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Metabolic cost during walking is positively linked to exercise intensity. For a walking assistive device, one of the major aims should
be the maximization of wearers’ metabolic benefits for different walking situations. Toward this goal, this paper experimentally
evaluates the influence of an authors’ soft robotic suit, which has been developed to assist hip flexion for energy-efficient
walking of elderly persons in daily life activities, on metabolic cost reduction in the long-distance level and inclined walking.
Experiment results show that, for a 79-year-old healthy male subject, the robotic suit significantly reduced metabolic cost in the
condition of the robotic suit worn and powered on compared with the condition of worn but powered off.

1. Introduction

The proportion of the elderly population is steadily increas-
ing, and the number is estimated to reach almost 22% of
the global population in 2050 [1–3]. Many elderly persons
suffer walking difficulties because of lower limb skeletal
muscle decline caused by aging. As a result, they perform
shorter and fewer walking activity, which is positively
related to the quality of elderly life, compared with young
ones [4]. Such reduced walking activity may result in many
psychosocial problems, for example, social isolation, unhap-
piness, or depression. On the other hand, reduced walking
activity, in turn, causes further lower limb skeletal muscle
decline. Finally, they may experience a vicious cycle of
physical activity reduction and skeletal muscle decline.

To prevent the abovementioned vicious cycle, lower
limb exoskeletons have been studied. For example, an
exoskeleton for rehabilitating walking function has been
produced by Cyberdyne Inc. [5, 6]. As another example, a

semiexoskeleton for improving walking ability has been
presented by Honda Motor Co. Ltd. [7–9]. Besides these,
various lower limb exoskeletons are designed, for example,
[10–16]. One major advantage of lower limb exoskeletons
is that they are capable of providing sufficiently large assis-
tive force, which may reach several times larger than that
produced by human joints [17, 18]. In addition, they can
support the full amount or a significant portion of body
weight of wearers through rigid frames [19, 20].

However, some challenging problems must be overcome
in designing and implementing exoskeletons. (1) Uncom-
fortable resistive force may be generated between exoskeleton
and wearer in the case of axial joint misalignment [21], and
thus leading to increased metabolic cost. (2) The motion
range of the lower limbs is constrained by rigid frames of
the exoskeletons, while conducting daily life activities
requires a large motion range [18]. (3) A massive power
supply system is required for producing a large assistive
force. In addition, the mass attaches an additional payload
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to the wearer. (4) The procedures of mounting and removing
an exoskeleton are complicated. Such problems cannot be
ignored in the use of an exoskeleton in daily life activities.

To avoid the drawbacks of exoskeletons, some
researchers have researched soft walking assistive devices
[22–32]. One of the major advantages of soft robotic suits is
that exact matching of device’s joints to those of wearer is
not required. Besides that, owing to the use of soft materials,
they are almost free from kinematic constraints. Addition-
ally, the strength of the provided assistive force is usually
less than that of exoskeletons, and thus, the power supply
system can be built with smaller size and lighter weight.
Moreover, they can realize compatible and safe interactions
with wearers [33].

Specifically, the authors’ group has developed a soft
robotic suit for energy-efficient walking for elderly persons
in daily life activities [29–32], as shown in Figure 1. The
robotic suit provides a small but effective assistive force for
hip flexion via winding belts that contain elastic elements.
Moreover, it is lightweight and it almost does not restrict
the motion range of the lower limbs. It is reported [29] that,
in the case of 6-minute level walking, the use of the robotic
suit in the worn and powered on (PON) condition signifi-
cantly reduced metabolic cost and significantly improved gait
characteristics compared with the condition of worn but
powered off (POFF).

One of our final goals is to develop a soft robotic suit that
reduces metabolic cost as much as possible for elderly per-
sons during walking in daily life, so that they can conduct
more physical activities, for example, shopping, taking a
walk, and visiting friends living far, for preventing health
care. Toward this goal, this paper experimentally evaluates
the influence of the soft robotic suit on metabolic cost of
walking in an environment that demonstrates the potential
use of the robotic suit in real-life situation.

The rest of this paper is organized as follows. Section 2
gives an overview of the authors’ soft robotic suit. Section 3
experimentally evaluates the influence of the soft robotic suit
on metabolic cost in long-distance level and inclined walking.

Section 4 discusses the experimental results. Section 5 covers
conclusions and future work.

2. Overview of a Soft Wearable Robotic Suit

The authors’ group has presented a soft wearable robotic suit
for energy-efficient walking for elderly persons in daily life
activities. Figure 1 illustrates the overall structure of the
robotic suit. For each leg, it is composed of one actuator,
one control unit, one knee brace, one stiff upper, and one
elastic lower belt that are attached to the actuator unit and
the knee brace, respectively, one load cell that connects the
two belts, and one gyroscope. Here, it should be mentioned
that the actuator and the control units, which contain most
of the system mass, are mounted to the front and the back
of a waist brace, respectively. This is due to the fact that
mounting a 4 kg mass to the waist does not significantly
increase the metabolic cost, while adding a 4 kg mass to the
thigh, shank, or foot expends more metabolic cost compared
with the case of waist [34]. The total weight of the robotic
suit, excluding the power supply system, is 2.7 kg (the power
of the device is externally provided by a DC power source
through a cable).

In the robotic suit, undesirable forces generated by
disturbances or significant control errors can be absorbed
by the elastic elements. Moreover, the robotic suit almost
does not restrict the motion range of the lower limbs,
and thus wearers can perform a risk-avoiding action in
the cases of emergencies. Furthermore, owing to its simple
structures, wearers can easily take the robotic suit on and
off by themselves.

The soft robotic suit provides a small but effective
assistive force for hip flexion in the sagittal plane of walk-
ing. Specifically, as illustrated in Figure 2, during the swing
phase, the actuator unit winds up the stiff and elastic belts,
and the correspondingly produced tension force on the
belt is transmitted to the wearer’s joints for assisting hip
flexion. On the other hand, during the standing phase,
the tension force is maintained in a small but sufficient
value (0.6N) that allows the belts “creeping” along the
thigh without influencing the extension of the hip.

Figure 3 shows the block diagram of the control system
of the soft robotic suit. Hip angular velocity during walking
is measured by the gyroscope. Then, it is converted to hip
angle by applying numerical integration. It is known that
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Figure 1: Overall structure of a soft wearable robotic suit.
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Figure 2: Assistance motion for the swing phase.
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numerical integration of gyroscope velocity signal introduces
in angular drift. Toward this problem, a 0-degree angular
offset compensation is performed. The timings of minimum
hip angle, maximum hip angle and heel contact, and the
average gait period are estimated in an average gait cycle
calculator, and they are used for generating the desired assis-
tive force profile. A proxy-based sliding mode controller
[35], which realizes smooth and safe response [36, 37], is
implemented for tracking the desired one with the sampling
interval T = 0 001 s. Figure 4 shows typical data of measured
hip angular velocity, hip angle, and generated assistive force.

3. Experiment

This section experimentally evaluates the influence of the
robotic suit on metabolic cost in long-distance level and

inclined walking. The experiment was approved by the
Experiment Ethics Committee of the Faculty of Engineering,
Kyushu University.

3.1. Subject. One healthy male elderly subject (age = 79 years,
weight = 61.6 kg, and height = 157 cm) participated in the
experiment.

3.2. Protocol. Before the main experiment, a preliminary
exercise was performed for the subject. First, the subject
was instructed to familiarize himself with treadmill walking.
Then, his preferred walking speed (2.2 km/h) was evaluated
by applying the procedure reported in [38]. After that, the
subject practiced the treadmill walking in the PON condition
with the maximum assistive force (MAF) 25.3N that he felt
comfortable at the preferred walking speed for getting used
to the robotic suit.

The experiment was performed in two days. Figure 5
shows the main experimental protocol. A 30-minute tread-
mill walking trial at the preferred speed with the POFF con-
dition versus the PON condition constituted one set of the
comparative experiment. On each experimental day, one set
of comparison was performed. For each trial, firstly the sub-
ject conducted a level walking for 15 minutes. After that, the
treadmill was inclined to 2% slope by the experimenter, and
the subject performed an inclined walking for the left 15
minutes. Specifically, in the case of the PON condition, the
same assistive force profile, as illustrated in Figure 4, was
applied for both level and inclined walking. A 10-minute
resting test was performed for determining the resting meta-
bolic cost. In addition, a 60-minute rest period was provided
after trial 1 for both recovering metabolic activity and
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Figure 3: Block diagram of a tension force control scheme.
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separating of the two trials. To exclude the influence of
metabolic and biomechanical variations and measurement
errors, reversed orders of the POFF condition and PON
condition were used on different days. Here, it should be
mentioned that, because the purpose of the experimental
protocol was to validate the effectiveness of walking assis-
tance strategy, that is, assistance for hip flexion via winding
belts, during long-distance level and inclined walking, and
since the actuator unit was not optimized for weight, only
the comparison between the POFF condition and the
PON condition was considered, excluding the condition
of the robotic suit not worn.

Expired gas was collected continuously by a gas
analyzer (AT-1100, Anima, Co., Japan) for the entire
30-minute walking.

3.3. Data Analysis. For each day, average values of resting
metabolic cost VO2 rest (ml/min) during the last 5-minute

interval of resting test were calculated for determining the
resting metabolic level. In addition, for all trials, average
values of gross walking metabolic cost VO2 gross (ml/min)
in both 15-minute level walking and 15-minute inclined
walking were computed. Moreover, average values of
VO2 gross over the entire 30-minute interval were calculated.
Besides that, for each trial, in order to examine the transition
of metabolic cost, average values of VO2 gross per 5-minute
interval were computed. Then, average values of net meta-
bolic cost VO2 net (ml/min) were obtained by subtracting
corresponding VO2 rest from the abovementioned each

VO2 gross . After that, VO2 net was normalized by body weight
(kg). The averages of all the trials in each measure were used
for the analysis.

3.4. Statistical Analysis. Paired t-tests were performed to
identify the significant differences between the POFF
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condition and the PON condition in averaged VO2 net of 15-
minute level walking, 15-minute inclined walking, and entire
30-minute walking. In addition, standard deviations were
computed for each averaged VO2 net .

4. Results

Figure 6 shows the metabolic costs achieved in the POFF
condition and the PON condition for each 5-minute inter-
vals. Metabolic cost was reduced in the PON condition in
eleven of twelve intervals compared with the POFF condi-
tion, with a maximum reduction of 16.1%.

Figure 7 compares the two-day average value of meta-
bolic cost between the two conditions in terms of level walk-
ing and inclined walking. One can observe that, for both
cases, statistically significant differences were found between
the two conditions, with averaged 9.1% and 6.5% reductions
in the PON condition.

Two-day average value of metabolic cost of entire 30-
minute walking was compared in Figure 8. It is shown that
the use of the robotic suit significantly reduced metabolic cost
by an average of 7.7%.

5. Discussion

One of the final aims of the robotic suit is to reduce
metabolic cost as much as possible for elderly persons in
daily life activities. As illustrated by the results, metabolic
cost of level walking was reduced in the PON condition
compared with the POFF condition for almost every 5-
minute intervals, with a maximum reduction of 16.1%
and an average reduction of 9.1%. This result is consistent
with our previous result [29] showing that the use of the
robotic suit reduced metabolic cost with an average of
5.9% during 6-minute level walking. However, it is known
that metabolic stress of walking increases as walking dura-
tion increases [39–42]. Thus, it should be highlighted that,
compared with the previous result of 6-minute walking that
might be too short for imposing significant metabolic stress

on the subject, the reduction of metabolic cost during the
15-minute walking was achieved under the condition of
longer continuous accumulation of metabolic stress. The
major underlying cause of this reduction was probably
owing to the continuous energy injection of the robotic suit
for assisting the hip flexion, that is, metabolic cost reduc-
tion obtained by mechanical energy injection.

In the case of inclined walking, metabolic cost was
higher than the case of level walking for both conditions.
This is primarily due to the fact that, in the case of inclined
walking, the human body has to be raised against gravity by
increasing hip flexion as gradient increases [43–45]. Thus,
additional mechanical power might be consumed in the
hip joint for increasing the gravitational potential energy of
the body’s center of mass (COM) compared with the level
walking [43, 46, 47]. Besides that, the metabolic stress
accumulated through the previous 15-minute level walking
was also probably linked to the increased metabolic cost
of the inclined walking. However, by comparing the results
of the two conditions, one can found that metabolic cost of
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the PON condition was lower than that of the POFF condi-
tion, with a maximum reduction of 13.7% and an average
reduction of 6.5%. Toward such a reduction, we assume that
the provided hip flexion assistance contributed to the hip
flexion strength by compensating the metabolic burden of
the hip joint during the inclined walking and consequently
led to the reduced metabolic cost of the PON condition.

Interestingly, it should be observed that the metabolic
reduction rate of inclined walking was less than that of level
walking. From this result, we suppose that, under the same
injected power, that is, the same assistive force profile
parameters, the injected power during inclined walking was
not sufficient for compensating the increased mechanical
power required to accelerate COM upward, achieving a sim-
ilar metabolic reduction as the case of level walking. This
finding suggests that, in order to maximize the effectiveness
of the robotic suit, optimized assistive force profile parame-
ters, for example, shape, MAF, and timings of start, MAF,
and end, should be explored by getting a better understand-
ing of complex human-machine interaction.

As a whole, since metabolic cost is positively related to
exercise intensity [48], we argue that the subject probably
walked more easily and comfortably in the PON condition
with the less metabolic cost during the 30-minute level and
inclined walking. Thus, it can be concluded that the robotic
suit is effective not only in short-distance level walking as
reported in the previous work [29], but also in long-
distance level and inclined walking.

6. Conclusions and Future Work

This paper has experimentally evaluated the influence of the
authors’ soft robotic suit on metabolic cost in 30-minute level
and inclined walking. Experimental results show that meta-
bolic cost reduced with a maximum reduction of 16.1% in
the PON condition compared with the POFF condition for
eleven of twelve 5-minute intervals. In addition, significant
metabolic cost reductions of 9.1% and 6.5% were found in
the PON condition for level walking and inclined walking,
respectively. Moreover, for the entire 30-minute walking,
the robotic suit significantly reduced metabolic cost by an
average of 7.7%.

One limitation of this study is that, by considering the
2.7 kg mass of the robotic suit additionally imposed to the
wearer, the effectiveness of the robotic suit was only com-
pared between the POFF condition and the PON condition.
Future study includes optimizations of mechanical structure
(including weight reduction), assistive force profile parame-
ters (including shape, MAF, and timings of start, MAF, and
end), and design of adaptive control scheme for specific pop-
ulations and walking environments with the aim of achieving
greater metabolic cost reduction and compliant human-
machine interaction.
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