowing single
substitution

TCR similarity networks by Hamming distance and
identify enriched TCR network hubs by testing
neighborhood size (degree) enrichment against VDJ
rearrangement model using ALICE algorithm (192) or
against control dataset using TCRnet

Thakkar and
Bailey-Kellogg
(187)

CDR3 sequences, CDR3α

and CDR3β analyzed
separately

Local alignment using Smith-Waterman (SW)
algorithm with BLOSUM45

Hierarchical agglomerative clustering, with CDRdist (a
nearest neighbor classifier to predict label of another
CDR based on nearby labeled CDRs) as a comparison
function. Clusters defined by CDRdist thresholds

Zhang et al. (18) 82,000 CDR3 sequences
from 9,700 tumor RNA-Seq
samples from TCGA

Pairwise alignment score with BLOSUM62,
normalized by the length of longer CDR3
sequence

From pairwise score matrix, apply a predefined cut-off
value (default 3.5) to filter out low scoring comparisons A
depth-first search (DFS) on the matrix to identify all
connected CDR3 clusters (named iSMART)

Extending Current Algorithms From CDR3β Amino

Acids
A number of recent studies have suggested that integrating
information across all six CDRs, instead of considering CDR3α
or CDRβ independently, would likely yield a higher performance

(15, 16, 182). In particular, Lanzarotti et al. evaluated TCR target
prediction models based on incorporation of full TCR paired
sequences, 6 CDR loops and/or structural similarity (200). The
best performing model was the one incorporating all CDR1, 2,
3 α and β information with greater weight given to CDR3αβ,
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TABLE 3 | Glossary.

Term Definition

Accessible surface area Also known as solvent-accessible surface area (SASA); the surface area of a biomolecule that is accessible to a solvent.
Measurement is usually described in units of square Ångstroms

Adoptive T cell transfer A type of immunotherapy in which T cells are given to a patient to improve immune functionality to fight diseases

Amino acid index database
(AAindex)

A database of amino acid indices and amino acid mutation matrices. An amino acid index is a set of 20 numerical values
representing various physicochemical and biochemical properties of amino acids. An amino acid mutation matrix is generally 20
× 20 numerical values representing similarity of amino acids

Clonal expansion A process in which a small number of precursor cells recognize a specific antigen, proliferate into expanded clones, differentiate
and acquire various effector and memory phenotypes

Combinatorial peptide library A library typically comprised of millions to billions of random peptides covering possible combinations of amino acids in each
position

Degeneracy Ability to recognize diverse ligands

Electrostatic potential The amount of work needed to move a unit of charge against an electric field

Featured peptide A peptide with solvent-exposed, prominent side chains or harmonious bulged confirmations and typically correspond to a
diverse repertoire of TCRs

Find Individual Motif Occurrence A motif-based sequence analysis tool that scans a set of sequences for individual matches to each of the motifs provided by the
users

Flexible docking A macromolecular docking where the internal geometry of the interacting partners can be changed when a complex is formed

Heterologous immunity An immunity that can develop to one pathogen after a host has had exposure to non-identical pathogens

Immunodominant peptide A peptide having a strong affinity for binding with HLA and for stimulating a T cell response

Kidera factor A set of orthogonal physicochemical properties that reflect 20 amino acids, which include helix/bend preference, side-chain size,
extended structure preference, hydrophobicity, double-bend preference, partial specific volume, flat extended preference,
occurrence in alpha region, pK-C and surrounding hydrophobicity

Molecular mimicry A phenomena that sequence similarities between foreign and self-peptides are sufficient to trigger cross-activation of
autoreactive T cells by pathogen-derived peptides

Peptide-MHC display system A platform with engineered functional peptide-MHC complexes for high-throughput screening of immunogenic peptides against
TCRs

Polarization A process to adopt different functionality in response to the signals from their microenvironment

Positional specific scoring matrix An amino acid scoring matrix in a 20 × 20 table such that position indexed with amino acids e.g., position (X, Y), gives the score
of alignment or substitution of amino acid X with amino acid Y

Private TCR A TCR unique to an individual

Public TCR A TCR shared among different individuals

Rigid docking A computational modeling of the quaternary structure of complexes formed by two or more interacting biological
macromolecules, where the relative orientation of interacting partners was allowed to vary but the internal geometry of each of
the partners was held fixed

Rosetta terms A set of 19 terms comprising Rosetta Energy Function 2015 (REF15), a model parametrized from small-molecule and X-ray
crystal structure data, used to approximate the energy associated with each biomolecule conformation

Tetramer-associated T cell receptor
sequencing

A method to link TCR sequences to their cognate antigens in single cells at high throughput manner. Peptide-TCR binding is
determined using a library of DNA-barcoded antigen tetramers

ZAFFI score Abbreviation for Zlab affinity enhancement; an algorithm to predict the effect of point mutations on binding affinity of TCRs.
Training of energy function was performed using a dataset of systematic point mutations at 10 positions on the ovomucoid
turkey inhibitor (OMTKY) molecule in four enzyme-inhibitor complexes. The optimal terms and weights for the function was
obtained to fit the energies of OMTKY point mutants and tested using point mutations of T cell receptor. The terms and weights
making up the score are: van der Waals attractive (0.24), van der Waals repulsive (0.017), Lazaridis-Karplus solvation (0.24),
intra-residue clash (0.073) and atomic contact energy (0.32)

plus adding structural information (root mean square deviation,
RMSD) moderately but consistently improved the performance.
Of interest, placing greater weight to CDRβ sequences over
CDRα led to decreased predictive power compared to even the
flatmodel. Thus, developing a distancemeasure that incorporates
all CDR1, 2, 3 α and β sequences is likely to demonstrate a
higher predictive performance than the current TCR specificity
group algorithms.

In addition, translating CDR amino acid sequences into their
physicochemical properties and using their inherent properties

to cluster TCRs into specificity groups may bring another step
forward. Ostmeyer et al. developed a statistical classifier of T
cell receptor repertoire that distinguishes tumor tissue from
patient-matched healthy tissue of the same organ (201). The
classifier was based on physicochemical motifs in CDR3 of TCRβ

chains. Here, 4-mer amino acid sequences were represented by
their physicochemical properties using Atchley factors—polarity,
secondary structure, molecular size/volume, codon diversity and
electrostatic charge—and achieved classification accuracy of 93
and 94% for colorectal and breast cancer, respectively.
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From previous efforts to reduce dimensionality of a large
number of possibly co-linear amino acids properties into small
number of orthogonal properties that maintain most of the
information contained in the original set, physicochemical
properties of amino acids have been characterized and
summarized into e.g., 10 Kidera factors (202) and 5 Atchley
factors (203). Analyzing occurrence of “physicochemical motifs”
in TCRs along with structural features e.g., RMSD will bring one
step closer to accurately identifying TCR specificity groups.

Application of Single Cell Technologies for Paired

TCRαβ Profiling
While bulk TCR sequencing revolutionized characterization of
TCR repertoire in different pathological settings e.g., tumor
immunology and autoimmunity (204), β chain analysis has
always been the main target due to its higher combinatorial
potential and its ability to represent as “unique label” for a T
cell after allelic exclusion. However, many studies highlighted
the pairing of α and β chain to reflect biological function
of a T cell in vivo (205, 206) and that even α chain alone
can accurately differentiate T cell subsets by its function and
phenotype (207, 208). Izraelson et al. narrowed TCR complexity
by fixing TCRβ background and thus allowing TCR diversity and
antigen specificity to be determined by TCRα chain alone. Then,
using a similarity measure, R metric describing the correlation of
overlapping clonotype frequencies, could “digitally” differentiate
their TCRα repertoire from spleen, thymus and lymph nodes into
functional T cell subsets of Treg, Teff, and naïve CD4T cells. This
illustrates that while TCRβ may operate as “unique label” of a
T cell, TCRα may as well encode essential information about its
phenotype, function and specificity.

Recent advancement in single cell approaches opened the
door for elucidating how particular α-β pairing contributes to
antigen specificity. In particular, several groups have started to
implement single cell platforms for simultaneous identification
of TCRαβ sequence and antigen specificity in a high-throughput
manner across multiple pMHCs (5, 6, 209). For example, Bentzen
et al. applied a large library of >100 DNA barcode-labeled MHC
multimers to stain antigen-specific T cells, isolate T cells bound
by MHC multimers using flow cytometry followed by a droplet-
based single cell sequencing to capture αβTCR transcripts and the
MHC-associated DNA barcodes in parallel.

The potential benefits of identifying TCR αβ pairs coupled to
antigen specificities include but are not limited to: (i) identifying
unique CDR3 α/β signatures dictating epitope recognition for
possible applications across the field of adaptive immunity
e.g., efficient design of TCRs for vaccine development or
targeted immunotherapy (210), (ii) portraying T cell ancestry
in response to pathogen exposure, (iii) investigating which
functional T cell subsets have undergone clonal expansion in
response to different antigens, (iv) examining distinct phenotypic
and functional properties of T cells responded to different
antigens, and (v) identifying TCRαβ heterodimers losing
functional integrity in vitro, which will be useful for therapeutic
applications (211).

Importantly, the large number of paired TCRαβs coupled
to antigen specificity can be fed into computational models

improving accuracy of prediction. The exhaustive list of
recognition patterns combined with increasing structural
information about TCR:pMHC interaction will assist prediction
of specific TCR:pMHC interaction based on TCR sequence (10).
Of interest, with increasing reports focusing on TCR repertoire
of antigen-specific populations, the latest studies have started to
compare predictive performance on different datasets. Thakkar
et al. have analyzed repertoires from a twin pair study (212),
antigen-specific data from GLIPH and TCRDist studies (15, 16)
and pathology-associated data from McPAS-TCR to evaluate
the trade-off between sensitivity and specificity of predictive
algorithms in different pathology, antigen, MHC restriction
settings (187). As discussed by Thakkar et al., while datasets were
analyzed individually in the study, integrating multiple datasets
and large number of paired TCRαβs should provide insights
into common modalities of recognition and broader functional
associations across antigens from different pathologies.

THE INTERFACE BETWEEN COMMON
SPECIFICITY GROUP AND
CROSS-REACTIVITY OF TCR TO MODEL
THE LANDSCAPE OF INTERACTION
PROPENSITIES

Despite interest in mapping the TCR:pMHC interactions,
a combinatorial approach exploring the mutation space of
TCRs against corresponding peptide cross-reactome has not
been exhaustively performed. Thus, it would be exceptionally
challenging to account for the whole range of available TCRs and
surveilling pMHCs.

Depicting the cross-recognition of TCRs and pMHCs in >10
(6) space, modeling TCR:pMHC landscape should be taken
as a cross-talk between unique and representative clusters of
pMHCs and TCRs rather than individual entities (Figure 3).
However, as discussed by Bradley and Thomas we currently do
not know whether TCRs closely related by antigen specificity
algorithms e.g., GLIPH or TCRDist are expected to have
similar cross-reactome (213). An intuitive answer would be that
TCRs with a shorter distance, especially those within the same
cluster, will have a greater overlap of cross-reactive peptides.
However, as elucidated by structural studies, sequence similarity
cannot adequately represent cross-recognition potential as
TCRs may have multiple configurations for different classes of
epitopes (67).

Therefore, modeling this dynamic interplay may require the
development of an accurate distance measure to group TCRs
informative of their antigen specificity and/or cross-reactivity.
This will require assessment of all identified features, such
as paired TCRαβ sequences, n-mer motifs, physicochemical
properties as well as structural, physical and kinetic parameters,
to derive a minimum set of features with maximum association
to immunogenicity. These features will become a toolkit for
developing TCR and pMHC distance measures to discriminate
>106 TCRs and >1018 peptides into designated clusters.
Following the classification of clusters, the relationship between
TCR and pMHC clusters can further be explored—it may
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FIGURE 3 | Interplay between unique clusters of pMHCs and TCRs. In an ideal world with an accurate distance measure, pMHCs in the same cluster should share
the common specificity toward TCRs and vice versa. Each node denotes pMHC (circle) or TCR (polygon) entities and edge denote the distance with the closest
pMHC or TCR, respectively.

segregate into a linear function or may yield an indistinct pattern
where even the repertoires for closely related epitopes have
divergent landscape with a very limited overlap.

CONCLUSION AND OUTLOOK

Here we discuss two fundamental principles of TCR:pMHC
interaction, antigen specificity and TCR cross-reactivity.
Modeling the underlying principles by cellular, kinetic, and
structural features will deepen our understanding on the
organizational principle of TCR repertoires.

Recent technological advancements have opened doors
for screening antigen-specific TCRs and cross-reactive
peptides in a high-throughput manner. In particular, MHC
multimer screening in combination with multimodal single
cell technologies increased the breadth of T cell analysis
by allowing integration of antigen specificity with immune
repertoire, transcriptomic and proteomic profiling (7, 19, 20).
Further developments in biological systems will provide
larger training sets for the in silico analyses. These analyses
simultaneously give information on: (i) paired TCR sequences,
(ii) pMHC specificities across a large epitope library, and
(iii) transcriptomics and proteomics measurements of single
T cells profiled in parallel. The multi-omics integration will
enable in-depth analysis of phenotypic and functional states
of each T cell and correlate with their TCR sequences and
pMHC interaction.

The present algorithms have not distinguished TCR
repertoires by their functional subsets, such as CD4+ and CD8+

T cells with pro-inflammatory or regulatory functions, largely
due to lack of sufficient annotations. Given that each subsets
have distinct dynamics according to pathogenic conditions, e.g.,

viral infection, cancer or autoimmunity, utilization of subset-
specific TCR repertoire may further improve predictability
of epitope immunogenicity (96). In this regard, the recent
efforts to integrate TCR sequencing with transcriptomic and
proteomic profiling in a single cell level will enrich present-day
datasets (19, 20).

Along with an increasing wealth of experimental and
sequencing data, there have been advancements in in silico
approaches to analyze, model and predict TCR:pMHC
interaction. Further efforts will provide insights into specific TCR
recognition and organizational principles of the repertoire and
support a wide range of applications from discovering potential
drivers of allergy, autoimmunity and tolerance (160, 214–216)
to identifying cancer neoantigens and developing personalized
vaccines (217–219).

For instance, recent studies have focused on a rational
computer-aided approach to TCR engineering as a more
predictable and safer approach to TCR design (135, 136, 220–
222). They used a fine manipulation of structural topography
of TCR:pMHC interaction and specific kinetic parameters to
better control the potential for cross-reactivity (223). Another
study exploited structure-guided computational design of DMF5
TCR by using both “positive design” to enhance peptide-centric
binding and “negative design” to weaken interaction with the
MHC (136). While the positive design alone introduced new
cross-reactivities thus weakened T cell potency, a combination
of both positive and negative design maintained the recognition
potential whilst cross-reactivity toward other MART-1 homologs
was reduced and cross-reactivity against more divergent class of
epitopes was eliminated.

Ultimately, building a complete map portraying the
TCR:pMHC interface will provide opportunities to describe
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the response to dynamic interactions in the immune system.
The examples include: (i) dynamic changes of antigen-specific
TCR repertoire after adoptive transfer (224), (ii) mechanism
of molecular mimicry and preferential directionality in
antigen specificity, and (iii) influence of private repertoire
and immunological history on antigen specificity. Finally,
an extensive understanding of dynamic T cell response will
allow development of personalized treatments by taking
into account the individual’s endogenous ability to target
a given disease-specific antigen as well as the personal risk
of autoimmunity.

AUTHOR CONTRIBUTIONS

HK conceived and designed the study. CL conducted literature
review. HK and CL wrote the manuscript with contributions
from GN, MS, GO, and AS. HK and AS supervised the
project. All authors contributed to the interpretation of
the observations.

FUNDING

This work has been supported by Medical Research Council UK.
HK, MS, and GN were funded by the MRC HIU core grant.
CL was funded by UK National Institute of Health Research
(NIHR). AS was funded by a Wellcome Investigator Award
(219523/Z/19/Z), the UK Medical Research Council, NIHR,
awards from Bristol-Myers Squibb and UCB. AS is an NIHR
Senior Investigator and acknowledges support from the Oxford
NIHR Biomedical Research Centre. The views expressed are
those of the author(s) and not necessarily those of the NHS, The
NIHR, or the Department of Health, UK.

ACKNOWLEDGMENTS

HK would like to dedicate this study to Prof. Cerundolo who
introduced him to the amazing world of T cell immunology. We
wish to thank Omer Dushek, Agne Antanaviciute, Paul Buckley,
Jeongmin Woo and Isaac Woodhouse for critical reading of
the manuscript.

REFERENCES

1. Matzinger P, Bevan MJ. Why do so many lymphocytes respond
to major histocompatibility antigens? Cell Immunol. (1977) 29:1–5.
doi: 10.1016/0008-8749(77)90269-6

2. Mason D. A very high level of crossreactivity is an essential
feature of the T-cell receptor. Immunol Today. (1998) 19:395–404.
doi: 10.1016/S0167-5699(98)01299-7

3. Sewell AK. Why must T cells be cross-reactive? Nat Rev Immunol. (2012)
12:669–77. doi: 10.1038/nri3279

4. Frank SA. Immunology and Evolution of Infectious Disease. Princeton, NJ:
Princeton University Press (2002).

5. Bentzen AK, Such L, Jensen KK, Marquard AM, Jessen LE,
Miller NJ, et al. T cell receptor fingerprinting enables in-depth
characterization of the interactions governing recognition of peptide–
MHC complexes. Nat Biotechnol. (2018) 36:1191–6. doi: 10.1038/nbt.
4303

6. Zhang S-Q, Ma K-Y, Schonnesen AA, Zhang M, He C, Sun E, et al.
High-throughput determination of the antigen specificities of T cell
receptors in single cells. Nat Biotechnol. (2018) 36:1156–9. doi: 10.1038/
nbt.4282

7. Pan X, Huang L-C, Dong T, Peng Y, Cerundolo V, McGowan
S, et al. Combinatorial HLA-peptide bead libraries for high
throughput identification of CD8+ T cell specificity. J

Immunol Methods. (2014) 403:72–78. doi: 10.1016/j.jim.2013.
11.023

8. Bijen HM, van der Steen DM, Hagedoorn RS, Wouters AK, Wooldridge
L, Falkenburg JHF, et al. Preclinical strategies to identify off-
target toxicity of high-affinity TCRs. Mol Ther. (2018) 26:1206–14.
doi: 10.1016/j.ymthe.2018.02.017

9. Ekeruche-Makinde J, Clement M, Cole DK, Edwards ESJ, Ladell K,
Miles JJ, et al. T-cell receptor-optimized peptide skewing of the T-cell
repertoire can enhance antigen targeting. J Biol Chem. (2012) 287:37269–81.
doi: 10.1074/jbc.M112.386409

10. Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum
ME, et al. Antigen identification for orphan T cell receptors expressed
on tumor-infiltrating lymphocytes. Cell. (2018) 172:549–63.e16.
doi: 10.1016/j.cell.2017.11.043

11. Joglekar AV, Leonard MT, Jeppson JD, Swift M, Li G, Wong S, et al. T
cell antigen discovery via signaling and antigen-presenting bifunctional
receptors. Nat Methods. (2019) 16:191–8. doi: 10.1038/s41592-018-
0304-8

12. Kisielow J, Obermair F-J, Kopf M. Deciphering CD4 + T cell specificity
using novel MHC–TCR chimeric receptors.Nat Immunol. (2019) 20:652–62.
doi: 10.1038/s41590-019-0335-z

13. Li G, Bethune MT, Wong S, Joglekar AV, Leonard MT, Wang JK, et al.
T cell antigen discovery via trogocytosis. Nat Methods. (2019) 16:183–90.
doi: 10.1038/s41592-018-0305-7

14. Kula T, Dezfulian MH, Wang CI, Abdelfattah NS, Hartman ZC,
Wucherpfennig KW, et al. T-scan: a genome-wide method for the
systematic discovery of T cell epitopes. Cell. (2019) 178:1016–28.e13.
doi: 10.1016/j.cell.2019.07.009

15. Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A,
et al. Quantifiable predictive features define epitope-specific T cell receptor
repertoires. Nature. (2017) 547:89–93. doi: 10.1038/nature22383

16. Glanville J, Huang H, Nau A, Hatton O,Wagar LE, Rubelt F, et al. Identifying
specificity groups in the T cell receptor repertoire. Nature. (2017) 547:94–8.
doi: 10.1038/nature22976

17. Pogorelyy MV, Shugay M. A framework for annotation of antigen
specificities in high-throughput T-cell repertoire sequencing studies. Front
Immunol. (2019) 10:2159. doi: 10.3389/fimmu.2019.02159

18. ZhangH, Liu L, Zhang J, Chen J, Ye J, Shukla S, et al. Investigation of antigen-
specific T-cell receptor clusters in human cancers. Clin Cancer Res. (2019)
26:1359–71. doi: 10.1158/1078-0432.CCR-19-3249

19. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al.
Multiplexed quantification of proteins and transcripts in single cells. Nat
Biotechnol. (2017) 35:936–9. doi: 10.1038/nbt.3973

20. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B,
Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and
transcriptome measurement in single cells. Nat Methods. (2017) 14:865–8.
doi: 10.1038/nmeth.4380

21. Cornberg M, Clute SC, Watkin LB, Saccoccio FM, Kim S-K, Naumov YN,
et al. CD8T cell cross-reactivity networks mediate heterologous immunity
in human EBV and murine vaccinia virus infections. J Immunol. (2010)
184:2825–38. doi: 10.4049/jimmunol.0902168

22. Degauque N, Brouard S, Soulillou J-P. Cross-reactivity of TCR repertoire:
current concepts, challenges, and implication for allotransplantation. Front
Immunol. (2016) 7:89. doi: 10.3389/fimmu.2016.00089

23. Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, Garcia KC,
et al. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol.

(2007) 19:216–24. doi: 10.1016/j.smim.2007.02.012
24. Wooldridge L, Ekeruche-Makinde J, Berg HA. A single autoimmune T cell

receptor recognizes more than a million different peptides. J Biol Chem.

(2012) 287:1168–77. doi: 10.1074/jbc.M111.289488

Frontiers in Immunology | www.frontiersin.org 14 October 2020 | Volume 11 | Article 565096

https://doi.org/10.1016/0008-8749(77)90269-6
https://doi.org/10.1016/S0167-5699(98)01299-7
https://doi.org/10.1038/nri3279
https://doi.org/10.1038/nbt.4303
https://doi.org/10.1038/nbt.4282
https://doi.org/10.1016/j.jim.2013.11.023
https://doi.org/10.1016/j.ymthe.2018.02.017
https://doi.org/10.1074/jbc.M112.386409
https://doi.org/10.1016/j.cell.2017.11.043
https://doi.org/10.1038/s41592-018-0304-8
https://doi.org/10.1038/s41590-019-0335-z
https://doi.org/10.1038/s41592-018-0305-7
https://doi.org/10.1016/j.cell.2019.07.009
https://doi.org/10.1038/nature22383
https://doi.org/10.1038/nature22976
https://doi.org/10.3389/fimmu.2019.02159
https://doi.org/10.1158/1078-0432.CCR-19-3249
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.4049/jimmunol.0902168
https://doi.org/10.3389/fimmu.2016.00089
https://doi.org/10.1016/j.smim.2007.02.012
https://doi.org/10.1074/jbc.M111.289488
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

25. Cornberg M, Kenney LL, Chen AT, Waggoner SN, Kim S-K, Dienes
HP, et al. Clonal exhaustion as a mechanism to protect against severe
immunopathology and death from an overwhelming CD8T cell response.
Front Immunol. (2013) 4:475. doi: 10.3389/fimmu.2013.00475

26. Pomés A, Schulten V. Cross-reactivity in allergy: a double-edged sword.
Allergy. (2020) 75:9–11. doi: 10.1111/all.13993

27. Selin LK, Cornberg M, Brehm MA, Kim S-K, Calcagno C, Ghersi D, et al.
CD8 memory T cells: cross-reactivity and heterologous immunity. Semin

Immunol. (2004) 16:335–47. doi: 10.1016/j.smim.2004.08.014
28. Welsh RM, Fujinami RS. Pathogenic epitopes, heterologous

immunity and vaccine design. Nat Rev Microbiol. (2007) 5:555–63.
doi: 10.1038/nrmicro1709

29. Chen AT, Cornberg M, Gras S, Guillonneau C, Rossjohn J, Trees A,
et al. Loss of anti-viral immunity by infection with a virus encoding
a cross-reactive pathogenic epitope. PLoS Pathog. (2012) 8:e1002633.
doi: 10.1371/journal.ppat.1002633

30. Wlodarczyk MF, Kraft AR, Chen HD, Kenney LL, Selin LK. Anti–IFN-γ
and peptide-tolerization therapies inhibit acute lung injury induced by cross-
reactive influenza a–specificmemory T cells. J Immunol. (2013) 190:2736–46.
doi: 10.4049/jimmunol.1201936

31. Acierno PM, Newton DA, Brown EA, Maes LA, Baatz JE, Gattoni-Celli S.
Cross-reactivity between HLA-A2-restricted FLU-M1:58–66 and HIV p17
GAG:77–85 epitopes in HIV-infected and uninfected individuals. J Transl
Med. (2003) 1:3. doi: 10.1186/1479-5876-1-3

32. Che JW, Selin LK, Welsh RM. Evaluation of non-reciprocal heterologous
immunity between unrelated viruses. Virology. (2015) 482:89–97.
doi: 10.1016/j.virol.2015.03.002

33. Clute SC, Naumov YN, Watkin LB, Aslan N, Sullivan JL, Thorley-Lawson
DA, et al. Broad cross-reactive TCR repertoires recognizing dissimilar
Epstein-Barr and influenza A virus epitopes. J Immunol. (2010) 185:6753–64.
doi: 10.4049/jimmunol.1000812

34. Setia MS, Steinmaus C, Ho CS, Rutherford GW. The role of BCG in
prevention of leprosy: a meta-analysis. Lancet Infect Dis. (2006) 6:162–70.
doi: 10.1016/S1473-3099(06)70412-1

35. Stewart AJ, Devlin PM. The history of the smallpox vaccine. J Infect. (2006)
52:329–34. doi: 10.1016/j.jinf.2005.07.021

36. Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM. Virus-specific CD4+memory-
phenotype T cells are abundant in unexposed adults. Immunity. (2013)
38:373–83. doi: 10.1016/j.immuni.2012.10.021

37. Welsh RM, Che JW, Brehm MA, Selin LK. Heterologous
immunity between viruses. Immunol Rev. (2010) 235:244–66.
doi: 10.1111/j.0105-2896.2010.00897.x

38. Antunes DA, Rigo MM, Freitas MV, Mendes MFA, Sinigaglia M, Lizée
G, et al. Interpreting T-cell cross-reactivity through structure: implications
for TCR-based cancer immunotherapy. Front Immunol. (2017) 8:1210.
doi: 10.3389/fimmu.2017.01210

39. Nie S, Lin S-J, Kim S, Welsh RM, Selin LK. Pathological features
of heterologous immunity are regulated by the private specificities
of the immune repertoire. Am J Pathol. (2010) 176:2107–112.
doi: 10.2353/ajpath.2010.090656

40. Valitutti S, Müller S, Dessing M, Lanzavecchia A. Different responses are
elicited in cytotoxic T lymphocytes by different levels of T cell receptor
occupancy. J Exp Med. (1996) 183:1917–21. doi: 10.1084/jem.183.4.1917

41. van den Berg HA, Ladell K, Miners K, Laugel B, Llewellyn-Lacey
S, Clement M, et al. Cellular-level versus receptor-level response
threshold hierarchies in T-cell activation. Front Immunol. (2013) 4:250.
doi: 10.3389/fimmu.2013.00250

42. Price DA, Sewell AK, Dong T, Tan R, Goulder PJR, Rowland-
Jones SL, et al. Antigen–specific release of β-chemokines by
anti-HIV-1 cytotoxic T lymphocytes. Curr Biol. (1998) 8:355–8.
doi: 10.1016/S0960-9822(98)70138-1

43. Hemmer B, Stefanova I, Vergelli M, Germain RN, Martin R. Relationships
among TCR ligand potency, thresholds for effector function elicitation,
and the quality of early signaling events in human T cells. J Immunol.

(1998) 160:5807–14.
44. Abu-Shah E, Trendel N, Kruger P, Nguyen J, Pettmann J, Kutuzov M, et al.

Human CD8+ T cells exhibit a shared antigen threshold for different effector
responses. bioRxiv. (2020) doi: 10.1101/2020.04.24.059766

45. Starr TK, Jameson SC, Hogquist KA. Positive and negative
selection of T cells. Annu Rev Immunol. (2003) 21:139–76.
doi: 10.1146/annurev.immunol.21.120601.141107

46. Curtsinger JM, Lins DC, Mescher MF. CD8+ memory T cells (CD44high,
Ly-6C+) are more sensitive than naive Cells (CD44low, Ly-6C–) to
TCR/CD8 signaling in response to antigen. J Immunol. (1998) 160:3236–43.

47. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. Response
of naïve and memory CD8 + T cells to antigen stimulation in vivo. Nat
Immunol. (2000) 1:47–53. doi: 10.1038/76907

48. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med.

(1999) 341:2068–74. doi: 10.1056/NEJM199912303412707
49. Oldstone MBA. Molecular mimicry and immune-mediated diseases. FASEB

J. (1998) 12:1255–65. doi: 10.1096/fasebj.12.13.1255
50. Pender MP, Csurhes PA, Burrows JM, Burrows SR. Defective T-cell control

of Epstein–Barr virus infection in multiple sclerosis. Clin Transl Immunol.

(2017) 6:e126. doi: 10.1038/cti.2016.87
51. Wim Ang C, Jacobs BC, Laman JD. The Guillain–Barré syndrome:

a true case of molecular mimicry. Trends Immunol. (2004) 25:61–66.
doi: 10.1016/j.it.2003.12.004

52. Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated
autoimmunity: viral peptides activate human T cell clones specific for myelin
basic protein. Cell. (1995) 80:695–705. doi: 10.1016/0092-8674(95)90348-8

53. Zhao Z-S, Granucci F, Yeh L, Schaffer PA, Cantor H. Molecular mimicry
by herpes simplex virus-type 1: autoimmune disease after viral infection.
Science. (1998) 279:1344–7. doi: 10.1126/science.279.5355.1344

54. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS,
et al. Gene therapy with human and mouse T-cell receptors mediates cancer
regression and targets normal tissues expressing cognate antigen. Blood.
(2009) 114:535–46. doi: 10.1182/blood-2009-03-211714

55. Raman MCC, Rizkallah PJ, Simmons R, Donnellan Z, Dukes J, Bossi G, et al.
Direct molecular mimicry enables off-target cardiovascular toxicity by an
enhanced affinity TCR designed for cancer immunotherapy. Sci Rep. (2016)
6:18851. doi: 10.1038/srep18851

56. Bentzen AK, Hadrup SR. T-cell-receptor cross-recognition and strategies to
select safe T-cell receptors for clinical translation. Immuno Oncol Technol.

(2019) 2:1–10. doi: 10.1016/j.iotech.2019.06.003
57. Frankild S, Boer RJ, de Lund O, Nielsen M, Kesmir C. Amino acid similarity

accounts for T cell cross-reactivity and for “Holes” in the T cell repertoire.
PLoS ONE. (2008) 3:e1831. doi: 10.1371/journal.pone.0001831

58. Ishizuka J, Grebe K, Shenderov E, Peters B, Chen Q, Peng Y, et al.
Quantitating T cell cross-reactivity for unrelated peptide antigens. J

Immunol. (2009) 183:4337–45. doi: 10.4049/jimmunol.0901607
59. Nino-Vasquez JJ, Allicotti G, Borras E, Wilson DB, Valmori D, Simon R,

et al. A powerful combination: the use of positional scanning libraries and
biometrical analysis to identify cross-reactive T cell epitopes. Mol Immunol.

(2004) 40:1063–74. doi: 10.1016/j.molimm.2003.11.005
60. Rubio-Godoy V, Dutoit V, Zhao Y, Simon R, Guillaume P, Houghten

R, et al. Positional scanning-synthetic peptide library-based analysis
of self- and pathogen-derived peptide cross-reactivity with tumor-
reactive melan-a-specific CTL. J Immunol. (2002) 169:5696–707.
doi: 10.4049/jimmunol.169.10.5696

61. Harris DT, Wang N, Riley TP, Anderson SD, Singh NK, Procko E, et al.
Deep mutational scans as a guide to engineering high affinity T cell receptor
interactions with peptide-bound major histocompatibility complex. J Biol
Chem. (2016) 291:24566–78. doi: 10.1074/jbc.M116.748681

62. Pan R-Y, Chu M-T, Wang C-W, Lee Y-S, Lemonnier F, Michels AW, et al.
Identification of drug-specific public TCR driving severe cutaneous adverse
reactions. Nat Commun. (2019) 10:3569. doi: 10.1038/s41467-019-11396-2

63. Stadinski BD, Shekhar K, Gómez-Touriño I, Jung J, Sasaki K, Sewell
AK, et al. Hydrophobic CDR3 residues promote the development of
self-reactive T cells. Nat Immunol. (2016) 17:946–55. doi: 10.1038/ni.
3491

64. Border EC, Sanderson JP, Weissensteiner T, Gerry AB, Pumphrey
NJ. Affinity-enhanced T-cell receptors for adoptive T-cell therapy
targeting MAGE-A10: strategy for selection of an optimal candidate.
OncoImmunology. (2019) 8:e1532759. doi: 10.1080/2162402X.2018.1532759

65. Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, McAffee
D, et al. Isolation of a structural mechanism for uncoupling T cell

Frontiers in Immunology | www.frontiersin.org 15 October 2020 | Volume 11 | Article 565096

https://doi.org/10.3389/fimmu.2013.00475
https://doi.org/10.1111/all.13993
https://doi.org/10.1016/j.smim.2004.08.014
https://doi.org/10.1038/nrmicro1709
https://doi.org/10.1371/journal.ppat.1002633
https://doi.org/10.4049/jimmunol.1201936
https://doi.org/10.1186/1479-5876-1-3
https://doi.org/10.1016/j.virol.2015.03.002
https://doi.org/10.4049/jimmunol.1000812
https://doi.org/10.1016/S1473-3099(06)70412-1
https://doi.org/10.1016/j.jinf.2005.07.021
https://doi.org/10.1016/j.immuni.2012.10.021
https://doi.org/10.1111/j.0105-2896.2010.00897.x
https://doi.org/10.3389/fimmu.2017.01210
https://doi.org/10.2353/ajpath.2010.090656
https://doi.org/10.1084/jem.183.4.1917
https://doi.org/10.3389/fimmu.2013.00250
https://doi.org/10.1016/S0960-9822(98)70138-1
https://doi.org/10.1101/2020.04.24.059766
https://doi.org/10.1146/annurev.immunol.21.120601.141107
https://doi.org/10.1038/76907
https://doi.org/10.1056/NEJM199912303412707
https://doi.org/10.1096/fasebj.12.13.1255
https://doi.org/10.1038/cti.2016.87
https://doi.org/10.1016/j.it.2003.12.004
https://doi.org/10.1016/0092-8674(95)90348-8
https://doi.org/10.1126/science.279.5355.1344
https://doi.org/10.1182/blood-2009-03-211714
https://doi.org/10.1038/srep18851
https://doi.org/10.1016/j.iotech.2019.06.003
https://doi.org/10.1371/journal.pone.0001831
https://doi.org/10.4049/jimmunol.0901607
https://doi.org/10.1016/j.molimm.2003.11.005
https://doi.org/10.4049/jimmunol.169.10.5696
https://doi.org/10.1074/jbc.M116.748681
https://doi.org/10.1038/s41467-019-11396-2
https://doi.org/10.1038/ni.3491
https://doi.org/10.1080/2162402X.2018.1532759
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

receptor signaling from peptide-MHC binding. Cell. (2018) 174:672–87.e27.
doi: 10.1016/j.cell.2018.06.017

66. Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC, Bowerman
NA, et al. T Cell receptor signaling is limited by docking geometry to
peptide-major histocompatibility complex. Immunity. (2011) 35:681–93.
doi: 10.1016/j.immuni.2011.09.013

67. Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley
KC, et al. T cell receptor cross-reactivity expanded by dramatic
peptide–MHC adaptability. Nat Chem Biol. (2018) 14:934–42.
doi: 10.1038/s41589-018-0130-4

68. Kasprowicz V, Ward SM, Turner A, Grammatikos A, Nolan BE, Lewis-
Ximenez L, et al. Defining the Directionality and Quality of Influenza Virus–

Specific CD8+ T Cell Cross-Reactivity in Individuals Infected with Hepatitis

C Virus. (2008). Available online at: https://www.jci.org/articles/view/33082/
pdf.

69. Cornberg M, Wedemeyer H. Hepatitis C virus infection from the
perspective of heterologous immunity. Curr Opin Virol. (2016) 16:41–8.
doi: 10.1016/j.coviro.2016.01.005

70. Gil A, Kenney LL, Mishra R, Watkin LB, Aslan N, Selin LK. Vaccination and
heterologous immunity: educating the immune system. Trans R Soc Trop

Med Hyg. (2015) 109:62–9. doi: 10.1093/trstmh/tru198
71. Xu J, Jo J. Broad cross-reactivity of the T-cell repertoire achieves specific

and sufficiently rapid target searching. J Theor Biol. (2019) 466:119–27.
doi: 10.1016/j.jtbi.2019.01.025

72. Fernandes RA, Ganzinger KA, Tzou JC, Jönsson P, Lee SF, Palayret
M, et al. A cell topography-based mechanism for ligand discrimination
by the T cell receptor. Proc Natl Acad Sci USA. (2019) 116:14002–10.
doi: 10.1073/pnas.1817255116

73. Dushek O, van der Merwe PA. An induced rebinding model
of antigen discrimination. Trends Immunol. (2014) 35:153–8.
doi: 10.1016/j.it.2014.02.002

74. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A
direct estimate of the human αβ T cell receptor diversity. Science. (1999)
286:958–61. doi: 10.1126/science.286.5441.958

75. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O,
et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T
cells. Blood. (2009) 114:4099–107. doi: 10.1182/blood-2009-04-217604

76. Chen W, Yewdell JW, Levine RL, Bennink JR. Modification of cysteine
residues in vitro and in vivo affects the immunogenicity and antigenicity of
major histocompatibility complex class I–restricted viral determinants. J Exp
Med. (1999) 189:1757–64. doi: 10.1084/jem.189.11.1757

77. Green RS, Stone EL, Tenno M, Lehtonen E, Farquhar MG, Marth
JD. Mammalian N-glycan branching protects against innate immune
self-recognition and inflammation in autoimmune disease pathogenesis.
Immunity. (2007) 27:308–20. doi: 10.1016/j.immuni.2007.06.008

78. Hill JA, Bell DA, Brintnell W, Yue D, Wehrli B, Jevnikar AM, et al. Arthritis
induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE
transgenic mice. J Exp Med. (2008) 205:967–79. doi: 10.1084/jem.20072051

79. Meadows L, Wang W, den Haan JMM, Blokland E, Reinhardus
C, Drijfhout JW, et al. The HLA-A∗0201-restricted H-Y
antigen contains a posttranslationally modified cysteine that
significantly affects T cell recognition. Immunity. (1997) 6:273–81.
doi: 10.1016/S1074-7613(00)80330-1

80. Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA,
Shabanowitz J, et al. Phosphorylation-dependent interaction between
antigenic peptides and MHC class I: a molecular basis for the presentation
of transformed self. Nat Immunol. (2008) 9:1236–43. doi: 10.1038/ni.1660

81. Petersen J, Wurzbacher SJ, Williamson NA, Ramarathinam SH, Reid HH,
Nair AKN, et al. Phosphorylated self-peptides alter human leukocyte antigen
class I-restricted antigen presentation and generate tumor-specific epitopes.
Proc Natl Acad Sci USA. (2009) 106:2776–81. doi: 10.1073/pnas.08129
01106

82. Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S,
et al. Identification of native and posttranslationally modified HLA-B∗57:01-
restricted HIV envelope derived epitopes using immunoproteomics.
Proteomics. (2018) 18:1700253. doi: 10.1002/pmic.201700253

83. Gotch F, McMichael A, Rothbard J. Recognition of influenza A matrix
protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to

orientate the matrix peptide in the HLA-A2 binding site. J Exp Med. (1988)
168:2045–57. doi: 10.1084/jem.168.6.2045

84. Hu N, D’Souza C, Cheung H, Lang H, Cheuk E, Chamberlain
JW. Highly conserved pattern of recognition of influenza A wild-
type and variant CD8+ CTL epitopes in HLA-A2+ humans and
transgenic HLA-A2+/H2 class I-deficient mice. Vaccine. (2005) 23:5231–44.
doi: 10.1016/j.vaccine.2005.07.032

85. Petrova GV, Naumova EN, Gorski J. The polyclonal CD8T cell response
to influenza M158–66 generates a fully connected network of cross-
reactive clonotypes to structurally related peptides: a paradigm for memory
repertoire coverage of novel epitopes or escape mutants. J Immunol. (2011)
186:6390–7. doi: 10.4049/jimmunol.1004031

86. Rosa CL, Krishnan R, Markel S, Schneck JP, Houghten R, Pinilla C,
et al. Enhanced immune activity of cytotoxic T-lymphocyte epitope analogs
derived from positional scanning synthetic combinatorial libraries. Blood.
(2001) 97:1776–86. doi: 10.1182/blood.V97.6.1776

87. Wooldridge L, Laugel B, Ekeruche J, ClementM, Berg HA, van den Price DA,
et al. CD8 controls T cell cross-reactivity. J Immunol. (2010) 185:4625–32.
doi: 10.4049/jimmunol.1001480

88. Hemmer B, Gran B, Zhao Y, Marques A, Pascal J, Tzou A, et al. Identification
of candidate T-cell epitopes and molecular mimics in chronic Lyme disease.
Nat Med. (1999) 5:1375–82. doi: 10.1038/70946

89. Jaravine V, Mösch A, Raffegerst S, Schendel DJ, Frishman D. Expitope 2.0: a
tool to assess immunotherapeutic antigens for their potential cross-reactivity
against naturally expressed proteins in human tissues. BMC Cancer. (2017)
17:892. doi: 10.1186/s12885-017-3854-8

90. Karapetyan AR, Chaipan C, Winkelbach K, Wimberger S, Jeong JS, Joshi
B, et al. TCR Fingerprinting and off-target peptide identification. Front
Immunol. (2019) 10:2501. doi: 10.3389/fimmu.2019.02501

91. Oseroff C, Kos F, Bui H-H, Peters B, Pasquetto V, Glenn J, et al. HLA class I-
restricted responses to vaccinia recognize a broad array of proteins mainly
involved in virulence and viral gene regulation. Proc Natl Acad Sci USA.

(2005) 102:13980–5. doi: 10.1073/pnas.0506768102
92. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al.

Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells
dominate the memory compartments of exposed subjects. J Exp Med. (2005)
202:673–85. doi: 10.1084/jem.20050882

93. Jurtz VI, Jessen LE, Bentzen AK, Jespersen MC, Mahajan S, Vita R,
et al. NetTCR: sequence-based prediction of TCR binding to peptide-MHC
complexes using convolutional neural networks. bioRxiv. (2018) 433706.
doi: 10.1101/433706

94. Smith CC, Chai S, Washington AR, Lee SJ, Landoni E, Field K, et al.
Machine-learning prediction of tumor antigen immunogenicity in the
selection of therapeutic epitopes. Cancer Immunol Res. (2019) 7:1591–604.
doi: 10.1158/2326-6066.CIR-19-0155

95. Tung C-W, Ziehm M, Kämper A, Kohlbacher O, Ho S-Y. POPISK: T-cell
reactivity prediction using support vector machines and string kernels. BMC

Bioinformatics. (2011) 12:446. doi: 10.1186/1471-2105-12-446
96. Ogishi M, Yotsuyanagi H. Quantitative prediction of the landscape of T cell

epitope immunogenicity in sequence space. Front Immunol. (2019) 10:827.
doi: 10.3389/fimmu.2019.00827

97. Pogorelyy MV, Fedorova AD, McLaren JE, Ladell K, Bagaev DV, Eliseev
AV, et al. Exploring the pre-immune landscape of antigen-specific T cells.
Genome Med. (2018) 10:68. doi: 10.1186/s13073-018-0577-7

98. Calis JJA, MaybenoM, Greenbaum JA,Weiskopf D, Silva ADD, Sette A, et al.
Properties of MHC class I presented peptides that enhance immunogenicity.
PLoS Comput Biol. (2013) 9:e1003266. doi: 10.1371/journal.pcbi.1003266

99. Assarsson E, Sidney J, Oseroff C, Pasquetto V, Bui H-H, Frahm N, et al.
A quantitative analysis of the variables affecting the repertoire of T cell
specificities recognized after vaccinia virus infection. J Immunol. (2007)
178:7890–901. doi: 10.4049/jimmunol.178.12.7890

100. Kotturi MF, Botten J, Sidney J, Bui H-H, Giancola L, Maybeno
M, et al. A Multivalent and cross-protective vaccine strategy against
arenaviruses associated with human disease. PLoS Pathog. (2009) 5:e1000695.
doi: 10.1371/journal.ppat.1000695

101. Trolle T, Nielsen M. NetTepi: an integrated method for the
prediction of T cell epitopes. Immunogenetics. (2014) 66:449–56.
doi: 10.1007/s00251-014-0779-0

Frontiers in Immunology | www.frontiersin.org 16 October 2020 | Volume 11 | Article 565096

https://doi.org/10.1016/j.cell.2018.06.017
https://doi.org/10.1016/j.immuni.2011.09.013
https://doi.org/10.1038/s41589-018-0130-4
https://www.jci.org/articles/view/33082/pdf
https://www.jci.org/articles/view/33082/pdf
https://doi.org/10.1016/j.coviro.2016.01.005
https://doi.org/10.1093/trstmh/tru198
https://doi.org/10.1016/j.jtbi.2019.01.025
https://doi.org/10.1073/pnas.1817255116
https://doi.org/10.1016/j.it.2014.02.002
https://doi.org/10.1126/science.286.5441.958
https://doi.org/10.1182/blood-2009-04-217604
https://doi.org/10.1084/jem.189.11.1757
https://doi.org/10.1016/j.immuni.2007.06.008
https://doi.org/10.1084/jem.20072051
https://doi.org/10.1016/S1074-7613(00)80330-1
https://doi.org/10.1038/ni.1660
https://doi.org/10.1073/pnas.0812901106
https://doi.org/10.1002/pmic.201700253
https://doi.org/10.1084/jem.168.6.2045
https://doi.org/10.1016/j.vaccine.2005.07.032
https://doi.org/10.4049/jimmunol.1004031
https://doi.org/10.1182/blood.V97.6.1776
https://doi.org/10.4049/jimmunol.1001480
https://doi.org/10.1038/70946
https://doi.org/10.1186/s12885-017-3854-8
https://doi.org/10.3389/fimmu.2019.02501
https://doi.org/10.1073/pnas.0506768102
https://doi.org/10.1084/jem.20050882
https://doi.org/10.1101/433706
https://doi.org/10.1158/2326-6066.CIR-19-0155
https://doi.org/10.1186/1471-2105-12-446
https://doi.org/10.3389/fimmu.2019.00827
https://doi.org/10.1186/s13073-018-0577-7
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.4049/jimmunol.178.12.7890
https://doi.org/10.1371/journal.ppat.1000695
https://doi.org/10.1007/s00251-014-0779-0
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

102. Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus
method for the major histocompatibility complex class I predictions.
Immunogenetics. (2012) 64:177–86. doi: 10.1007/s00251-011-0579-8

103. Jørgensen KW, Rasmussen M, Buus S, Nielsen M. NetMHCstab – predicting
stability of peptide–MHC-I complexes; impacts for cytotoxic T lymphocyte
epitope discovery. Immunology. (2014) 141:18–26. doi: 10.1111/imm.12160

104. Chowell D, Krishna S, Becker PD, Cocita C, Shu J, Tan X, et al. TCR contact
residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes.
Proc Natl Acad Sci USA. (2015) 112:E1754–62. doi: 10.1073/pnas.1500973112

105. Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD,
Solovyov A, et al. A neoantigen fitness model predicts tumour response
to checkpoint blockade immunotherapy. Nature. (2017) 551:517–20.
doi: 10.1038/nature24473

106. Bjerregaard A-M, Nielsen M, Jurtz V, Barra CM, Hadrup SR, Szallasi Z, et al.
An analysis of natural T cell responses to predicted tumor neoepitopes. Front
Immunol. (2017) 8:1566. doi: 10.3389/fimmu.2017.01566

107. Shen W-J, Wong H-S, Xiao Q-W, Guo X, Smale S. Towards a mathematical
foundation of immunology and amino acid chains. arXiv [Preprint].
ArXiv:12056031 Cs Q-Bio Stat (2012). Available online at: https://arxiv.org/
abs/1205.6031

108. Klinger M, Pepin F, Wilkins J, Asbury T, Wittkop T, Zheng J, et al. Multiplex
identification of antigen-specific T cell receptors using a combination
of immune assays and immune receptor sequencing. PLoS ONE. (2015)
10:e0141561. doi: 10.1371/journal.pone.0141561

109. Riley TP, Keller GLJ, Smith AR, Davancaze LM, Arbuiso AG, Devlin JR, et al.
Structure based prediction of neoantigen immunogenicity. Front Immunol.
(2019) 10:2047. doi: 10.3389/fimmu.2019.02047

110. Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic
Acids Res. (2000) 28:374. doi: 10.1093/nar/28.1.374

111. Haase K, Raffegerst S, Schendel DJ, Frishman D. Expitope: a web
server for epitope expression. Bioinformatics. (2015) 31:1854–6.
doi: 10.1093/bioinformatics/btv068

112. Adams JJ, Narayanan S, Birnbaum ME, Sidhu SS, Blevins SJ, Gee MH, et al.
Structural interplay between germline interactions and adaptive recognition
determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat

Immunol. (2016) 17:87–94. doi: 10.1038/ni.3310
113. Riley TP, Baker BM. The intersection of affinity and specificity in the

development and optimization of T cell receptor based therapeutics. Semin

Cell Dev Biol. (2018) 84:30–41. doi: 10.1016/j.semcdb.2017.10.017
114. Ekeruche-Makinde J,Miles JJ, van den BergHA, Skowera A, Cole DK, Dolton

G, et al. Peptide length determines the outcome of TCR/peptide-MHCI
engagement. Blood. (2013) 121:1112–23. doi: 10.1182/blood-2012-06-437202

115. Song I, Gil A, Mishra R, Ghersi D, Selin LK, Stern LJ. Broad
TCR repertoire and diverse structural solutions for recognition of an
immunodominant CD8+ T cell epitope.Nat Struct Mol Biol. (2017) 24:395–
406. doi: 10.1038/nsmb.3383

116. Cuendet MA, Zoete V, Michielin O. How T cell receptors interact with
peptide-MHCs: a multiple steered molecular dynamics study. Proteins Struct
Funct Bioinform. (2011) 79:3007–24. doi: 10.1002/prot.23104

117. Spear TT, Evavold BD, Baker BM, Nishimura MI. Understanding TCR
affinity, antigen specificity, and cross-reactivity to improve TCR gene-
modified T cells for cancer immunotherapy. Cancer Immunol Immunother.

(2019) 68:1881–9. doi: 10.1007/s00262-019-02401-0
118. Stone JD, Chervin AS, Kranz DM. T-cell receptor binding affinities and

kinetics: impact on T-cell activity and specificity. Immunology. (2009)
126:165–76. doi: 10.1111/j.1365-2567.2008.03015.x

119. Krogsgaard M, Prado N, Adams EJ, He X, Chow D-C, Wilson DB, et al.
Evidence that structural rearrangements and/or flexibility during TCR
binding can contribute to T cell activation. Mol Cell. (2003) 12:1367–78.
doi: 10.1016/S1097-2765(03)00474-X

120. Degano M, Garcia KC, Apostolopoulos V, Rudolph MG, Teyton
L, Wilson IA. A functional hot spot for antigen recognition in
a superagonist TCR/MHC complex. Immunity. (2000) 12:251–61.
doi: 10.1016/S1074-7613(00)80178-8

121. Kalergis AM, Nathenson SG. Altered peptide ligand-mediated TCR
antagonism can be modulated by a change in a single amino acid residue
within the CDR3β of an MHC class I-restricted TCR. J Immunol. (2000)
165:280–85. doi: 10.4049/jimmunol.165.1.280

122. Liu B, Chen W, Evavold BD, Zhu C. Accumulation of dynamic catch bonds
between TCR and agonist peptide-MHC triggers T cell SIGNALING. Cell.
(2014) 157:357–68. doi: 10.1016/j.cell.2014.02.053

123. Lyons GE, Moore T, Brasic N, Li M, Roszkowski JJ, Nishimura MI. Influence
of human CD8 on antigen recognition by T-cell receptor–transduced cells.
Cancer Res. (2006) 66:11455–61. doi: 10.1158/0008-5472.CAN-06-2379

124. Moore TV, Lyons GE, Brasic N, Roszkowski JJ, Voelkl S, Mackensen A, et al.
Relationship between CD8-dependent antigen recognition, T cell functional
avidity, and tumor cell recognition. Cancer Immunol Immunother. (2008)
58:719–28. doi: 10.1007/s00262-008-0594-2

125. Pryshchep S, Zarnitsyna VI, Hong J, Evavold BD, Zhu C. Accumulation
of serial forces on TCR and CD8 frequently applied by agonist antigenic
peptides embedded inMHCmolecules triggers calcium in T cells. J Immunol.

(2014) 193:68–76. doi: 10.4049/jimmunol.1303436
126. Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells

for cancer immunotherapy. Cancer Immunol Immunother. (2016) 65:631–
49. doi: 10.1007/s00262-016-1842-5

127. Spear TT, Wang Y, Foley KC, Murray DC, Scurti GM, Simms PE, et al.
Critical biological parameters modulate affinity as a determinant of function
in T-cell receptor gene-modified T-cells. Cancer Immunol Immunother.

(2017) 66:1411–24. doi: 10.1007/s00262-017-2032-9
128. Spear TT, Wang Y, Smith TW, Simms PE, Garrett-Mayer E, Hellman

LM, et al. Altered peptide ligands impact the diversity of polyfunctional
phenotypes in T cell receptor gene-modified T cells. Mol Ther. (2018)
26:996–1007. doi: 10.1016/j.ymthe.2018.01.015

129. Thomson CT, Kalergis AM, Sacchettini JC, Nathenson SG. A structural
difference limited to one residue of the antigenic peptide can profoundly
alter the biological outcome of the TCR-peptide/MHC class I interaction. J
Immunol. (2001) 166:3994–7. doi: 10.4049/jimmunol.166.6.3994

130. Tsuchiya Y, Namiuchi Y, Wako H, Tsurui H. A study of CDR3 loop dynamics
reveals distinct mechanisms of peptide recognition by T-cell receptors
exhibiting different levels of cross-reactivity. Immunology. (2018) 153:466–
78. doi: 10.1111/imm.12849

131. Valitutti S, Müller S, Cella M, Padovan E, Lanzavecchia A. Serial triggering
of many T-cell receptors by a few peptide–MHC complexes. Nature. (1995)
375:148–51. doi: 10.1038/375148a0

132. Aleksic M, Dushek O, Zhang H, Shenderov E, Chen J-L, Cerundolo
V, et al. Dependence of T cell antigen recognition on T cell receptor-
peptide MHC confinement time. Immunity. (2010) 32:163–74.
doi: 10.1016/j.immuni.2009.11.013

133. Leaver-Fay A, O’Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, et al.
Chapter six - scientific benchmarks for guiding macromolecular energy
function improvement. In: Keating AE, editor.Methods in Enzymology, Vol.
523. Oxford: Academic Press (2013). p. 109–43.

134. Riley TP, Ayres CM, Hellman LM, Singh NK, Cosiano M, Cimons JM, et al.
A generalized framework for computational design and mutational scanning
of T-cell receptor binding interfaces. Protein Eng Des Sel. (2016) 29:595–606.
doi: 10.1093/protein/gzw050

135. Haidar JN, Pierce B, Yu Y, Tong W, Li M, Weng Z. Structure-based design
of a T cell receptor leads to nearly 100-Fold improvement in binding affinity
for pepMHC. Proteins. (2009) 74:948–60. doi: 10.1002/prot.22203

136. Pierce BG, Hellman LM, Hossain M, Singh NK, Kooi CWV, Weng
Z, et al. Computational design of the affinity and specificity of a
therapeutic T cell receptor. PLoS Comput Biol. (2014) 10:e1003478.
doi: 10.1371/journal.pcbi.1003478

137. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig
H, et al. The protein data bank. Nucleic Acids Res. (2000) 28:235–42.
doi: 10.1093/nar/28.1.235

138. Leem J, de Oliveira SHP, Krawczyk K, Deane CM. STCRDab: the
structural T-cell receptor database. Nucleic Acids Res. (2018) 46:D406–12.
doi: 10.1093/nar/gkx971

139. Gowthaman R, Pierce BG. TCR3d: the T cell receptor
structural repertoire database. Bioinformatics. (2019) 35:5323–5.
doi: 10.1093/bioinformatics/btz517

140. Desmet J, Wilson IA, Joniau M, De Maeyer M, Lasters I. Computation
of the binding of fully flexible peptides to proteins with flexible
side chains. FASEB J. (1997) 11:164–72. doi: 10.1096/fasebj.11.2.90
39959

Frontiers in Immunology | www.frontiersin.org 17 October 2020 | Volume 11 | Article 565096

https://doi.org/10.1007/s00251-011-0579-8
https://doi.org/10.1111/imm.12160
https://doi.org/10.1073/pnas.1500973112
https://doi.org/10.1038/nature24473
https://doi.org/10.3389/fimmu.2017.01566
https://arxiv.org/abs/1205.6031
https://arxiv.org/abs/1205.6031
https://doi.org/10.1371/journal.pone.0141561
https://doi.org/10.3389/fimmu.2019.02047
https://doi.org/10.1093/nar/28.1.374
https://doi.org/10.1093/bioinformatics/btv068
https://doi.org/10.1038/ni.3310
https://doi.org/10.1016/j.semcdb.2017.10.017
https://doi.org/10.1182/blood-2012-06-437202
https://doi.org/10.1038/nsmb.3383
https://doi.org/10.1002/prot.23104
https://doi.org/10.1007/s00262-019-02401-0
https://doi.org/10.1111/j.1365-2567.2008.03015.x
https://doi.org/10.1016/S1097-2765(03)00474-X
https://doi.org/10.1016/S1074-7613(00)80178-8
https://doi.org/10.4049/jimmunol.165.1.280
https://doi.org/10.1016/j.cell.2014.02.053
https://doi.org/10.1158/0008-5472.CAN-06-2379
https://doi.org/10.1007/s00262-008-0594-2
https://doi.org/10.4049/jimmunol.1303436
https://doi.org/10.1007/s00262-016-1842-5
https://doi.org/10.1007/s00262-017-2032-9
https://doi.org/10.1016/j.ymthe.2018.01.015
https://doi.org/10.4049/jimmunol.166.6.3994
https://doi.org/10.1111/imm.12849
https://doi.org/10.1038/375148a0
https://doi.org/10.1016/j.immuni.2009.11.013
https://doi.org/10.1093/protein/gzw050
https://doi.org/10.1002/prot.22203
https://doi.org/10.1371/journal.pcbi.1003478
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gkx971
https://doi.org/10.1093/bioinformatics/btz517
https://doi.org/10.1096/fasebj.11.2.9039959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

141. Leach AR. Ligand docking to proteins with discrete side-chain flexibility. J
Mol Biol. (1994) 235:345–56. doi: 10.1016/S0022-2836(05)80038-5

142. Bui H-H, Schiewe AJ, Grafenstein H. von and haworth is. Structural
prediction of peptides binding to MHC class I molecules. Proteins Struct
Funct Bioinform. (2006) 63:43–52. doi: 10.1002/prot.20870

143. Fagerberg T, Cerottini J-C, Michielin O. Structural prediction of
peptides bound to MHC class I. J Mol Biol. (2006) 356:521–46.
doi: 10.1016/j.jmb.2005.11.059

144. Monje-Galvan V, Warburton L, Klauda JB. Setting up all-atom molecular
dynamics simulations to study the interactions of peripheral membrane
proteins with model lipid bilayers. In: Drin G, editor. Intracellular Lipid

Transport:Methods and Protocols.NewYork, NY: Springer (2019). p. 325–39.
145. Perilla JR, Hadden JA, Goh BC, Mayne CG, Schulten K. All-atom molecular

dynamics of virus capsids as drug targets. J Phys Chem Lett. (2016) 7:1836–44.
doi: 10.1021/acs.jpclett.6b00517

146. Park M-S, Park SY, Miller KR, Collins EJ, Lee HY. Accurate
structure prediction of peptide–MHC complexes for identifying
highly immunogenic antigens. Mol Immunol. (2013) 56:81–90.
doi: 10.1016/j.molimm.2013.04.011

147. Kish-Catalone TM, Lu W, Gallo RC, DeVico AL. Preclinical evaluation
of synthetic −2 RANTES as a candidate vaginal microbicide to
target CCR5. Antimicrob Agents Chemother. (2006) 50:1497–509.
doi: 10.1128/AAC.50.4.1497-1509.2006

148. Knapp B, Alcala M, Zhang H, West CE, van der Merwe PA, Deane CM.
pyHVis3D: visualising molecular simulation deduced H-bond networks
in 3D: application to T-cell receptor interactions. Bioinformatics. (2018)
34:1941–3. doi: 10.1093/bioinformatics/btx842

149. Zhang H, Lim H-S, Knapp B, Deane CM, Aleksic M, Dushek O, et al.
The contribution of major histocompatibility complex contacts to the
affinity and kinetics of T cell receptor binding. Sci Rep. (2016) 6:35326.
doi: 10.1038/srep35326

150. Wan S, Knapp B, Wright DW, Deane CM, Coveney PV. Rapid, precise, and
reproducible prediction of peptide–MHC binding affinities from molecular
dynamics that correlate well with experiment. J Chem Theory Comput. (2015)
11:3346–56. doi: 10.1021/acs.jctc.5b00179

151. Pierce BG, Weng Z. A flexible docking approach for prediction of
T cell receptor–peptide–MHC complexes. Protein Sci. (2013) 22:35–46.
doi: 10.1002/pro.2181

152. Mendes MFA, Antunes DA, Rigo MM, Sinigaglia M, Vieira GF. Improved
structural method for T-cell cross-reactivity prediction. Mol Immunol.

(2015) 67:303–10. doi: 10.1016/j.molimm.2015.06.017
153. Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J,

et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell.
(2014) 157:1073–87. doi: 10.1016/j.cell.2014.03.047

154. Borbulevych OY, Piepenbrink KH, Gloor BE, Scott DR, Sommese RF, Cole
DK, et al. T cell receptor cross-reactivity directed by antigen-dependent
tuning of peptide-MHC molecular flexibility. Immunity. (2009) 31:885–96.
doi: 10.1016/j.immuni.2009.11.003

155. Borbulevych OY, Piepenbrink KH, Baker BM. Conformational
melding permits a conserved binding geometry in TCR recognition
of foreign and self molecular mimics. J Immunol. (2011) 186:2950–58.
doi: 10.4049/jimmunol.1003150

156. Cole DK, Bulek AM, Dolton G, Schauenberg AJ, Szomolay B, Rittase W,
et al. Hotspot autoimmune T cell receptor binding underlies pathogen
and insulin peptide cross-reactivity. J Clin Invest. (2016) 126:2191–204.
doi: 10.1172/JCI85679

157. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure
of the complex between human T-cell receptor, viral peptide and HLA-A2.
Nature. (1996) 384:134–41. doi: 10.1038/384134a0

158. Hausmann S, Biddison WE, Smith KJ, Ding Y-H, Garboczi DN, Utz U,
et al. Peptide recognition by two HLA-A2/Tax11–19-specific T cell clones
in relationship to their MHC/Peptide/TCR crystal structures. J Immunol.

(1999) 162:5389–97.
159. Shen ZT, Nguyen TT, Daniels KA, Welsh RM, Stern LJ. Disparate epitopes

mediating protective heterologous immunity to unrelated viruses share
peptide–MHC structural features recognized by cross-reactive T cells. J
Immunol. (2013) 191:5139–52. doi: 10.4049/jimmunol.1300852

160. Yin Y, Li Y, Mariuzza RA. Structural basis for self-recognition
by autoimmune T-cell receptors. Immunol Rev. (2012) 250:32–48.
doi: 10.1111/imr.12002

161. Clute SC, Watkin LB, Cornberg M, Naumov YN, Sullivan JL, Luzuriaga K,
et al. Cross-reactive influenza virus–specific CD8+ T cells contribute
to lymphoproliferation in Epstein-Barr virus–associated infectious
mononucleosis. J Clin Invest. (2005) 115:3602–12. doi: 10.1172/JCI25078

162. Kennedy PTF, Urbani S, Moses RA, Amadei B, Fisicaro P, Lloyd J, et al. The
influence of T cell cross-reactivity on HCV-peptide specific human T cell
response. Hepatology. (2006) 43:602–11. doi: 10.1002/hep.21081

163. Capietto A-H, Jhunjhunwala S, Pollock SB, Lupardus P, Wong J, Hänsch L,
et al. Mutation position is an important determinant for predicting cancer
neoantigens. J Exp Med. (2020) 217:e20190179. doi: 10.1084/jem.20190179

164. Springer I, Besser H, Tickotsky-Moskovitz N, Dvorkin S, Louzoun Y.
Prediction of specific TCR-peptide binding from large dictionaries of TCR-
peptide pairs. arXiv [Preprint]. bioRxiv:650861. (2020) doi: 10.1101/650861

165. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al.
Identification of a titin-derived HLA-A1–presented peptide as a cross-
reactive target for engineered MAGE A3–directed T cells. Sci Transl Med.

(2013) 5:197ra103. doi: 10.1126/scitranslmed.3006034
166. Morgan R, Chinnasamy N, Abate-Daga D, Gros A, Robbins P, Zheng

Z, et al. Cancer regression and neurological toxicity following anti-
MAGE-A3 TCR gene therapy. J Immunother. (2013) 36:133–51.
doi: 10.1097/CJI.0b013e3182829903

167. Gaston JS, Rickinson AB, Epstein MA. Cross-reactivity of self-HLA-
restricted Epstein-Barr virus-specific cytotoxic T lymphocytes for allo-
HLA determinants. J Exp Med. (1983) 158:1804–21. doi: 10.1084/jem.158.
6.1804

168. Amir AL, D’Orsogna LJA, Roelen DL, van Loenen MM, Hagedoorn RS,
de Boer R, et al. Allo-HLA reactivity of virus-specific memory T cells is
common. Blood. (2010) 115:3146–57. doi: 10.1182/blood-2009-07-234906

169. van der Zwan A, van der Meer-Prins EMW, van Miert PPMC, van den
Heuvel H, Anholts JDH, Roelen DL, et al. Cross-reactivity of virus-specific
CD8+ T cells against allogeneic HLA-C: possible implications for pregnancy
outcome. Front Immunol. (2018) 9:2880. doi: 10.3389/fimmu.2018.02880

170. Ziegler A, Müller CA, Böckmann RA, Uchanska-Ziegler B. Low-
affinity peptides and T-cell selection. Trends Immunol. (2009) 30:53–60.
doi: 10.1016/j.it.2008.11.004

171. van derMerwe PA, Dushek O.Mechanisms for T cell receptor triggering.Nat
Rev Immunol. (2011) 11:47–55. doi: 10.1038/nri2887

172. Martinez RJ, Evavold BD. Lower affinity T cells are critical components and
active participants of the immune response. Front Immunol. (2015) 6:468.
doi: 10.3389/fimmu.2015.00468

173. Martinez RJ, Andargachew R,Martinez HA, Evavold BD. Low-affinity CD4+
T cells are major responders in the primary immune response.Nat Commun.

(2016) 7:13848. doi: 10.1038/ncomms13848
174. Gee MH, Sibener LV, Birnbaum ME, Jude KM, Yang X, Fernandes RA, et al.

Stress-testing the relationship between T cell receptor/peptide-MHC affinity
and cross-reactivity using peptide velcro. Proc Natl Acad Sci USA. (2018)
115:E7369–78. doi: 10.1073/pnas.1802746115

175. Rudolph MG, Stanfield RL, Wilson IA. How tCRs bind MHCs,
peptides, and coreceptors. Annu Rev Immunol. (2006) 24:419–66.
doi: 10.1146/annurev.immunol.23.021704.115658

176. Friedensohn S, Khan TA, Reddy ST. Advanced methodologies in high-
throughput sequencing of immune repertoires. Trends Biotechnol. (2017)
35:203–14. doi: 10.1016/j.tibtech.2016.09.010

177. Heather JM, Ismail M, Oakes T, Chain B. High-throughput sequencing of the
T-cell receptor repertoire: pitfalls and opportunities. Brief Bioinform. (2018)
19:554–65. doi: 10.1093/bib/bbw138

178. Miho E, Yermanos A, Weber CR, Berger CT, Reddy ST, Greiff
V. Computational strategies for dissecting the high-dimensional
complexity of adaptive immune repertoires. Front Immunol. (2018)
9:224. doi: 10.3389/fimmu.2018.00224

179. Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova
OV, Putintseva EV, et al. VDJtools: unifying post-analysis of T
cell receptor repertoires. PLoS Comput Biol. (2015) 11:e1004503.
doi: 10.1371/journal.pcbi.1004503

Frontiers in Immunology | www.frontiersin.org 18 October 2020 | Volume 11 | Article 565096

https://doi.org/10.1016/S0022-2836(05)80038-5
https://doi.org/10.1002/prot.20870
https://doi.org/10.1016/j.jmb.2005.11.059
https://doi.org/10.1021/acs.jpclett.6b00517
https://doi.org/10.1016/j.molimm.2013.04.011
https://doi.org/10.1128/AAC.50.4.1497-1509.2006
https://doi.org/10.1093/bioinformatics/btx842
https://doi.org/10.1038/srep35326
https://doi.org/10.1021/acs.jctc.5b00179
https://doi.org/10.1002/pro.2181
https://doi.org/10.1016/j.molimm.2015.06.017
https://doi.org/10.1016/j.cell.2014.03.047
https://doi.org/10.1016/j.immuni.2009.11.003
https://doi.org/10.4049/jimmunol.1003150
https://doi.org/10.1172/JCI85679
https://doi.org/10.1038/384134a0
https://doi.org/10.4049/jimmunol.1300852
https://doi.org/10.1111/imr.12002
https://doi.org/10.1172/JCI25078
https://doi.org/10.1002/hep.21081
https://doi.org/10.1084/jem.20190179
https://doi.org/10.1101/650861
https://doi.org/10.1126/scitranslmed.3006034
https://doi.org/10.1097/CJI.0b013e3182829903
https://doi.org/10.1084/jem.158.6.1804
https://doi.org/10.1182/blood-2009-07-234906
https://doi.org/10.3389/fimmu.2018.02880
https://doi.org/10.1016/j.it.2008.11.004
https://doi.org/10.1038/nri2887
https://doi.org/10.3389/fimmu.2015.00468
https://doi.org/10.1038/ncomms13848
https://doi.org/10.1073/pnas.1802746115
https://doi.org/10.1146/annurev.immunol.23.021704.115658
https://doi.org/10.1016/j.tibtech.2016.09.010
https://doi.org/10.1093/bib/bbw138
https://doi.org/10.3389/fimmu.2018.00224
https://doi.org/10.1371/journal.pcbi.1004503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

180. Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, et al.
VDJdb in 2019: database extension, new analysis infrastructure and a T-
cell receptor motif compendium. Nucleic Acids Res. (2020) 48:D1057–62.
doi: 10.1093/nar/gkz874

181. Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-
TCR: a manually curated catalogue of pathology-associated
T cell receptor sequences. Bioinformatics. (2017) 33:2924–9.
doi: 10.1093/bioinformatics/btx286

182. DeWitt WS, III, Smith A, Schoch G, Hansen JA, Matsen FA, et al.
Human T cell receptor occurrence patterns encode immune history,
genetic background, and receptor specificity. Elife. (2018) 7:e38358.
doi: 10.7554/eLife.38358.043

183. Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E,
et al. Tracking global changes induced in the CD4 T-cell receptor
repertoire by immunization with a complex antigen using short
stretches of CDR3 protein sequence. Bioinformatics. (2014) 30:3181–8.
doi: 10.1093/bioinformatics/btu523

184. Cinelli M, Sun Best K, Heather JM, Reich-Zeliger S, Shifrut E,
Friedman N, et al. Feature selection using a one dimensional naïve
Bayes’ classifier increases the accuracy of support vector machine
classification of CDR3 repertoires. Bioinformatics. (2017) 33:951–5.
doi: 10.1093/bioinformatics/btw771

185. Priel A, Gordin M, Philip H, Zilberberg A, Efroni S. Network representation
of T-cell repertoire— a novel tool to analyze immune response to cancer
formation. Front Immunol. (2018) 9:2913. doi: 10.3389/fimmu.2018.02913

186. Meysman P, De Neuter N, Gielis S, Bui Thi D, Ogunjimi B,
Laukens K. On the viability of unsupervised T-cell receptor sequence
clustering for epitope preference. Bioinformatics. (2019) 35:1461–8.
doi: 10.1093/bioinformatics/bty821

187. Thakkar N, Bailey-Kellogg C. Balancing sensitivity and specificity
in distinguishing TCR groups by CDR sequence similarity. BMC

Bioinformatics. (2019) 20:241. doi: 10.1186/s12859-019-2864-8
188. Gordin M, Philip H, Zilberberg A, Gidoni MC, Margalit R, Clouser C,

et al. Mice developing mammary tumors evolve T cell sequences shared
with human breast cancer patients. arXiv [Preprint]. bioRxiv:371260. (2018)
doi: 10.1101/371260

189. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. (2010) 26:2460–1. doi: 10.1093/bioinformatics/btq461

190. Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ,
et al. Immunosequencing identifies signatures of cytomegalovirus exposure
history and HLA-mediated effects on the T cell repertoire. Nat Genet. (2017)
49:659–65. doi: 10.1038/ng.3822

191. Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings
of the Second International Conference on Knowledge Discovery and Data

Mining. Palo Alto, CA: AAAI Press (1996). p. 226–31.
192. Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev

YB, Mora T, et al. Detecting T cell receptors involved in immune
responses from single repertoire snapshots. PLoS Biol. (2019) 17:e3000314.
doi: 10.1371/journal.pbio.3000314

193. Buuren MM, van Dijkgraaf FE, Linnemann C, Toebes M, Chang CXL, Mok
JY, et al. HLAmicropolymorphisms strongly affect peptide–MHCmultimer–
based monitoring of antigen-specific CD8+ T cell responses. J Immunol.

(2014) 192:641–8. doi: 10.4049/jimmunol.1301770
194. Cole DK, Miles KM, Madura F, Holland CJ, Schauenburg AJA, Godkin AJ,

et al. T-cell receptor (TCR)-peptide specificity overrides affinity-enhancing
TCR-major histocompatibility complex interactions. J Biol Chem. (2014)
289:628–38. doi: 10.1074/jbc.M113.522110

195. Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. Structural evidence
for a germline-encoded T cell receptor–major histocompatibility complex
interaction ‘codon’. Nat Immunol. (2007) 8:975–83. doi: 10.1038/ni1502

196. Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its
role in the immune system. Crit Rev Immunol. (2012) 32:349–72.
doi: 10.1615/CritRevImmunol.v32.i4.50

197. Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp
J, et al. Clonally expanded CD8T cells patrol the cerebrospinal fluid in
Alzheimer’s disease. Nature. (2020) 577:399–404. doi: 10.1038/s41586-019-
1895-7

198. Jiang W, Birtley JR, Hung S-C, Wang W, Chiou S-H, Macaubas C, et al.
In vivo clonal expansion and phenotypes of hypocretin-specific CD4 + T
cells in narcolepsy patients and controls. Nat Commun. (2019) 10:5247.
doi: 10.1038/s41467-019-13234-x

199. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal
replacement of tumor-specific T cells following PD-1 blockade. Nat Med.

(2019) 25:1251–9. doi: 10.1038/s41591-019-0522-3
200. Lanzarotti E, Marcatili P, NielsenM. T-cell receptor cognate target prediction

based on paired α and β chain sequence and structural CDR loop similarities.
Front Immunol. (2019) 10:2080. doi: 10.3389/fimmu.2019.02080

201. Ostmeyer J, Christley S, Toby IT, Cowell LG. Biophysicochemical motifs
in T-cell receptor sequences distinguish repertoires from tumor-infiltrating
lymphocyte and adjacent healthy tissue. Cancer Res. (2019) 79:1671–80.
doi: 10.1158/0008-5472.CAN-18-2292

202. Kidera A, Konishi Y, Oka M, Ooi T, Scheraga HA. Statistical analysis of the
physical properties of the 20 naturally occurring amino acids. J Protein Chem.

(1985) 4:23–55. doi: 10.1007/BF01025492
203. Atchley WR, Zhao J, Fernandes AD, Drüke T. Solving the protein

sequence metric problem. Proc Natl Acad Sci USA. (2005) 102:6395–400.
doi: 10.1073/pnas.0408677102

204. De Simone M, Rossetti G, Pagani M. Single cell T cell receptor
sequencing: techniques and future challenges. Front Immunol. (2018) 9:1638.
doi: 10.3389/fimmu.2018.01638

205. Carter JA, Preall JB, Grigaityte K, Goldfless SJ, Jeffery E, Briggs AW, et al.
Single T cell sequencing demonstrates the functional role of αβ TCR pairing
in cell lineage and antigen specificity. Front Immunol. (2019) 10:1516.
doi: 10.3389/fimmu.2019.01516

206. Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G,
et al. T cell fate and clonality inference from single-cell transcriptomes. Nat
Methods. (2016) 13:329–32. doi: 10.1038/nmeth.3800

207. Izraelson M, Nakonechnaya TO, Moltedo B, Egorov ES, Kasatskaya SA,
Putintseva EV, et al. Comparative analysis of murine T-cell receptor
repertoires. Immunology. (2018) 153:133–44. doi: 10.1111/imm.12857

208. Kamga L, Gil A, Song I, Brody R, Ghersi D, Aslan N, et al. CDR3α drives
selection of the immunodominant Epstein Barr Virus (EBV) BRLF1-specific
CD8T cell receptor repertoire in primary infection. PLoS Pathog. (2019)
15:e1008122. doi: 10.1371/journal.ppat.1008122

209. Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M,
et al. Large-scale detection of antigen-specific T cells using peptide-MHC-
I multimers labeled with DNA barcodes. Nat Biotechnol. (2016) 34:1037–45.
doi: 10.1038/nbt.3662

210. Rufer N. Molecular tracking of antigen-specific T-cell clones
during immune responses. Curr Opin Immunol. (2005) 17:441–7.
doi: 10.1016/j.coi.2005.06.003

211. Hinrichs CS, Restifo NP. Reassessing target antigens for adoptive T-cell
therapy. Nat Biotechnol. (2013) 31:999–1008. doi: 10.1038/nbt.2725

212. Zvyagin IV, PogorelyyMV, IvanovaME, Komech EA, ShugayM, Bolotin DA,
et al. Distinctive properties of identical twins’ TCR repertoires revealed by
high-throughput sequencing. Proc Natl Acad Sci USA. (2014) 111:5980–5.
doi: 10.1073/pnas.1319389111

213. Bradley P, Thomas PG. Using T cell receptor repertoires to understand
the principles of adaptive immune recognition. Annu Rev Immunol. (2019)
37:547–70. doi: 10.1146/annurev-immunol-042718-041757

214. Gross DM, Forsthuber T, Tary-Lehmann M, Etling C, Ito K, Nagy ZA,
et al. Identification of LFA-1 as a candidate autoantigen in treatment-
resistant lyme arthritis. Science. (1998) 281:703–6. doi: 10.1126/science.281.
5377.703

215. Losikoff PT, Mishra S, Terry F, Gutierrez A, Ardito MT, Fast L, et al.
HCV epitope, homologous to multiple human protein sequences, induces
a regulatory T cell response in infected patients. J Hepatol. (2015) 62:48–55.
doi: 10.1016/j.jhep.2014.08.026

216. Oseroff C, Sidney J, Vita R, Tripple V, McKinney DM, Southwood S, et al.
T cell responses to known allergen proteins are differently polarized and
account for a variable fraction of total response to allergen extracts. J
Immunol. (2012) 189:1800–11. doi: 10.4049/jimmunol.1200850

217. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: implications for cancer immunotherapy.
Genome Biol. (2016) 17:174. doi: 10.1186/s13059-016-1028-7

Frontiers in Immunology | www.frontiersin.org 19 October 2020 | Volume 11 | Article 565096

https://doi.org/10.1093/nar/gkz874
https://doi.org/10.1093/bioinformatics/btx286
https://doi.org/10.7554/eLife.38358.043
https://doi.org/10.1093/bioinformatics/btu523
https://doi.org/10.1093/bioinformatics/btw771
https://doi.org/10.3389/fimmu.2018.02913
https://doi.org/10.1093/bioinformatics/bty821
https://doi.org/10.1186/s12859-019-2864-8
https://doi.org/10.1101/371260
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1038/ng.3822
https://doi.org/10.1371/journal.pbio.3000314
https://doi.org/10.4049/jimmunol.1301770
https://doi.org/10.1074/jbc.M113.522110
https://doi.org/10.1038/ni1502
https://doi.org/10.1615/CritRevImmunol.v32.i4.50
https://doi.org/10.1038/s41586-019-1895-7
https://doi.org/10.1038/s41467-019-13234-x
https://doi.org/10.1038/s41591-019-0522-3
https://doi.org/10.3389/fimmu.2019.02080
https://doi.org/10.1158/0008-5472.CAN-18-2292
https://doi.org/10.1007/BF01025492
https://doi.org/10.1073/pnas.0408677102
https://doi.org/10.3389/fimmu.2018.01638
https://doi.org/10.3389/fimmu.2019.01516
https://doi.org/10.1038/nmeth.3800
https://doi.org/10.1111/imm.12857
https://doi.org/10.1371/journal.ppat.1008122
https://doi.org/10.1038/nbt.3662
https://doi.org/10.1016/j.coi.2005.06.003
https://doi.org/10.1038/nbt.2725
https://doi.org/10.1073/pnas.1319389111
https://doi.org/10.1146/annurev-immunol-042718-041757
https://doi.org/10.1126/science.281.5377.703
https://doi.org/10.1016/j.jhep.2014.08.026
https://doi.org/10.4049/jimmunol.1200850
https://doi.org/10.1186/s13059-016-1028-7
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Cross-Reactivity and Specificity of TCR

218. Ott PA,HuZ, KeskinDB, Shukla SA, Sun J, BozymDJ, et al. An immunogenic
personal neoantigen vaccine for patients with melanoma. Nature. (2017)
547:217–21. doi: 10.1038/nature22991

219. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al.
Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl

J Med. (2014) 371:2189–99. doi: 10.1056/NEJMoa1406498
220. Hellman LM, Foley KC, Singh NK, Alonso JA, Riley TP, Devlin JR,

et al. Improving T cell receptor on-target specificity via structure-
guided design. Mol Ther. (2019) 27:300–13. doi: 10.1016/j.ymthe.2018.
12.010

221. Malecek K, Grigoryan A, Zhong S, Gu WJ, Johnson LA, Rosenberg SA, et al.
Specific increase in potency via structure-based design of a TCR. J Immunol.

(2014) 193:2587–99. doi: 10.4049/jimmunol.1302344
222. Zoete V, Irving M, Ferber M, Cuendet M, Michielin O. Structure-

based, rational design of T cell receptors. Front Immunol. (2013) 4:268.
doi: 10.3389/fimmu.2013.00268

223. Zhao Y, Bennett AD, Zheng Z, Wang QJ, Robbins PF, Yu LYL, et al. High-
affinity TCRs generated by phage display provide CD4+ T cells with the
ability to recognize and kill tumor cell lines. J Immunol. (2007) 179:5845–54.
doi: 10.4049/jimmunol.179.9.5845

224. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu Y-C, Zheng Z,
et al. Immune recognition of somatic mutations leading to complete
durable regression in metastatic breast cancer. Nat Med. (2018) 24:724–30.
doi: 10.1038/s41591-018-0040-8

Conflict of Interest: GO has served on advisory boards or holds consultancies or
equity with Eli Lilly, Novartis, Janssen, Sanofi, Orbit Discovery and UCB Pharma,
and has undertaken clinical trials with Atopix, Regeneron/Sanofi, Roche.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Lee, Salio, Napolitani, Ogg, Simmons and Koohy. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 20 October 2020 | Volume 11 | Article 565096

https://doi.org/10.1038/nature22991
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1016/j.ymthe.2018.12.010
https://doi.org/10.4049/jimmunol.1302344
https://doi.org/10.3389/fimmu.2013.00268
https://doi.org/10.4049/jimmunol.179.9.5845
https://doi.org/10.1038/s41591-018-0040-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors
	Introduction
	Predicting Cross-Recognition Potential of T Cell Receptors
	Cross-Reactivity of TCR Is a Double-Edged Sword
	Technologies to Elucidate the Landscape of Cross-Reactivity
	Limitations of the Current Technologies
	Expanding Knowledge of TCR:pMHC Interactions by in silico Modeling
	Approaches to Predict Immunogenicity From Experimental Data
	Discriminative Features Governing TCR:pMHC Interaction
	Biophysical and Kinetic Features
	Features From Structural Modeling

	Elements to Consider in Modeling Immunogenicity or Cross-Reactivity of TCRs

	Predicting Common Specificity Group of T Cell Receptors
	Algorithms to Predict Antigen-Specificity of TCRs
	Co-occurrence Pattern of TCR Sequences
	CDR3β Sequence Similarity

	Improving Accuracy of TCR Specificity Group Prediction
	Extending Current Algorithms From CDR3β Amino Acids
	Application of Single Cell Technologies for Paired TCRαβ Profiling


	The Interface Between Common Specificity Group and Cross-Reactivity of TCR to Model the Landscape of Interaction Propensities
	Conclusion and Outlook
	Author Contributions
	Funding
	Acknowledgments
	References


