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Spontaneous activity emerging 
from an inferred network model 
captures complex spatio-temporal 
dynamics of spike data
Cristiano Capone1,2, Guido Gigante   3 & Paolo Del Giudice3

Inference methods are widely used to recover effective models from observed data. However, few 
studies attempted to investigate the dynamics of inferred models in neuroscience, and none, to our 
knowledge, at the network level. We introduce a principled modification of a widely used generalized 
linear model (GLM), and learn its structural and dynamic parameters from in-vitro spike data. The 
spontaneous activity of the new model captures prominent features of the non-stationary and non-
linear dynamics displayed by the biological network, where the reference GLM largely fails, and also 
reflects fine-grained spatio-temporal dynamical features. Two ingredients were key for success. The 
first is a saturating transfer function: beyond its biological plausibility, it limits the neuron’s information 
transfer, improving robustness against endogenous and external noise. The second is a super-Poisson 
spikes generative mechanism; it accounts for the undersampling of the network, and allows the model 
neuron to flexibly incorporate the observed activity fluctuations.

Dynamic models, in neuroscience and in general, embody in a mathematical form the causal relationships 
between variables deemed essential to describe the system of interest; of course, the value of the model is meas-
ured both by its ability to match observations, and by its predictive power. Typically, along this route, parame-
ters appearing in the model are assigned through a mix of insight from experiments and trial-and-error and, 
in turn, the study of the model dynamics helps understanding the relevance of each parameter in determining 
the dynamic regimes accessible to the system. Another approach, initially quite detached from dynamic mod-
eling, is rooted in the domain of statistical inference and is focused on data-driven model building; a seminal 
example in neuroscience was offered by the application of maximum-entropy inference of Ising-like models to 
multi-electrode recordings of neural activity1–4; in this case, as well as in the later extension to kinetic Ising-like 
models, the Montecarlo/Glauber dynamics of the model is only meant as a means to sample the probability dis-
tribution of interest and it is not claimed to offer a detailed model of the actual dynamics at work in the system5–7. 
Recently, Generalized Linear Models (GLM) (which incorporate kinetic Ising models as a special case) have been 
recognized as flexible and powerful inference models8,9. In time, efforts have been made to make contact between 
the two approaches, e.g., in the case of neuroscience, by endowing the coupling structure of the inference model 
with features motivated by biological plausibility10–12; it has also been recognized that a GLM is close to a stochas-
tic version of the spike-response model. Recently, the repertoire of the driven dynamics of GLM models of single 
neurons has been explored13; however, to our knowledge, a largely open issue is to endow network inference 
models with predictive power in terms of the system dynamics. Our approach to this problem is to explore the 
free, spontaneous dynamics of the inferred model in its relation with the one of the biological system generating 
the data and, in doing this, to identify the role of different elements of the inference model in determining the 
spontaneous dynamics of the neuronal network. Indeed, an obvious but persisting problem in the application 
of inference models to neuroscience has been how to assess the meaning and value of the inferred parameters; 
a recurring example is offered by the inferred synaptic couplings5,7,10: in the literature, a cautionary remark is 
usually included, recognizing that the inferred couplings (whether in the form of synaptic efficacies of more 
complicated synaptic kernels) are to be meant as ‘effective’, leaving of course open the problem of what exactly this 
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means (especially in the face of the dramatic subsampling of the underlying biological network). The value of the 
inferred model cannot be assessed directly by a detailed correspondence between its elements and correspond-
ing elements of the biological system; using the output of a GLM to decode input stimuli is an interesting recent 
approach14. Our attitude is that spontaneous activity is a good testing ground to assess whether the inferred model 
does indeed capture essential features of the biological system, and we choose a case in which the spontaneous 
activity of the biological network is highly non-stationary and irregular: a cultured neuronal network generating 
spontaneously a wide spectrum of activity fluctuations, from population bursts, to neuronal avalanches and noisy 
oscillations15–22 (and references therein). Such richness is hard to reproduce with a GLM, and to our knowledge 
no models proposed so far were able to cope with it. For this reason we chose population bursting activity as a 
challenging benchmark to test our model. In our GLM approach we introduced novel and quite simple ingredi-
ents inspired by biological observation, such as activity dependent negative feedback over different time-scales for 
the single neuron15 (spike frequency adaptation, SFA), a bounded transfer function, and a generative probabilistic 
mechanism for spike generation with super-Poisson fluctuations. We show that these ingredients are crucial to 
endow the system with non-stationary spontaneous activity and also to account for detailed dynamic features 
such as temporal correlations and spatio-temporal evolution of network bursts.

Results
Bounded firing rate, super-Poisson spike generation, and their impact on the spontaneous 
activity of the inferred model.  The model we introduce is an extension of GLMs as widely employed for 
inferring the structure of neuronal networks. The main points of departure from more standard GLMs lie in the 
choice of the non-linear transfer function and the probabilistic generative model; besides we introduce, at the 
single neuron level, an activity-dependent self-inhibition current, mimicking spike-frequency adaptation (SFA) 
effects widely observed in real neurons (see Methods for details).

Figure 1, panel A, gives a schematic view of the model. The input current Hi(t) to neuron i is the sum of syn-
aptic currents (mediated by kernels kij(Δ)), constant external current hi, and five activity-dependent SFA currents 
c t( )i

x( ) , = …x 1 5, with different time-scales. Hi(t) determines, through a non-linear transfer-function f[Hi] the 
expected firing rate λi(t) for the spike count at the next time-bin t + dt (dt = 10 ms). The transfer function and 
generative model most commonly employed in the literature are, respectively, the exponential function and the 
Poisson distribution; in the following we will label this choice ‘Exp-Poisson’; our model, on the other hand, makes 
use of a sigmoid function and of a Negative-Binomial distribution, and will be referred to in the following as 
‘Sig-NegBin’ model.

Parameters of synaptic kernels, transfer function, SFA currents, and external currents are fitted maximizing 
the likelihood using the adaptive iRprop algorithm23. Both models can then be simulated to generate new spike 
trains according to two basic simulation modalities.

The first one (‘driven’ mode) feeds the model with the actual spike trains observed in the data and at each time 
t uses the model’s output to make a 1-step prediction of the network activity at step t + dt; thus the generated 
activity never re-enters the network dynamics; the probabilistic distance between the 1-step prediction and the 
actual recorded network activity is ultimately what is minimized during the optimization procedure. In the sec-
ond modality (‘free’ mode) the models are left free to evolve and the generated spike trains are fed back into the 
network, driving its dynamics at subsequent times.

We trained both the Sig-NegBin and the Exp-Poisson model on data from multi-electrode recordings of 
ex-vivo cultured cortical neurons17, that show a clear non-stationary dynamics (Fig. 1B, top row) in the raster-
grams and in the whole network activity (red line), with and irregular bursts of synchronous activity interleaved 
by periods of low, noisy activity (‘inter-burst intervals’ or IBIs). At the end of the training, both models show, in 
driven mode, an activity that follows quite closely the experimental spike trains (Fig. 1B, middle and bottom rows; 
red line: data; blue line and rastergrams: simulation). However, when the simulation is switched to free mode 
at time t = 30 s, the behavior of the two models clearly diverges: whilst the Sig-NegBin is able to autonomously 
sustain a highly non-stationary activity, the Exp-Poisson only exhibits stationary fluctuations. Note that, in free 
mode, the activity of the Sig-NegBin model does not closely follow the activity of the real network anymore 
(top row, last 10 s); this is not surprising: the choice of a probabilistic model as a GLM stems from the assump-
tion that the network dynamics is, to a large extent, influenced by self-induced random fluctuations and, thus, 
non-deterministic; it is therefore expected that, at least after a transient phase, the model and the data will drift 
apart. Yet the activity spontaneously generated by the model clearly resembles the one seen in the data in a statis-
tical way, showing irregular bursts interspersed with interval of relative quiescence.

Such resemblance is made more quantitative in Fig. 1C. Bursts of network global activity are detected through 
the algorithm developed in15, both for the data (top row) and the autonomous activity of the Sig-NegBin model 
(bottom row). The comparison between burst amplitudes (total spike counts, left), bursts durations (center) and 
IBI durations (right) histograms shows a semi-quantitative agreement between the dynamics of the biological 
network and the inferred model (mean and standard deviation of each distribution are reported with red and 
green lines respectively; mean ± standard deviation, data vs simulation: burst amplitude 500 ± 440 vs 420 ± 300; 
burst duration (0.35 ± 0.24) s vs (0.28 ± 0.19) s; IBI (3.4 ± 2.9) s vs (2.7 ± 2.4) s). The main discrepancy between 
model and data is visible in the IBI distribution; “doublets” of bursts in the data, clearly separated by the rest of 
the IBI distribution, are absent in the model. Based on previous modeling work on similar data24, the discrepancy 
is likely due to elements such as short-term synaptic facilitation and depression, that we did not include in our 
minimal model.

We remark that the analogous distributions for the Exp-Poisson model are not reported because of the 
extreme sparsity of burst events in that case. Moreover we observe that, despite the major difference in the exhib-
ited dynamic behavior, the inferred synaptic kernels for our model and the Exp-Poisson model are correlated 
(cPearson = 0.49 with a P < 0.05; correlation between the total areas under each synaptic kernel, as a measure of 
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‘synaptic strength’). The inferred synaptic kernels also show a correlation with the distance separating the elec-
trodes where the activity of the pre- and post-synaptic neurons where recorded (Fig. 1D; cyan and yellow circles 
are for excitatory and inhibitory kernels respectively; dashed lines: exponential fits). It is worth noting that the 
connections’ decay with distance is faster for excitatory than for inhibitory inferred synapses; this is in partial 
agreement with findings in25. We also remark that the inferred network does not comply with the ‘Dale’s law’: the 
latter was not enforced as a constraint, and each neuron forms in general both excitatory and inhibitory synapses.

The choice of a sigmoidal, saturating transfer function, besides seeming just natural in a GLM meant to model 
neural activities, turns out to be key to achieve the above results. We repeated the inference procedure with a 
hybrid Sig-NegBin model, in which the sigmoidal transfer function is replaced with an exponential and the spikes 
are still generated according to a negative binomial distribution (Fig. 2A). As above, when during the first 10 s the 
model is simulated (blue line and rastergrams) in driven mode, it shows a good agreement with the driving data 
(red line); when the driving is turned off, instead, the model settles in a quiescent state, absent any large bursts of 
activity. In free mode, the saturation of the sigmoidal function ⋅f[ ] (Fig. 2B, top-right panel) allows a wide distri-
bution of input currents Hi to the single neuron (Fig. 2B, bottom panel) to give rise to a distribution of firing rates 
λi = f[Hi] (Fig. 2B, top-left panel) that is strongly bimodal (notice the logarithmic scale). On the other hand, the 
fast growth of the exponential function (Fig. 2C, top-right panel) pushes the inference procedure towards some-
what narrower, more conservative distribution of currents (Fig. 2C, bottom panel), resulting in a unimodal dis-
tribution of firing rates. The comparison of the two models in driven and free modes suggests that the exponential 
transfer function makes the system very selectively susceptible to the fluctuations experienced during learning, 

Figure 1.  Spontaneous activity of the inferred model reproduces non-stationary network dynamics. (A) 
Schematic representation of the model. The current Hi(t) felt by neuron i sums spikes emitted by other neurons 
j in the recent past (t − Δ) through synaptic kernels kij(Δ), a constant external current hi, and spike-frequency 
adaptations signals that integrate, over different time-scales, the spiking activity Si of neuron i itself. This 
current, fed into a non-linear transfer-function f[Hi], determines the expected number λi(t) of spikes Si(t + dt) 
that the neuron will probabilistically generate at the next time bin. (B) Rastergrams of ex-vivo cultured cortical 
neurons show a strongly non-stationary spontaneous dynamics (top row; red line: whole network activity). The 
proposed Sig-NegBin model (central row, blue line) closely follows the data used to drive its dynamics (red line, 
t between 20 and 30 s); when left free to run autonomously at t = 30 s, the model displays large irregular bursts 
of activity, qualitatively mimicking the behavior observed in the recordings. The standard Exp-Poisson model 
(bottom row, blue line), on the other hand, whilst still able to follow the data in driven mode, fails to produce 
any large activity fluctuation, settling instead into a noisy, stationary state. (C) Comparison between burst 
amplitudes (total spike counts, left), bursts durations (center) and inter-burst-intervals (IBI) durations (right) 
histograms both for the data (top row) and the autonomous activity of the Sig-NegBin model (bottom row). 
Mean and standard deviation of each distribution are reported with red and green lines respectively. Results 
for the standard Exp-Poisson model are not shown because of the extreme sparsity of burst events in that case. 
(D) Average area under the inferred synaptic kernels (absolute value) as a function of the distance separating 
the electrodes; cyan and yellow circles are for excitatory and inhibitory kernels respectively; dashed lines: 
exponential fits; the strength (area under the kernel) of inferred excitatory synapses decays faster than that of 
the inhibitory ones.
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while the sigmoid transfer function allows for susceptibility to a wider range of fluctuations, which we believe is 
the root of the ability to spontaneously generate network bursts.

A negative binomial spike generative model naturally accounts for the effects of subsam-
pling.  The recorded neurons from the cultured network constitute of course a dramatic subsampling of the 
network (Fig. 3A, leftmost sketch), though, in fact, the activity of several neurons will be collected by each elec-
trode. The effects of the unobserved neurons on the behavior of the observed part of the network could be in prin-
ciple very complex26; yet we argue that a Negative Binomial distribution for the spike counts generation, instead 
of a Poisson distribution as commonly adopted, captures a relevant part of those effects and is in fact critical to 
account for the non-stationarity of the spontaneous activity of the network.

One way to approach the problem is to assume that at each time t the generated spike count of a generic neu-
ron Si(t) is determined by both the current Hi(t), accounting for the recurrent activity of other observed neurons 
and external currents (see Methods), and the currents due to unobserved, ‘hidden’ neurons, hi

hid (Fig. 3A), such 
that the observed spike count probability distribution would be obtained by integrating over the (unknown) dis-
tribution of hi

hid:

∫| = | .p S H dh p S H h p h( ) ( , ) ( ) (1)i i i i i i i
hid hid hid

We will still assume that p(Si(t)|Hi(t), hhid) is a Poisson distribution, with mean given by λ = +t f H t h( ) [ ( ) ]i i i
hid .

It is intuitive that p(Si(t)|Hi(t)) will now generate super-Poissonian fluctuations; and it turns out that larger 
fluctuations are critical for the ability of the Sig-NegBin model to spontaneously generate bursting activity, as 
shown above (Fig. 3B upper panel; red line: data; blue line: Sig-NegBin model in free mode). In fact, an inferred 
Sig-Poisson model shows very sparse bursting (Fig. 3B, middle panel). But it is not just that a broader spike gener-
ation distribution favors larger fluctuations in the network activity. We simulated the inferred Sig-NegBin model 
replacing the Negative Binomial with a Poisson spike generator (Fig. 3B, bottom panel); such ‘Poisson replay’ of 
the inferred Sig-NegBin model generates frequent bursts, each lasting for long time on average. Thus the inferred 
synaptic couplings of the Sig-NegBin model, unlike the ones for the Sig-Poisson, appear to be compatible with a 
bistable network dynamics, between UP and DOWN states, as also suggested by the results for the sigmoid trans-
fer function (Fig. 2B). Therefore, the main role of a super-Poisson spike generation distribution seems to be to 

Figure 2.  Bounded spike rate is necessary to generate non-stationary spontaneous activity in the inferred 
model. (A) Population activity (blue line) and rastergram generated by the model when the bounded transfer 
function is replaced by an exponential and inference procedure is carried out from scratch. Red line represents 
the data driving the dynamics for the first 10 s (20 ≤ t ≤ 30 s); afterwards, when left free to generate its 
spontaneous activity, the model is unable to sustain any non-stationary bursting activity and settles in a 
quiescent state. (B,C) Transfer function ⋅f[ ] (respectively sigmoid and exponential) (top-right panel); 
distribution of input currents to the single neuron ρ(Hi) (bottom panel); distribution of firing rates ρ(λi), 
λi = f[Hi] (top-left panel; note that the axes are flipped, with the vertical scale being shared with the transfer 
function plot). The sigmoid transfer function allows for a bimodal distribution of firing rates.
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destabilize the UP state, making the inferred model once again more robust to the variability of the free network’s 
activity and thus able to self-sustain a highly non-stationary activity.

Taking together the results in Figs 2 and 3, the suggested picture is that on the one hand the sigmoid gain 
function allows the inference procedure to explore and use ranges of couplings that are effectively forbidden for 
an exponential gain function, and are essential to spontaneously generate large sudden increase of activity (burst 
onset); on the other hand, the NegBin generator plays the dynamic role of efficiently destabilizing, with large 
fluctuations of the spike counts, the high-activity states which are spontaneously generated by the large recurrent 
excitation. The two ingredients are robustly coupled to spontaneously produce bursting activity.

Albeit the NegBin distribution represents just one of the forms that p(Si(t)|Hi(t)) can take, it has been sug-
gested to adequately model fluctuations in observed neural activity27,28, which makes it a natural candidate. Yet, a 
NegBin would result from Eq. 1 assuming an exponential transfer function and a log-Gamma distribution for hi

hid

: the first condition is patently in contradiction with our choice of a saturating transfer function and the second 
one is not expected to hold in general. We nevertheless tested the adequacy of the NegBin assumption for the 
Sig-NegBin model as follows. We assumed that p h( )i

hid  in Eq. 1 is a scaled and shifted version of the distribution 
of the observed currents H; in turn we estimated such distribution from the inferred synaptic couplings and the 
observed experimental spike counts, for the neuron with maximal average activity, for which we expected the 
differences in the spike count distribution would both show up more clearly, and matter more for the dynamics. 
From this, we performed a Monte Carlo estimate of p(Si|Hi) for different values of the mean and the standard 

Figure 3.  Rationale and implications of choosing a negative binomial as generative model of spike counts. (A) 
Sketch showing the effects of the unobserved neurons on the fluctuations in the observed part of the network. (B) 
Spontaneous bursting activity generated by different models (red line: data; blue line: model in free mode). Upper 
panel: Sig-NegBin model; middle panel: Sig-Poisson; bottom panel: Sig-NegBin model after replacing the Negative 
Binomial with a Poisson spike generator. (C) Comparison between the spike counts generated by a negative 
binomial distribution (rNB = 0.22) with a mean value equal to the average spike count of the neuron (green line), 
the Monte Carlo sampled p(Si|Hi) with best matching values for the first two moments of spike counts (orange line) 
and Poisson distribution for the same average spike count (black dashed line), reported as a reference.
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deviation defining p h( )i
hid . Figure 3C shows the distribution of spike counts for a NegBin distribution that is very 

close to the one used in the Sig-NegBin model (rNB = 0.22), for a mean value equal to the average spike counts of 
the chosen neuron (green line); the sampled p(Si|Hi) with best matching values for the first two moments is 
reported in orange; the two distributions are very similar, (in black we report for reference the Poisson distribu-
tion for the same average spike count, to provide a scale for the discrepancies between the other two distribu-
tions). Thus spike counts compatible with a NegBin distribution are naturally accounted for by a plausible 
assumption on the effect of sub-sampling underlying Eq. 1, with marked deviations from a Poisson distribution. 
We repeated the above procedure sampling hi

hid from a Gaussian distribution, finding similar results; this suggests 
that, provided suitable values for the mean and variance are chosen, the precise shape of the p h( )i

hid  has a minor 
effect. As a further check, we sampled in driven mode the sequence of λi(t) generated by both the Exp-Poisson 
and the Sig-NegBin models for all times and all neurons i; we then estimated the unconditioned distribution p(s) 
for the spike count s for each model by convolving the sampled distribution p(λ) with pPoisson(s|λ) and pNB(s|λ) 
respectively ∫ λ λ λ|( )p p s( ) ( )d . Both models predict a higher than observed probability for larger spike counts at 
the expense of probabilities for lower values; at our dt = 10 ms, 4 spikes correspond to a spike frequency of 250 Hz, 
a value that probably engages refractoriness mechanisms in real neurons; such mechanisms are not accounted for 
by neither models, since the Poisson and the NegBin distributions do not force a hard maximum value for the 
spike count. The likelihood ratio on the data, though, clearly favors the Sig-NegBin over the Exp-Poisson as the 
model best accounting for the observed spike counts; having the Sig-NegBin slightly less parameters (see 
Methods), this result would be made even stronger applying corrections for different model complexities.

The inferred model captures detailed temporal and spatial aspects of the neural dynamics.  
Figure 4A illustrates the inferred time-scales for the SFA component. Although we allowed for five independent 
time-scales to be inferred (but constrained to be equal for all neurons), it is interesting to note that the inferred 
values consistently aggregate around just two values, at about 100 ms and 2 s respectively, for different temporal 
segments of the same network’s activity (Fig. 4A). This result is consistent with previous work on the same data 
aiming to infer the main time-scales of the bursting dynamics using a completely different approach15.

To assess how relevant the adaptation mechanism is for the model dynamics, we performed inference with and 
without SFA. Then we simulated the model in driven mode until just after the end of a burst of large amplitude, 
where adaptation effects are expected to be more pronounced, leaving the model free to spontaneously evolve 
afterwards. In Fig. 4B the SFA and non-SFA dynamics are reported (top and bottom, respectively); black line is 
the model activity averaged over 500 simulations of the dynamics, while gray shading marks the plus/minus one 
standard deviation range; red line is the population activity from data. For each realization we collected the next 
IBI, that is the time interval to the next burst spontaneously generated by the model. The IBI histogram (inset) 
attains a maximum very close to zero when SFA is not present; such maximum shifts toward higher values with 
SFA; the two distributions also have different averages (2.3 s vs 3.2 s) and coefficients of variation (0.98 vs 0.65). 
Thus SFA significantly increases the average interval to the next burst, reducing at the same time its variability.

This difference in the low-IBI distribution can be traced back to the slow increase (resp. decrease) of the aver-
age post-burst activity with and without SFA, visible in the plots of Fig. 4. We also remark that single bursts are 
not visible across the shaded regions in such plots because bursts, across the 500 simulations are broadly distrib-
uted in time so that the corresponding peaks are not visible in the plots.

It is noteworthy that our GLM model is able to reproduce such a detailed feature, comparably with model 
networks of adapting integrate-and-fire neurons.

Figure 4.  SFA timescales, and effect of SFA currents on bursts statistics. (A) Inferred τSFA for different 
recordings from the same preparation; the five inferred time-scales cluster around two values for all recordings, 
one about 100 ms, the other around 2 s. (B) Comparison between the spontaneous model dynamics with and 
without SFA. In black, and gray-shading, are represented the population firing rate and its variance over 500 
simulations. Red line is the population activity from data during a chosen large burst. Insets: histograms of the 
time to the subsequent burst. SFA induces a short-term refractoriness for burst generation. (C) Correlation 
between the burst amplitude and the time since the preceding burst. SFA determines positive correlations in the 
model, as those seen in the data; notice that models are separately inferred for the different recordings, and it is 
seen that inferred models closely mirror the fine structure of experimental correlations.
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We also found in data, consistently with the results reported in29, a positive correlation between burst ampli-
tude and the length of the previous IBI, an effect that could be possibly attributed to some adaptation mechanism, 
such as SFA. We estimated this correlation from simulations of the models inferred, with and without SFA, on 
different recordings; Fig. 4C compares the result of the two models with that found in their experimental coun-
terparts. It is seen that the model without SFA is unable to recover correlations that are significantly different from 
zero, while the model with SFA produces correlations that are consistent with that measured in the data.

We also addressed the ability of the model to account for the temporal structure and spatial organization of 
the network activity. We first considered the average order of activation of different spatial locations within a 
burst: time-rank is the index of the time bin when a neuron spikes first since the burst onset. By evaluating the 
average rank for both each neuron in the model and each electrode in the data, we found them strongly correlated 
(c = 0.9). In Fig. 5A we report the spatial distribution of average time-ranks for data (left) and simulations (right).

Looking farther into the burst temporal structure, we asked to what extent the time-ranks in the model and in 
the data are comparable on a single burst basis. For each burst in the data, we selected and compare the simulated 
burst with the closest time-rank pattern. Figure 5B,C show two examples of such comparison. To provide a global 
comparison, capturing the correlation in time-ranks between data and simulations, we proceeded as follows: 
independently for each neuron, we shuffled the vector of its time-ranks across all the simulated bursts, thereby 
destroying spatial correlations in the time-ranks, while preserving the average ranks (Fig. 5A, right).

For each burst in the data we took the closest simulated burst and the closest shuffled simulated one, computed 
the corresponding euclidean distances (dshuff

min  and dsim
min) and the distribution of their differences Fig. 5D (blue 

histogram). It is seen that, for the large majority of bursts, the simulated burst is closer to the data burst than the 
surrogate. To quantitatively support this indication, for each burst in the data we took the closest from two differ-
ent realizations of the simulation shuffling and evaluated the respective euclidean distances between the data and 
the two shuffles. The distribution of differences between such distances is reported in Fig. 5D (blue histogram), 
and is used as a reference to compare the significance of the first distribution. The two histograms in Fig. 5D are 
statistically different (2-sample t-Student returns p = 10−5), confirming that the simulated bursts consistently 
reproduce the order of burst activation more reliably than surrogate bursts. We therefore can conclude that 
inferred model captures most of the spatial development of neural activity at the single burst level.

To inquire into the relationship between the inferred synaptic structure and the ensuing network dynamics, 
we also asked whether for a neuron with low average time-rank (early spiking), the efficacy of its outgoing syn-
apses correlates with the time-ranks of its post-synaptic neurons. Figure 5E shows indeed a high negative correla-
tion between the efficacy of outgoing synapses and the time-rank of post-synaptic neurons (c = −0.8).

Discussion
Several criteria can be identified to evaluate a model, yet the ability to reproduce the behavior of the system under 
analysis is certainly among the most relevant. We have seen that the addition of few computational ingredients 
can enable a probabilistic, generative network to autonomously sustain a rich, highly non-stationary dynamics, as 
observed in the experimental data employed to infer the model’s parameters.

In recent years, the field of statistical inference applied to neuronal dynamics has mainly focused on devising 
models and procedures that could reliably recover the real or effective synaptic structure of a network of neurons, 
under different dynamical and stimulation conditions3,30,31, even though, more often than not, an experimental 
ground truth was not readily available.

Although, quite surprisingly, the study of the dynamics of the inferred models has been largely neglected, we 
are not the first to address the issue. In11 the authors demonstrated, on an in-vitro population of ON and OFF 
parasol ganglion cells, the ability of a GLM to accurately reproduce the dynamics of the network14; studied the 
response properties of lateral intraparietal area neurons at the single trial, single cell level; the capability of GLM 
to capture a broad range of single neuron response behaviors was analyzed in13. In all these works, however, the 
focus was on the response of neurons to stimuli of different spatio-temporal complexity; even where network 
interactions were accounted for, they proved to be, for the overall dynamics displayed by the ensemble, an impor-
tant, yet not decisive correction. To our knowledge, no published study to date has focused on the autonomous 
dynamics of GLM networks inferred from neuronal data.

Important progress has also been made on the ability of GLMs to predict single neuron spiking in an ensemble 
of neurons, with accuracy higher than that provided by methods based on the instantaneous state of the ensem-
ble itself9 and the PSTH11. In the lingo of the present paper, though, these attempts were based on simulations of 
the inferred network in driven mode, with at most the activity of a single neuron free to reenter just that single 
neuron’s dynamics. To our knowledge, our work for the first time has attempted a direct, microscopic comparison 
between the activity autonomously generated by an inferred GLM network and the one observed in the biological 
data. The free mode of simulation opens the way, in principle, to multi-time-step, whole network activity predic-
tions. Being the model probabilistic and the data noisy, it is of course expected that the ability of the model, in free 
simulation mode after having been driven by the data for some time, to follow the experimentally observed spike 
trains should quickly deteriorate. In fact, this is what we found with our model: a burst becomes practically unfore-
seeable going some 100–200 ms in the past. This result is in contrast with the impressive findings reported in32, in 
which the authors, on recordings similar to the ones used in this work, through a new model-free method based 
on state-space reconstruction, were able to predict the occurrence of a burst even 1 s in advance. We applied the 
state-reconstruction method on our data with negative results, in agreement with what we found with our model.

We presented several semi-quantitative comparisons between the spontaneous spike trains generated by the 
model network and the data from which the model’s parameters have been inferred. Our model clearly outper-
forms typically used GLM inference models, with exponential gain functions and Poisson spike generative model.

A natural question arises as to how representative the chosen experimental system is of neuronal network 
dynamics in general and the capability of the presented framework to generalize to other kinds of non-stationary 
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Figure 5.  Spatio-temporal burst dynamics, data vs model. (A) Spatial distribution of the average time-rank of 
neuron activations during bursts for data and model. Averages are computed over all bursts in the data and a 
simulation of comparable length. (B) Spatial distribution of time-rank for 2 single bursts in data. (C) Spatial 
distribution of time-rank for the 2 bursts from simulation, most similar to those shown in B. (D) For each 
burst in the data, we computed its distances to the closest bursts from simulation and from shuffled simulation 
(see text). We show the distribution of the differences in such distances. Simulated bursts are typically closer 
to experimental ones w.r.t. shuffled simulations (red histogram). Similarly for each data burst we evaluated the 
closest burst from two different shufflings of simulation (blue histogram). The latter is used as a reference for 
our measure. The 2-sample t-Student returns p = 10−5. (E) Scatterplot of post-synaptic efficacies of the neuron 
with smallest time-rank vs the rank of its post-synaptic targets. The synaptic structure correlates with the early 
development of the burst.
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neural activities. Our primary concern in selecting an ex-vivo bursting culture, known to exhibit complex spon-
taneous spatio-temporal behavior15–21, has been to study a system that, absent any external stimuli, would show 
a similar non-stationary collective behavior. As discussed above, the capability of GLMs to mimic the response 
properties of single neurons or a network to stimuli has already been well investigated. On the other hand it will 
be interesting to study the implications of the elements we introduced in the present work in terms of flexibility 
and robustness of inference in driven conditions.

Given our goal to establish the capability of a GLM to reproduce a complex, non-linear dynamics, we found two 
ingredients - a non-symmetric sigmoidal transfer function and a Negative Binomial spike-generation model - that 
proved to be minimal: absent one of them, the model’s performances were drastically impaired. Even if we do not 
claim these specific ingredients to be necessary in general, we are persuaded they represent instances of mechanisms 
that are both biologically plausible and computationally desirable for the model. Although a sigmoidal, saturating 
transfer function would appear to be a natural choice for a model meant to reproduce neural activities, surprisingly 
this option has never been explored, to our knowledge, to perform network inference on neuronal recordings. While 
the use of an exponential transfer function in GLMs is grounded in general statistical requirements33, in our case an 
asymmetric sigmoid appears to be the single most important factor explaining the success of the proposed model. As 
already noted, the saturation of the sigmoidal function allows naturally for a bimodal distribution of firing rates and 
thus makes the model’s behavior more robust in the face of the intrinsic fluctuations of network activity. A certain 
degree of asymmetry also resulted from inference, allowing for differential sensitivity to high and low input levels.

It is interesting to note how this finding contrast with the success of non-saturating transfer functions in deep 
learning literature, where the introduction of rectified linear units, in place of the standard logistic ones, has repre-
sented one of the major breakthroughs of recent years34. Such units exhibit ‘intensity equivariance’, that is the ability 
to readily generalize to data points that differ only for a scale factor; whilst such property is clearly valuable when 
dealing with data such as natural images and sounds, when applying machine learning techniques to very noise and 
sparse data, such as in the case studied here, bounded transfer functions are probably beneficial exactly for the oppo-
site reason: they filter out most of the incoming information to gain a poorer but more robust coding in the output.

We have seen that, if the role of a sigmoid gain function seems to facilitate a bistable behavior of the network, 
the negative binomial’s role is to efficiently destabilize, with large fluctuations of the spike counts, the high-activity 
state. This hints at the possibility that the present inference model may also be suited to account for UP and DOWN 
states observed in slices (and it could possibly counteract the effect observed in35). Recent experimental evidence has 
emerged supporting the Negative Binomial distribution as a candidate for the spike counts variability in real neu-
rons28; moreover, a negative binomial spike generation has already been adopted in a model combining GLM with 
sparseness priors for the connectivity36. Although, then, our second ingredient already finds experimental and theo-
retical support in the literature, we provide a new hypothesis on why the super-Poisson statistics arises, as the effect 
of input fluctuations generated by the activity of neurons that have not been recorded. And our hypothesis directly 
hints to the Negative Binomial as just one possible way to model such effect, where over-dispersed spike counts are, 
instead, a necessary signature of it; it is this more general feature, in our opinion, that proved to be so important for 
the success of the proposed model. Interestingly, our findings resonate with the recently proposed role of fluctuating 
unobserved variables in the emergence of criticality in a wide range of systems37.

Implicit in our approach is the assumption that the recorded neurons have been chosen at random from the 
whole network; this is probably not the case in many instances, where a local set of units is sampled instead; such 
non-random sub-sampling can potentially lead to strong deviations from expected behavior26; this of course 
could produce systematic effects in the inference. Besides, our model cannot incorporate the effects of slow 
changes in single neuron excitability, as observed experimentally in38,39, and analyzed in a statistical model in28.

Methods
Experimental data.  Electro-physiological recordings are fully described in17, and were taken from cortical 
neurons from newborn rats within 24 hours after birth, following standard procedures. Data are freely available 
from S. Marom (http://marom.net.technion.ac.il/). Throughout the paper we made use of 6 consecutive record-
ings, from 60 electrodes, lasting about 40 minutes each (in Fig. 4A,C, numeric labels are as in the original data 
files). We treated spikes from each electrode as belonging to a same neuron (no spike sorting); in all our computa-
tions, we neglected electrodes (typically less than two) with an average firing rate less than 0.1 Hz.

Model.  The input current Hi(t) to neuron i is:

∑∑ ∑= + Δ − Δ − .
Δ =

H t h k S t g c t( ) ( ) ( ) ( )
(2)

i i
j

N

ij j
x

x
i

x

1

5

SFA
( ) ( )n

Nn is the number of neurons, hi is a constant external current; kij(Δ) are synaptic kernels of the same form as 
in11:

∑Δ = Δk w( ) rc ( )
(3)ij

l
ij

l l( ) ( )

where rc(l)(Δ) are ‘raised cosines’:

δ φΔ = + Δ + −arc ( ) 1
2

[1 cos( log( ) )] (4)
l l( ) ( )

with fixed parameters a, δ, and φ(l).

http://marom.net.technion.ac.il/
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The five activity-dependent SFA adaptation currents are described by ci
x( ), = …x 1 5, evolving according to:
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In the Exp-Poisson model the SFA currents are not included, to be consistent with its original formulation. On 
the other hand, in the Sig-NegBin model we set the diagonal =w 0ii

l( ) , to avoid that two mechanisms with similar 
computational roles (SFA and the kernels through which the past spikes of the single neuron affect the future 
activity of the neuron itself) could compete with each other, making the results more difficult to interpret.

The current-to-rate transfer function is:

=f H H[ ] exp( ) (6)exp

for the Exp-Poisson model, and:

λ
=

+ − γ
∞f H

H
[ ]

(1 exp( )) (7)sigmoid

for our Sig-NegBin model, with λ∞ setting the asymptotic firing rate for high input, and γ governing the asym-
metry of the sigmoid for low and high input.

The average firing rate at time t + dt is given by:

λ + = .t dt f H t( ) [ ( )] (8)i i

For each time-bin at t, given λi(t + dt), the model probabilistically generates spikes according to:
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for our Sig-NegBin model.
The model’s parameters are fitted maximizing the likelihood:

∑∑ λ= + | +p S t dt t dtLL log( ( ( ) ( )))
(11)t i

i i

using the adaptive iRprop algorithm23.
For the Exp-Poisson model the inferred parameters are the wij

l( ), including the diagonal terms wii
l( ) (SFA cur-

rents are in this case neglected by keeping =g 0x
SFA
( ) ). Following11, the set of rc(l) functions is different for diagonal 

and off-diagonal terms. For the off-diagonal terms the 4 rc functions have parameters: a = 1.153, δ = 0.2560 ms, 
φ = −πs ( 1, 0, 1, 2)

2
; for the diagonal terms there are 6 functions with parameters: a = 2.974, δ = 0.3477 ms, 

φ = −πs ( 2, 3, 4, 5, 6, 7)
2

. For all the rcs, rc(Δ) = 0 for Δ > 150 ms. The total number of parameters for the mod-
els is thus: 4Nn(Nn − 1) + 6Nn.

For the Sig-NegBin model the inferred parameters are the wij
l( ) (only off-diagonal ≠i j terms, with the same 

rc(l) functions above), τ x
SFA
( ) , g x

SFA
( ) , λ∞, and γ. The total number of parameters for this models is thus: 

4Nn(Nn − 1) + 10 + 2. Therefore, the Exp-Poisson model has 6Nn − 12 parameters more than the Sig-NegBin; with 
Nn = 60 (assuming no electrode is neglected in the recordings, see above), this amounts to a difference of 348 
parameters (about +2.5%).

The rNB parameter, instead, was chosen a priori as follows. For a NegBin variable λ∼X rNegBin( , )NB , we have 
〈X〉 = λ and λ= + λ( )Var X[ ] 1

rNB
. For very low, stationary firing rates the single neuron behavior is often empir-

ically well approximated by a Poisson process40–42; notably, during the inter-burst intervals in our data, the single 
neuron inter-spike interval distribution turns out to be close to exponential, as expected for a Poisson process. 
Therefore, in order for the NegBin distribution to be clearly non-Poissonian only for higher firing rates, we took 
as a reference the median m = 0.037 (among the neurons) of the average spike count (over the time record for 
each neuron); we then set the ‘λ-threshold’ to be about 5 m (a value that, in the data, clearly separates the down 
states from the bursts), and we chose to impose, at that frequency, a variance-to-mean ratio of 2 (for Poisson, this 
ratio is always 1 for every value of the mean): + ≡1 2m

r
5

NB
. This simple calculation gives .r 0 2NB , a value close 

to the one we used throughout the paper. We also checked the dependence of the presented results on the value of 
rNB. The capacity of the network to spontaneously generate bursts is not affected on the entire range we explored; 
we found a mild dependence on rNB of the average inter-burst interval; in this sense the choice of rNB represents 
an additional handle for the model to better match the burst statistics observed in the data.
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