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Abstract: Externally bonded reinforcements are commonly and widely used in civil engineering
objects made of concrete to increase the structure load capacity or to minimize the negative effects of
long-term operation and possible defects. The quality of adhesive bonding between a strengthened
structure and steel or composite elements is essential for effective reinforcement; therefore, there
is a need for non-destructive diagnostics of adhesive joints. The aim of this paper is the detection
of debonding defects in adhesive joints between concrete beams and steel plates using the modal
analysis approach. The inspection was based on modal shapes and their further processing with the
use of continuous wavelet transform (CWT) for precise debonding localization and imaging. The
influence of the number of wavelet vanishing moments and the mode shape interpolation on damage
imaging maps was studied. The results showed that the integrated modal analysis and wavelet
transform could be successfully applied to determine the exact shape and position of the debonding
in the adhesive joints of composite beams.

Keywords: non-destructive testing; damage detection; vibrations; modal analysis; continuous
wavelet transform; concrete beam; strengthening; adhesive joint; debonding

1. Introduction

A significant part of building objects is made of concrete, which is continuously
degraded as a result of environmental and loading conditions as well as natural ageing of
the material. Therefore, in many situations, structural reinforcements are used to minimize
the negative effects of long-term operation and developing damage. For this purpose,
various systems can be used, among which the use of externally bonded reinforcement
(EBR) is one of the most effective [1–4]. EBRs usually have a form of adhesively bonded
elements made of steel (e.g., plates, rods, flat bars) or composites like fiber-reinforced
polymers (e.g., tapes or mats). In such connections, it is crucial to provide an adequate
quality of the bonding as well as further assessment of its condition and monitoring.
Recently, various non-destructive testing (NDT) and structural health monitoring (SHM)
approaches have been increasingly and widely incorporated to improve the safety of
structures by precise damage detection, identification, and visualization [5,6]. In the
existing literature, there are many examples of successful application of non-invasive
techniques for diagnostics of adhesive joints [7], especially utilizing thermography [8–11],
reflectometry [12] or ultrasonic waves [13–17].

In this study, an evaluation of a steel–concrete composite beam was presented. Par-
ticular attention was paid to the visualization of defects between a reinforcing plate and
a concrete beam. The research was carried out using vibrations and their further pro-
cessing. Vibration-based methods belong to the most popular and widely used damage
detection techniques for decades [18–21] and they are still intensively developed [22].
Many researchers use modal analysis as a diagnostic tool (e.g., [23–30]). Changes in modal
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parameters, such as natural frequencies, mode shapes, or damping coefficients, make it
possible to monitor the condition of structures. Most often, the results obtained from mode
shapes are enhanced by the calculation of modal curvatures [25,26,30]. To increase the
efficiency of damage detection and localization, more and more researchers decide to use
wavelet analysis [26–39]. Wavelet-based methods allow precise localizing and imaging
defects, which is not always possible directly through modal analysis. In previous works,
wavelet analysis has been applied for the detection of different kinds of defects in vari-
ous structures, such as single or multiple notches in beams [25,26,29–36], spatial defects
(in the form of local reduction of thickness) in plates [24,33,37,39] or impact damages in
plates [38,39]. However, the literature on the non-invasive diagnostics of adhesive joints
using vibration methods is limited and the problem of damage imaging in such joints by
wavelet analysis has not been thoroughly considered. Recently, Yang and Oyadiji [28]
used modal analysis and discrete wavelet transform of modal frequency curves to identify
debonding in adhesive joints in two-layer bonded aluminum beam samples. To the best of
the authors’ knowledge, there is no research on integrated vibration and wavelet-based
damage detection in steel–concrete adhesive connections.

This study presents a vibration-based condition assessment of the adhesive connection
between a concrete beam and a steel plate. Experimental and numerical investigations were
performed on a beam with a perfectly bonded joint as well as three beams with debonding
defects of different areas. The diagnostic procedure used mode shapes and their further
processing based on continuous wavelet transform for precise debonding localization and
imaging. The influence of the number of wavelet vanishing moments and the mode shape
interpolation on damage imaging maps was studied.

2. Materials and Methods
2.1. Object of Research

The object of research was a multilayer sample (Figure 1a) consisting of a concrete
beam (class C30/37) with a square cross-section of 100 × 100 mm2, and a length of
5000 mm, an adhesive film with a thickness of 2 mm and a steel plate with dimensions
of 6 × 100 × 5000 mm3. The material characteristics are given in Table 1. Four specimens
(Figure 1b) were prepared: An intact composite beam (with no damage, #1) and three
beams (#2-4) with the increasing percentage of debonding, 10%, 20% and 50%, consecu-
tively. Each defect was arranged as a lack of an adhesive film by sticking a Teflon (PTFE)
tape to the appropriate area of the joint. Before preparation of each sample, the contacting
surfaces of the concrete beam and steel plate were accurately cleaned using Loctite-7063
cleaner (Henkel, Dusseldorf, Germany). Immediately after that, both elements were joined
using Sikadur 30 Normal adhesive (Sika, Baar, Switzerland). The surface of the beam was
primed with glue and then the adhesive layer was applied in a domed shape. This allowed
the elimination of any possible air voids from the joints during attaching the plate to the
concrete beam. The prepared samples are presented in Figure 1c.

Table 1. Material parameters of the consisting elements of the composite beam.

Element Material Density ρ (kg/m3) Elastic Modulus E (GPa) Poisson’s Ratio ν (-)

Beam Concrete 2364.4 48.0 0.16
Plate Steel 7579.0 200.3 0.30
Film Adhesive 1611.8 12.5 0.30
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Figure 1. Object of research: (a) Specimen geometry; (b) variants of defects; (c) photograph of
experimental samples.

2.2. Experimental Procedure

Dynamic parameters of the tested specimens (i.e., natural frequencies and modal
shapes) were determined using the experimental modal analysis (EMA) approach, in
which both excitation and response signals were measured. In the study, an impact test
was conducted with the use of a modal hammer. The experimental setup for EMA is shown
in Figure 2a. The specimen was suspended from both sides on elastic strings to simulate
free boundary conditions. Piezoelectric accelerometer 356A15 (PCB Piezotronics, Inc.,
Depew, NY, USA) was used for the measurement of vibrations. The properties of the sensor
used are as follows: sensitivity 10.2 mV/(m/s2), measurement range ±490 m/s2, resonant
frequency ≥25 kHz and frequency range 2–5000 Hz. The accelerometer was attached to
the bottom surface of the beam at point A located 25 mm from the center. The dynamic
pulse load was induced by the modal hammer 086C03 (PCB Piezotronics, Inc., Depew, NY,
USA) with the following parameters: sensitivity 2.25 mV/N, measurement range ±2224 N,
resonant frequency ≥22 kHz. A medium tip was applied with the hammer enabling
the excitation of vibrations within the frequency range up to approximately 2800 Hz. A
single measurement was performed at each of 125 points. The points of impact, marked
in Figure 1b, were distributed on the top surface of the specimen in a regular square grid
having 5 rows and 25 columns, resulting with a resolution of 20 mm in both directions. Data
acquisition and signal conditioning were performed by LMS SCADAS portable system
(Siemens, Leuven, Belgium). Natural frequencies and modal shapes were determined
based on the frequency response function (the accelerance in this case) given as the ratio of
an output acceleration signal to an input force signal [33,40,41]. The estimation of modal
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parameters was performed using a peak picking method. Mode shapes were determined
by measuring the peak amplitude of the imaginary part of the frequency response function.
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Figure 2. Experimental setup (a) and scheme of measurement grid (b).

2.3. Numerical Modelling

The numerical calculations were conducted with the use of the finite element method
(FEM) in Abaqus software. Modal analysis was performed on the three-dimensional
numerical models (Figure 3a) prepared based on the geometry and materials of the physical
samples. Material parameters (Table 1) were used to apply a linearly elastic, isotropic,
homogeneous material model to all structural elements (steel plate, adhesive film, and
concrete beam), all being independent parts. The rigid surface-to-surface tie connection was
used for bonding the contacting regions of each part. Three-dimensional eight-node linear
brick finite elements with reduced integration (C3D8R) were used to mesh all parts. The
mesh grid has a size of 2× 2× 2 mm3 (for steel plate and adhesive film) and 4 × 4 × 4 mm3

(for the concrete beam). The debonding in models #2–4 was modelled as a gap in the
adhesive film (see Figure 3b), which relates to the lack of glue in the physical samples. The
frequency procedure (linear perturbation theory) was performed to determine the natural
frequencies and the corresponding mode shapes. The results (normalized displacements)
were read from a regularly gridded square mesh with a global size of 2 mm located on the
upper surface of a steel plate, covering a central area of 80 × 480 mm2 with a margin of
10 mm at all edges (see Figure 3c). The additional coarser mesh was assumed with the size
of 20 mm to coincide with the experimental measurements (cf. Figure 2b).
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2.4. Continuous Wavelet Transform for Mode Shape Processing

The continuous wavelet transform (CWT) of a given signal f (x) is the inner product of
the signal function with the shifted and scaled wavelet function [42]. It can be calculated
with respect to the formula:

W f (u, s) = 〈 f , ψu,s〉 =
1√

s

+∞∫
−∞

f (x) ψ∗
(

x− u
s

)
dx, (1)

where x is the distance variable, the parameters s and u are scale and translation, respec-
tively and ψ*(x) is the complex conjugate of the wavelet function, which is required to have
zero average:

+∞∫
−∞

ψ(x)dx = 0. (2)

For specific values of s and u, Wf (u,s) is called the wavelet coefficient for the wavelet
function ψu,s(x).

An important property of wavelets is their ability to react to any discontinuities
comprised in a signal. For the detection of signal singularities, the so-called vanishing
moments are crucial. A particular wavelet having n vanishing moments is characterized by
the orthogonality to polynomials up to degree n–1:

+∞∫
−∞

xkψ(x)dx = 0, k = 0, 1, 2, . . . , n− 1. (3)

It can be proved that a wavelet with n vanishing moments can be rewritten as the n-th
order derivative of a function [42]:

ψ(x) =
dnθ(x)

dxn . (4)
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As a consequence, the wavelet transform given by Equation (1) can be expressed as a
multiscale differential operator:

W f (u, s) = sn dn

dun ( f ∗
_
θs)(u), (5)

where the notation ( f ∗
_
θs) denotes the convolution of functions f and

_
θs. Therefore, the

wavelet transform is the n-th derivative of the signal smoothed by the function
_
θs(x) at

scale s:
_
θs(x) =

1√
s

θ

(
−x
s

)
. (6)

If a signal has a singularity at a certain point, then the wavelet coefficients have
relatively large values. Singularities are detected at coordinates where the CWT modulus
maxima converge at fine scales [42]. When the scale is large, the only detection of large
variables is possible, because the convolution with

_
θs(x) removes small signal fluctuations.

On the other hand, when the scale decreases, the wavelet coefficients may have no maxima
in the vicinity of the singularity [42]. Therefore, the proper selection of the scale is crucial.

Several families of wavelets are described in the literature; in this study, wavelets
from the Gaussian wavelet family were used due to their high efficiency in the detection of
singularities [31,35]. The family of Gaussian wavelets is based on the Gaussian function
g(x) = Cae−x2

, by taking the a-th derivative of g(x) [43]. The first four wavelets from the
Gaussian family have the following form [31]:

ψ(x) = (−1)12 4
√

2/πxe−x2
(7)

ψ(x) = (−1)2 2 4
√

2/π√
3

(1− 2x2)e−x2
(8)

ψ(x) = (−1)3−4 4
√

2/π√
15

(3x− 2x3)e−x2
(9)

ψ(x) = (−1)4 4 4
√

2/π√
105

(3− 2x2 + 4x4)e−x2
(10)

Equations (7)–(10) describe wavelets gaus1, gaus2, gaus3, and gaus4 having 1, 2, 3 and
4 vanishing moments, respectively. Gaus1 wavelet enables to extract information of the
first-order derivative of f (x), gaus2 represents the curvature of the function, while gaus3
and gaus4 correspond to higher-order derivatives. These properties of wavelets will be
used in damage detection in the following section.

3. Results and Discussion
3.1. Modal Analysis—Natural Mode Shapes

The natural modes characterized by eigenfrequencies in the range of 0–2500 Hz were
determined for all samples (based on the experimental results). Within this frequency
range, five modes were taken into consideration, one for each beam (with the exception
being sample #3, for which two modes were determined). Because the signals were mea-
sured only perpendicularly to the beam surface, all modes were related to the flexural
deformations. Based on the obtained eigenfrequencies and mode shapes, the correspond-
ing numerical modes were matched. The comparison of numerical and experimental
frequencies is presented in Table 2, whereas the mode shapes are shown in Figure 4. The
consistency of both approaches was evident. The differences between eigenfrequencies
were below 10%, which allows stating that the experiments were conducted correctly,
and also the numerical calculations were performed properly. Additionally, the modal
assurance criterion (MAC) was applied to evaluate the degree of consistency between
numerical and experimental mode shapes. Obtained MAC values ranged from 0.9782 to
0.9991, indicating very good agreement.
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Table 2. Natural frequencies obtained numerically and experimentally for samples #1–4.

Sample Mode fnum
(Hz)

fexp
(Hz)

∆f
(%)

MAC *
(-)

#1 1 1899 1761 7.8 0.9991

#2 1 1898 1751 8.4 0.9892

#3
1 1859 1722 8.0 0.9899
2 2468 2436 1.3 0.9782

#4 1 453 476 4.8 0.9966

* modal assurance criterion.
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It can be observed that the value of the first natural frequency slightly decreased with
the size of debonding between beams #1–3. For sample #4, the decrease became dramatic,
because the area of the defect covered 50% of the whole joint, thus the steel plate could
oscillate as an independent part. It is not surprising that there were no disturbances in
the first mode shape for beam #1 without damage (Figure 4a). For sample #2 (Figure 4b),
the defect was barely visible in the numerical mode, whereas the experimental one did
not reveal any disruption, thus its exact size could not be assessed. On the other hand,
both modes of beam #3 (Figure 4c,d) gave useful information about the presence and
approximate size of the damage. The deformation in the area of debonding was greater
than in the good adhesion part of the joint. It has to be noted that mode 1 corresponds to
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the global character of vibrations, the displacements are comparable in the area of good
adhesion and debonding. Nevertheless, mode 2 has the local character, because vibrations
in the debonding region are significantly higher than in the adjacent part of the specimen.
The first mode shape of beam #4 (Figure 4e) also revealed the presence of the defect.
What is interesting, no significant deformation was detected in the area of the properly
prepared joint while comparing with the damaged part. This effect was not observed for
the previous samples, where the oscillations had a global character. For beam #4, it can be
stated that the first mode corresponded to the independent oscillation of the steel plate,
thus the oscillations could be considered local. This difference stayed in agreement with
the fact of a clear difference in the first eigenfrequency between beam #4 and the remaining
ones. Summarizing, the analysis of mode shapes could provide an initial assessment of
damage presence, especially in the case of large damage; however, further data processing
is required to better visualize the defects.

3.2. Wavelet Transform-Based Damage Imaging

Continuous wavelet transform was used to identify the actual shape and position
of debonding areas in the adhesive joints. The prepared maps presenting mode shapes
were separated into five vectors situated along the length of the specimen (cf. Figure 2b),
creating five single lines. For each line, the calculations of the CWT were conducted
independently, using a program written in MATLAB® environment [44]. Firstly, to avoid
boundary effects, extrapolation was applied. Figure 5 shows the efficiency of extrapolation
in the elimination of the potential edge effects. In raw data (Figure 5a, no extrapolation) the
intensification of CWT values is observed near the edges, thus the damage identification
becomes problematic. This is because edge values are relatively high compared to the ones
indicating the presence of defects. The performed extrapolation allowed eliminating this
effect, resulting in sufficient damage imaging. It is also worth noting that edge effects are
more visible for smaller defects.
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Secondly, calculations of wavelet transform were performed for each extrapolated
vector. Finally, the expansion of the data was eliminated by cutting the results to the original
size. As an initial step, the numerical results collected using a fine mesh (2 mm grid) were
analyzed. The calculations of wavelet transforms were conducted using Gaussian wavelets
with one to four vanishing moments. The fine scale s = 2 was initially set. To be compared
with CWT, the conventional derivatives of the corresponding orders were determined. The
comparison of both approaches is shown in Figure 6, where the damage maps are presented
together with their cross-sections in the central part. Damage areas were marked on the
charts. It is essential to note that the agreement between CWTs and derivatives is visible.
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The maps were similar in both approaches, the cross-sections were also comparable in
shape for all wavelets. However, the derivatives included a considerable noise component
that made the quality of the maps poorer and disrupted the possibility of the exact location
of the damage. This observation allowed emphasizing the advantage of the CWT; the
CWT maps had better quality when compared to the conventional derivatives, thanks
to the smoothing function that reduced the noise. Thus, the derivatives were not used
for further investigation. It is important to note that wavelets with a higher number of
vanishing moments are more practical in the determination of the exact shape and position
of defects. The damaged areas were revealed by gaus1 wavelet; however, the defects could
be incorrectly detected in intact sample #1. Nevertheless, CWT values for intact beam #1
are significantly lower than for damaged ones. This difference is not observed due to the
individual scaling of each map (mutual scale could disturb the legibility of the results).
What is more, the variability of CWT values in the area of debonding could suggest that
there were multiple defects. These effects were not present for Gaussian wavelet with four
vanishing moments that emphasized only the edges of the defect and flattened the areas
with the same quality of adhesion. For this reason, the gaus4 wavelet could be stated as the
most effective for damage detection.

The second part of the analysis was the comparison between the numerical and
experimental data. The results were obtained for a grid of 20 mm chosen based on the
original mesh in experimental measurements (no additional interpolation was applied).
As before, Gaussian wavelets were used with the constant scale s = 2. The CWT maps
are shown in Figure 7. A good agreement between experimental and numerical maps
was evident. Most of the maps were similar. However, the experimental results were
demonstrably affected by the signal noise that deteriorated the quality of the obtained
visualizations. As the degree of the wavelet increased, the influence of the noise became
more visible, highlighting the differences between the experimental and numerical results,
mainly for beams #1, #2 (the inconsistency between the maps obtained using gaus3 and
gaus4 wavelets was clear). This effect made the localization of the debonding difficult,
especially for the smallest damage (i.e., 5 cm (beam #2)), for which there was no possibility
to detect the defect. As stated in the previous paragraph, the fourth order Gauss wavelet
was the most powerful in the damage imaging. However, the quality of the maps was
lower than those presented in Figure 6 due to the application of a coarser grid.

Additional interpolation was applied to the data measured on a 20 mm grid as an
attempt to enhance the quality of the obtained maps. Firstly, the propriety of the proposed
interpolation was verified based on the numerical results. The spline interpolation with
the destined step of 2 mm was performed in MATLAB®. Taking into account the decrease
in the step value, the scale for CWT calculations was increased to s = 8. Figure 8 presents
the comparison of CWT maps obtained from originally fine mesh (2 mm) and interpo-
lated from 20 to 2 mm. The accordance is clearly visible, proving the correctness of the
performed interpolation. Furthermore, the numerical and experimental maps obtained
using the above described interpolation are presented in Figure 9. It is firstly important to
note that interpolation improved the quality of damage imaging for numerical data. The
maps showed the debonding regions more clearly, the images were sharper, especially
for the gaus4 wavelet (Figure 9d). On the other hand, despite making the images sharper,
the interpolation made the defect shape in the experimental maps more irregular, which
may have been caused by the noise in the measured signals. The effect was much more
visible for the higher-order wavelets (gaus3, gaus4), for which the boundaries of debonding
regions became illegible. This was because high-order wavelets revealed small but sharp
disturbances, which for experimental data could be both damage boundaries and noise,
affecting the signals similarly. Based on this observation, it can be stated that the inter-
polation of noisy data collected in a coarse grid can enhance the quality of CWT damage
visualization; however, high-order wavelets were not useful in this situation.
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gaus2; (c) gaus3; (d) gaus4.

However, it was possible to change the scale to better visualize the damage in the
experimental data. Figure 10 shows the CWT damage maps on the interpolated mesh
(resulting grid of 2 mm) for multiplied scales, being doubling and tripling of the initial scale,
i.e., s = 16 and s = 24. The positive influence of the increasing scale was evident. The shape
of the debonding areas was clearly visible for both improved scales when compared to the
initial value (cf. Figure 9), especially for high order wavelets. Larger scales highlighted
the defects and allowed precise damage localization since they neglected the subtle signal
noise. Some irregularities resulting from the noisy character of the experimental signals
were visible. Comparing both increased scales, better results were obtained for the higher
scale s = 24. However, the smallest defect (debonding of 5 cm) was still not detected.
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4. Conclusions

The paper describes the non-destructive testing of concrete beams strengthened with
steel plates. The issue of damage imaging in adhesive joints was considered. The modal
analysis supported with the continuous wavelet transform was successfully applied. Gaus-
sian wavelet family was assumed for calculations. Based on the obtained experimental and
numerical results, the following conclusions could be formulated.

• The consistency between experimental and numerical eigenfrequencies and mode
shapes confirmed the propriety of the performed experimental measurements and
numerical simulations. The decrease of the natural frequency with the increasing size
of the damaged area was observed.

• The interpretation of experimental and numerical mode shapes for all analyzed beams
allowed initial damage detection by revealing significant disturbances connected with
the presence of debonding areas.

• The comparison between conventional derivatives and continuous wavelet transforms
for numerical results revealed the advantages of the latter. Both approaches gave
consistent information about the damage; however, the CWT maps were more useful
because of showing the defects more precisely.

• The appropriate choice of CWT calculation parameters is essential for the efficiency
of obtained damage visualization. The quality of damage maps increased with the
number of vanishing moments of the applied Gaussian wavelets. Low order of wavelet
could lead to incorrect detection of defects in intact beams. In the case of scales, too
high values could result in indistinct damage imaging, on the other hand, too low
ones could reveal noise of signals.
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• A good agreement between experimental and numerical CWT maps was observed
for the data collected with coarse mesh (with a grid of 20 mm). However, the deter-
mination of the exact size of the smallest defect was not possible. The interpolation
of the data allowed enhancing the quality of the obtained numerical damage maps.
On the other hand, the experimental results had a poorer quality, because of the
noise contained in the measured signals. The increase in scale helped overcome
this difficulty.

• In general, the interpolation of the collected data can allow reducing the number of
measurements. However, the coarse mesh grid can make the small defects unde-
tectable. Furthermore, interpolation of experimental results can lead to the distortion
of damage shape in CWT maps, especially for higher-order wavelets.

The final conclusion can be made that it is possible to determine the exact shape and
position of the debonding in the adhesive joints of composite beams using modal analysis
and continuous wavelet transform. However, the measurement mesh and CWT calcula-
tion parameters are important factors affecting the quality of the results. The proposed
method is expected to have potential applications in the civil engineering industry. Having
significantly greater sizes than laboratory specimens, real-scale engineering structures
would require a division into smaller sections that could be analyzed in the way proposed
in the current paper. This practical aspect of the paper could be the subject of future
work. Another interesting direction for continuing the current research is the visualization
of internal defects with smaller size and different shapes, such as the application of 2D
wavelet transform.
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40. Grębowski, K.; Rucka, M.; Wilde, K. Non-Destructive Testing of a Sport Tribune under Synchronized Crowd-Induced Excitation
Using Vibration Analysis. Materials 2019, 12, 2148. [CrossRef] [PubMed]

41. Chróścielewski, J.; Miśkiewicz, M.; Pyrzowski, Ł.; Rucka, M.; Sobczyk, B.; Wilde, K. Modal properties identification of a novel
sandwich footbridge–Comparison of measured dynamic response and FEA. Compos. Part B Eng. 2018, 151, 245–255. [CrossRef]

42. Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way; Elsevier/Academic Press: Burlington, VT, USA, 2009;
ISBN 9780123743701.

43. Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.-M. Wavelet ToolboxTM User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 2020.
44. MATLAB; Ver. 2020b, 9.9.0.1570001; Programming and Numeric Computing Platform; The MathWorks: Natick, MA, USA, 2020.

http://doi.org/10.1016/j.ijsolstr.2009.08.022
http://doi.org/10.1155/2015/735219
http://doi.org/10.3390/ma12132148
http://www.ncbi.nlm.nih.gov/pubmed/31277377
http://doi.org/10.1016/j.compositesb.2018.06.016

	Introduction 
	Materials and Methods 
	Object of Research 
	Experimental Procedure 
	Numerical Modelling 
	Continuous Wavelet Transform for Mode Shape Processing 

	Results and Discussion 
	Modal Analysis—Natural Mode Shapes 
	Wavelet Transform-Based Damage Imaging 

	Conclusions 
	References

