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Abstract: Enhancers are non-coding DNA elements that function in cis to regulate transcription from
nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and
temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate
regulation of these intricate expression programs across different neuronal classes gives rise to an
incredible cellular and functional diversity. Newly developed technologies have recently allowed
more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid
progress in our understanding of enhancer biology. Furthermore, identification of disease-linked
genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain
health and disease. This review outlines the key role of enhancers as transcriptional regulators,
reviews the current understanding of enhancer regulation in neuronal development, function and
dysfunction and provides our thoughts on how enhancers can be targeted for technological and
therapeutic goals.
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1. Introduction

Complex and precise spatiotemporal gene expression patterns orchestrate the wide diversity
of cell fate and function. Non-coding DNA elements, such as enhancers, regulate these intricate
expression programs at any given time to ensure proper development and function of specific tissues
and cell types (Figure 1). Enhancer elements have been studied for over three decades and while
these studies have provided tremendous insight into gene regulation and enhancer function, there
are still many aspects that remain unknown. Initial studies in Xenopus oocytes discovered a sequence
upstream of the H2A gene that could modulate transcription levels in an orientation-independent
fashion. Additionally, deletion of these elements resulted in lower expression levels [1], suggesting
that this sequence “enhanced” expression of the downstream gene. However, the term “enhancer” was
used for the first time to describe a 72-bp tandem repeat upstream of viral SV40 gene. This cis-acting
DNA sequence was found to modulate and increase transcription of a distal gene more than 200-fold,
independent of its orientation and location relative to the target gene. Several studies of the viral SV40
enhancer identified many additional characteristic enhancer features, such as DNase hypersensitivity
(indicative of open chromatin) and transcription factor (TF) binding [2–6]. The first studies to provide
evidence for cell type specificity of enhancers investigated the mammalian immunoglobin (Ig) heavy
chain gene in various cell lines and found that the Ig enhancer was only active in lymphocytes [7].

Enhancers are probably best understood in murine embryonic stem cells and the context of
cellular development, followed by cancer as a large portion of research has focused on these areas.
Nevertheless, the brain provides a unique window to explore how enhancers contribute to cell fate
and function and also to understand how enhancers can be dysregulated in disease. In the brain,
enhancers help to ensure cell- and tissue-specific gene expression profiles, defining which genes are
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active during neuronal specification and which genes remain accessible in adult neurons. In adult
neurons, the storage of information requires the dynamic regulation of gene expression patterns to
allow for neuronal plasticity, learning and memory formation and long-term adaptations of behavior to
an environment. Furthermore, a subset of enhancers shows activity-dependent induction in response
to neuronal activation and behavioral experience, suggesting a regulatory role in transcription and
brain function.Genes 2019, 10, x FOR PEER REVIEW 2 of 20 

 

   
Figure 1. Regulation of gene expression patterns by genomic enhancers. Illustration of enhancer-
promoter chromosomal looping (mediated by CTCF and cohesin) that allows distal enhancer 
elements to physically interact with and activate gene promoters. These interactions increase binding 
of transcription factors, chromatin modifiers, and the Mediator complex at gene promoters to recruit 
RNA polymerase II (RNAPII). Enhancers are characterized by elevated DNA sequence conservation, 
open chromatin, transcription factor binding motifs, characteristic histone modifications, DNA 
hypomethylation, and bidirectional transcription to generate enhancer RNAs (eRNAs). 
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A significant fraction of non-coding genomic space is dedicated to enhancers, with current 
estimates suggesting that vertebrate genomes may encode tens of thousands or even millions of 
active enhancers [8-11]. It is hence not surprising that the majority of disease-associated single 
nucleotide polymorphisms (SNPs) fall into non-coding regions of the genome and that an increasing 
number of these SNPs have been linked to enhancer function [9,12-18]. Together with emerging roles 
for enhancer biology in developmental programming and experience-dependent regulation of 
neuronal systems, these findings highlight the need for more research to understand how enhancers 
contribute to brain function and disease. While there are other excellent reviews on the general 
characterization of enhancers [19,20] and neuronal chromatin remodeling [21], this review will focus 
on the role of enhancers in the nervous system and discuss aspects of enhancer function in heathy 
and functioning brain, as well as how dysregulation of enhancers may contribute to developmental, 
neuropsychiatric and neurological disorders. 

2. General Enhancer Properties and Functions  

2.1. Enhancer Properties and Molecular Interactions 
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Figure 1. Regulation of gene expression patterns by genomic enhancers. Illustration of
enhancer-promoter chromosomal looping (mediated by CTCF and cohesin) that allows distal enhancer
elements to physically interact with and activate gene promoters. These interactions increase binding
of transcription factors, chromatin modifiers, and the Mediator complex at gene promoters to recruit
RNA polymerase II (RNAPII). Enhancers are characterized by elevated DNA sequence conservation,
open chromatin, transcription factor binding motifs, characteristic histone modifications, DNA
hypomethylation, and bidirectional transcription to generate enhancer RNAs (eRNAs).

A significant fraction of non-coding genomic space is dedicated to enhancers, with current
estimates suggesting that vertebrate genomes may encode tens of thousands or even millions of active
enhancers [8–11]. It is hence not surprising that the majority of disease-associated single nucleotide
polymorphisms (SNPs) fall into non-coding regions of the genome and that an increasing number
of these SNPs have been linked to enhancer function [9,12–18]. Together with emerging roles for
enhancer biology in developmental programming and experience-dependent regulation of neuronal
systems, these findings highlight the need for more research to understand how enhancers contribute
to brain function and disease. While there are other excellent reviews on the general characterization
of enhancers [19,20] and neuronal chromatin remodeling [21], this review will focus on the role of
enhancers in the nervous system and discuss aspects of enhancer function in heathy and functioning
brain, as well as how dysregulation of enhancers may contribute to developmental, neuropsychiatric
and neurological disorders.

2. General Enhancer Properties and Functions

2.1. Enhancer Properties and Molecular Interactions

Enhancers and enhancer states are characterized by

(1) an open chromatin structure, indicated by DNase hypersensitivity,
(2) specific epigenetic modifications,
(3) defined molecular interactions, and
(4) bi-directional transcription starting in the center of the enhancer leading outward on opposite

stands [20,22–29].
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This section will explore the prominent features of enhancers, contrast enhancers to other cis
regulatory elements and discuss potential functions of enhancer clustering and phase separation in
gene regulation.

2.2. Enhancer versus Promoters

Many cis regulatory elements share architectural similarities and enhancers provide a key example
of this. Distal enhancers and gene-proximal promoters are defined by many structural and functional
features [19,30]. Traditionally, promoters are defined as DNA stretches that initiate transcription from
a nearby transcription start site (TSS) [31]. The eukaryotic RNA polymerase 2 promoter contains
the TATA-box, initiator, TFIIB recognition element and a downstream core promoter. However,
enhancers can also exhibit “promoter-like” attributes. For example, enhancers can contain clusters
of TF motifs, although enhancers and promoters tend to be biased towards occupancy by different
TFs [32]. Likewise, enhancers can have promoter activities that result in transcription initiation [32,33].
Building on previous observations of promoters with enhancer function [32,34–36], Dao et al. used a
genome wide approach (CapStarr-Seq) to characterize genomic regions that can act as a promoters and
drive local transcription or act as enhancers and increase distal gene transcription. While enhancers
and promoters showed distinct genomic and epigenetic characteristics, they found a significant fraction
of core promoters harboring enhancer activity in both tested cell types. They further showed that the
FAF2 promoter interacts with three other promoters as an enhancer and that deletion of this promoter
decreased expression of all three target genes [37]. More recent work has implied that enhancers
and promoters can be repurposed and that an element can function as enhancer in one species and
its orthologue can act as a promoter in another (related) species [30]. Importantly, both structures
communicate with each other and work together to orchestrate and initiate transcription.

2.3. Enhancer Looping

One common way in which enhancers regulate gene expression occurs via direct interaction
with promoters through physical enhancer-promoter loops. This enhancer looping mechanism allows
distal enhancers to act on genes that are thousands (or in some cases, millions) of bases upstream or
downstream of the gene locus and provides another layer of control over dynamic transcriptional
responses to internal and external stimuli.

Several factors regulate and stabilize this looping process, including TFs like YY1, the
CCCTC-binding factor CTCF and the Mediator/Cohesin complex. CTCF, a TF often found at
transactivation domain (TAD) boundaries, is thought to stabilize loop anchors [20]. CTCF further
positions the Cohesin complex, which forms a ring-like structure. This structure can wrap
around two DNA segments to keep them in close proximity, providing physical means to connect
enhancers and promoters [27]. YY1 is an ubiquitously expressed TF that binds hypomethylated
DNA and generally occupies enhancers and promoters. Interestingly, YY1 interacts with CTCF to
facilitate enhancer-promoter looping and loss of YY1 disrupts enhancer function and transcriptional
regulation [28,38]. Finally, Mediator is a multiprotein complex of 30 subunits that is crucial for the
expression of almost all protein coding genes. This complex coordinates signals at enhancers and
recruits RNA polymerase 2 (RNAP2) along with a number of TFs, facilitating the formation of the
preinitiation complex. Mediator has further been shown to be involved in enhancer-promoter loop
formation through direct interactions with the Cohesin complex [29,39,40].

2.4. Enhancer Chromatin Architecture

Enhancer regions are typically more conserved across species than surrounding regions in the
genome. In fact, initial genome-wide enhancer screens used sequence conservation as an indicator for
enhancers [41]. While developmental enhancers showed an enrichment in DNA sequence conservation,
screening of hundreds of conserved regions in the genome found that a significant proportion possessed
enhancer-like activity in reporter assays [42,43].
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As enhancers are characterized by open chromatin, techniques based on chromatin
accessibility such as mapping of DNase hypersensitive sites or Assay for Transposase Accessible
Chromatin Sequencing (ATAC-seq) are often used to identify enhancers across the genome [22,44].
This information is often used in combination with histone modifications to identify enhancer regions
and further define their functional states. For example, active enhancers are typically enriched in
H3K27ac [45], whereas poised enhancers often exhibit H3K27me3—a modification associated with
the Polyclomb repressive complex [25]. While promoters often show low H3K4me1 versus H3K4me3
ratios, enhancers show the opposite pattern and present with high levels of H3K4me1/me2 and low
levels of H3K4me3 [25,45]. Together, these characteristics are commonly used to identify enhancers
and to determine their state of activity (e.g., active vs. poised) on a genome-wide scale.

Interestingly, histones in enhancer regions show an enrichment of H2A.Z and H3.3 histone
variants. These variants are thought to be less stable (and easier to displace) than traditional histones,
allowing for more dynamic mobility and easier access for TFs to bind [46,47]. In addition to histone
modifications and TF binding, active enhancers are further characterized by DNA hypomethylation,
as well as active bi-directional transcription that yields non-coding enhancer RNA (eRNA). The last
decade has yielded exciting insights into the role of these non-coding transcripts, which is discussed
later in this review.

2.5. Enhancer Interactions

Enhancer regions are subject to dynamic epigenetic modifications and binding of chromatin
remodelers such as histone acetyltransferases (HATs). CBP and p300, two closely related HATs, target
histone tails as well as transcription machinery including RNAP2 in TAD domains. While histone
acetylation creates a more accessible and permissive chromatin structure at enhancers and improves
TF recruitment, RNAP2 acetylation promotes its release into the gene body [48–50]. Nevertheless,
H3K27ac and CBP/p300 binding are hallmarks of active enhancers [49,51] and H3K27ac is commonly
used as a surrogate measure of enhancer activity.

The histone methyltransferases Kmt7 (also known as Set7) has been found to bind enhancers
in muscle tissue in addition to HATs. Set7 binding increases H3K4me1 at enhancers and is also
associated with increased target gene expression [27]. Other groups have made similar discoveries in
identifying SET-domain containing proteins Mll3 and Mll4 as major contributors to enhancer H3K4
methylation [52,53]. Together, these studies demonstrate the critical importance of histone methylation
at enhancers and further support the role of SET-domain proteins in establishing this methylation.

The binding of epigenetic modifiers is also crucial for TF function and the ability of enhancers
to drive gene expression. Enhancer activation is thought to require the binding of several TFs, often
including lineage-specific and motif-dependent factors that respond to signaling cascades to integrate
extrinsic and intrinsic signals. These early TFs then prime the enhancer region and reinforce binding
of additional TFs and coactivators. The combinatorial binding of different TFs and coactivators then
gives rise to discrete expression patterns across different tissues and cell types.

Extensive investigation of developmentally regulated enhancers in stem cells has shown how
master TFs like Oct4, Sox2 and Nanog can identify or predict enhancer activity and that TF function
often depends on the binding of coactivators that harbor chromatin remodeler activity or mediate
long-range interactions [54,55]. In pluripotent embryonic stem cells, these master TFs bind super
enhancers and recruit Mediator to activate their target genes. Intriguingly, cell type specific TF binding
to enhancers of more differentiated cells often regulates cell identity genes [54].

Recent reports have suggested that a subset of TFs is biased towards different regulatory elements
like enhancers or promoters. AP1, a TF composed of FOS/JUN heterodimers, is biased towards
enhancer elements, whereas EGR1 and SP1 are biased towards promoters and promoter activity.
In contrast, a subset of TFs, including RFX, is capable of generating both enhancer and promoter
activities [32].



Genes 2019, 10, 43 5 of 21

The key role of TF binding in enhancer activation is not limited to developmental processes, as
a striking subset of enhancers show activity-dependent TF binding. For example, CBP and Npas4
were found to bind enhancers surrounding the Fos gene in response to neuronal depolarization [56]
and many activity-regulated enhancers are characterized by increases in H3K27 acetylation [57].
Surprisingly, a subset of neuronal activity-dependent enhancers requires Fos binding, which is
consistent with the bias of the AP1 complex towards enhancer elements in the genome [58].

2.6. Super Enhancers

The term super enhancers (SEs) refers to clusters of enhancers that are characterized by increased
size, abundant TF and Mediator complex occupation and increased capability to induce gene expression
compared to “typical” individual enhancer loci. SEs dictate expression patterns of entire groups of
functionally related genes. Whyte et al. identified SEs that regulate cell identity genes in mouse
myotubes, T helper cells and macrophages [54]. On a genome-wide scale, SE-regulated genes tend to
require high levels of coordination and fine tuning of their expression. They regulate expression in a
particular cell and tissue type, during specific developmental stages or in response to unique cellular
stimuli. Interestingly, mutations that fall into or impair SEs have been linked to various diseases
such as various forms of cancer, diabetes and also Alzheimer’s disease (discussed later in this review
in Sections 3.3–3.6) [9,54].

2.7. Enhancer Transcription

Another hallmark of active enhancers is bi-directional transcription, which originates in the center
of the enhancer and produces RNA transcripts from both DNA strands in opposing directions. The
act of transcription itself has been suggested to keep the enhancer locus in a more permissive and
active state, accessible for TFs, epigenetic modifiers and transcription machinery. Nevertheless, these
transcripts arising from enhancers (so called enhancer RNAs or eRNAs), were initially thought to result
from their close proximity to RNAP2 and actively transcribed genes. Thus, eRNAs were not initially
included in models of enhancer function and their specific roles have remained controversial. However,
over the last decade striking evidence for the functional relevance of eRNAs has emerged. Several
studies have demonstrated that eRNAs interact with several key molecules in enhancer function
including the Mediator complex, transcriptional repressors and activators, as well as epigenetic
machinery [59–63]. The role of eRNAs as a functional unit of enhancers is an exciting and widely
understudied field that will help understand the complex regulation of and by enhancers.

2.8. Enhancers and Phase Separation

Phase separation describes molecular condensates within eukaryotic cells that create
compartments of high protein and nucleic acid density, such as the nucleolus, nuclear speckles, stress
granules and many other compartments. The formation and specific composition of phase-separated
compartments is tightly regulated to provide the opportunity for controlled environments optimal
for specific reactions. The investigation of phase separation has recently gained a lot of momentum,
as striking discoveries have demonstrated that the components of these condensates can change over
time depending on the state of cell cycle or in response to certain stimuli (reviewed in Reference [64]).
Intriguingly, enhancers have been linked to phase separation. A recent review by Hnisz et al. discusses
the phase separation model for transcriptional regulation that allows linking of all components
needed for transcriptional induction including enhancers, promoters, TFs, epigenetic modifiers and
transcription machinery [65]. In this model, phase separation mediates the accumulation of high
concentrations of these components in a confined space that allows for necessary chemical modification
of interacting components. Furthermore, this model describes characteristics of enhancers and SEs
based on three main parameters:

(1) the number of participating components,
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(2) all possible chemical modifications of their residues,
(3) and the rate at which these modifications are facilitated or inhibited.

Specifically, SEs are suggested to rely on high levels of such cooperativity between numerous
interaction partners, as they typically accumulate higher numbers of interacting molecules than
traditional enhancers. Overall, this model addresses how phase separation could play a role in
transcriptional control and explains how it might contribute to previously observed characteristics
of SEs.

Phase separation as a mechanism for enhancer function is particularly interesting as it would
enable concentration of a variety of components necessary for regulated gene transcription. Sabari et al.
were the first to demonstrate the participation of SEs in phase separation by showing that coactivators
Mediator and BRD4 (a member of the BET family), associate with SEs in nuclear condensates.
Disruption of the condensates by 1,6-Hexanediol resulted in loss of Mediator and BRD4 binding at SEs
and loss of RNAP2 occupancy at SEs and their target genes. This work suggests a role of coactivators
in the compartmentalization and local concentration of SEs and transcription machinery [66], perhaps
via disordered domains in these proteins.

3. Brain Specific Enhancer Functions

3.1. Enhancers in Neurodevelopment

Enhancers control complex spatiotemporal expression programs throughout development and
into adulthood and so initial studies on neuronal enhancers focused on identification of enhancer
loci in the developing CNS. In a pioneering study, Nord et al. measured H3K27 acetylation with
Chromatin immunoprecipitation sequencing (ChIP-Seq) as a readout of active enhancer loci across
seven developmental stages ranging from embryonic day 11.5 to postnatal day 56 to identify enhancer
activity profiles in three different tissues including the mouse forebrain [14,67]. This work revealed
tissue and temporally specific enhancer activity profiles in which 85% of the enhancers only showed
active histone marks during specific developmental stages. To experimentally test these H3K27ac
ChIP-seq findings in vivo, Nord et al. capitalized on transgenic mice in which the LacZ reporter was
driven by a minimal promoter coupled with regions identified as active enhancers [67]. Their results
confirmed not only that these enhancer sequences can drive tissue specific gene expression but also
demonstrated that the dynamic H3K27 acetylation changes throughout development correspond to
gene expression changes (measured by LacZ reporter expression). Most importantly, these regions
were also associated with critical tissue-specific biological processes. Motifs for TFs that control
neuronal differentiation (such as Lhx3) were enriched in early active enhancers, whereas motifs for
TFs known to regulate synaptic transmission, cognition, learning and memory and neurodegeneration
were enriched in delayed active enhancers [9,54]. Finally, this approach led to the discovery that
the lead SNP for depression and alcohol dependence fell into a region with enhancer activity in the
forebrain [14,67]. Together, these findings highlight the advantages of H3K27ac datasets to reliably
identify active enhancers across developmental stages as well as the implications of enhancer function
in disease development.

Building on these findings, subsequent studies have investigated developmental changes in
chromatin accessibility and enhancer activity in specific cell types in the cerebellum [59–63]. This work
revealed an enrichment for TF binding motifs in developmentally regulated open chromatin (DNase
hypersensitive sites) between postnatal day 7 and 69. Along with TFs that are important for cerebellar
granule cell differentiation (MEF2 and NF1 families) Frank et al. also found an enrichment for the
Zic motif, a TF which has previously been associated with cerebellar development disorders [14,67].
Zic binding promotes maturation of postmitotic cerebellar granule neurons while preventing premature
differentiation of progenitor cells. Overall, this work demonstrates how chromatin changes at enhancer
loci regulate accessibility to TFs and thereby gene expression programs in neuronal subtypes across
different time points (Figure 2a).
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Figure 2. Developmental, cell-type specific, and stimulus dependent enhancer activity and looping
functions. a, Distinct enhancers become active at specific developmental stages and in specific cell types
(Top). These enhancer activity profiles regulate expression of cell identity genes in a spatiotemporal
manner ensuring proper cell fate and function (Middle). A subset of enhancers responds to stimulation.
These enhancers typically regulate activity-responsive genes and increase their expression in response
to a certain stimulus, with specific temporal windows after stimulus induction (Bottom). b, Basic
modes of action for enhancer looping in gene regulation. Genes can be regulated by multiple
enhancers that compete with each other, act simultaneously, or alternate depending on the context or
stimulus. c, Putative mechanisms driving coordinated regulation of many genes by single enhancers or
enhancer-enhancer interactions. An enhancer can act on multiple genes in parallel, serving functions of
coactivation or selection. Likewise, super enhancers or transcriptional hubs may co-localize related
genes to drive expression of specific gene programs that define key cellular functions or phenotypes.

3.2. Cell Type and Brain Region Specific Enhancers

While initial studies of enhancers in the 1980s established a cell type specific role for enhancers [64],
later genome-wide studies identified specific enhancer subsets that regulate expression patterns in
the nervous system. Nord et al. not only showed temporally precise windows of enhancer activity
but also that each tested tissue was characterized by a unique enhancer activity signature [66]. There
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is accumulating evidence for cell-type specificity of enhancers that are characteristic for neural stem
cells and neurons, as well as overall organ/tissue specific enhancers that are active in the brain but
not elsewhere. Andersson et al. used cap analysis of gene expression (CAGE) to identify active
enhancers based on their bidirectional transcription in a number of cell and tissue types [66]. Next,
this dataset was integrated with datasets for DNA methylation and histone modifications (ChIP-Seq
for H3K27ac and H3K4me1) to identify active enhancers in five primary blood cell types. Several
of the identified enhancers were then validated in vivo in transgenic zebrafish embryos. Overall,
these results show that many enhancers are active across many cell types but that there are subsets of
enhancers specific for a certain tissue (brain, blood, liver and testis) or cell type (immune cells, neurons,
neural stem cells and hepatocytes). These subsets of cell type and tissue specific enhancers were
found to be enriched in binding motifs for the same key regulators including RFX and SOX in neurons.
Similarly, ChIP-Seq analysis of microdissected subregions of the adult mouse cortex revealed novel
region-specific enhancers. While most of these enhancers were active in at least two subregions, about
a third of the identified enhancers were subregion-specific [68]. Further analysis revealed that within
these region-specific enhancers, a subgroup exhibits specificity for a certain cell type within that region.
Interestingly, these enhancers drive transgene expression in the same subregion in a cell-type selective
manner, confirming their specificity while also providing the opportunity for exciting new tools capable
of highly specific transgene expression. New transgenic enhancer models can build on this model and
provide higher resolution than current approaches to drive cell-type and region-specific transgene
expression. These models can be combined with inducible systems (such as a tetracycline-dependent
system) to allow for extremely fine-tuned cell type specific, spatio-temporal expression profiles [69].

More recently, examination of enhancer activity states has been extended to postmortem brain
samples to begin defining cell class and cell type dependent enhancer programs in the human brain.
Fullard et al. investigated cis-regulatory elements, including promoters and enhancers and created
a map of chromatin accessibility in neuronal and non-neuronal nuclei across 14 brain regions of
human postmortem tissue. This study revealed differences between neuronal and non-neuronal cell
types, as well as differences among neurons from different brain regions [44]. Similar approaches have
extended this work as part of a broad characterization of non-coding regions (including enhancers) [70].
This work compared non-coding elements between dopamine neurons, pyramidal neurons and
non-neuronal cells. A portion of the transcribed non-coding elements coincided with other enhancer
characteristics such as DNase I hypersensitivity, certain histone modifications (high H3K27ac, H3K4me
and low H3K3me3), CAGE-defined enhancers, high sequence conservation or binding sites for p300
and TFs. Remarkably, this study found that a large portion of detected enhancers were exclusively
expressed in their respective cell type, again highlighting the specificity of enhancers (Figure 2a).

How is enhancer activity regulated in a spatiotemporal precise manner? One route of regulation
is enhancer accessibility to interaction partners, which is determined by epigenetic modifications
at enhancers. For example, a recent study found that the epigenetic state of enhancers affects gene
expression and neuronal migration patterns. The histone methyltransferase PRDM16 is a crucial
regulator of the epigenetic state of enhancers in the embryonic cortex and is thought to deposit
H3K9me1 and H3K4me1 [71]. This study suggests that PRDM16 binds to active enhancers (measured
by H3K27ac) and found an overlapping enrichment in H3K4me1 which is typically found at active
and poised enhancers. In addition to regulating genes involved in cortical neurogenesis, PDRM16 also
represses the expression of migration genes in radial glia cells to direct proper positioning of cortical
neurons. This enhancer mediated expression profile ensures generation of the accurate number of
cortical neurons and their correct positioning in the upper layer of the cortex [71].

Once enhancers are accessible, cell identity is mediated by coordinated binding of specific TFs to
specific enhancers. Rhee et al. characterized how initial TF binding dictates differentiation and cell
identity and how the interplay between different TFs ensures stable expression patterns in mature
motor neurons [72]. More specifically, they found that the TF Isl-1 engages with either Onecut1 or Lhx3
depending on the developmental stage. While Isl-1 (along with histone acetyltransferases) is initially
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bound to Lhx3, it is released from motor neuron enhancers and recruited to Onecut1 clusters in later
developmental stages of maturing motor neurons [72]. These findings display how coordinated and
temporally specific binding of TFs like Onecut1 and Lhx3 to integrator TFs such as IsI-1 results in
intricate expression patterns. Understanding how different cell types and even subtypes in the brain
are regulated in this way will enable us to better connect how synaptic signals are integrated into
transcriptional responses to different stimuli with cell type specific resolution (Figure 2a).

3.3. Experience—And Activity—Dependent Enhancers in the Brain

In the context of brain function, one important question emerges: how do enhancers regulate
genes in response to neuronal stimulation? Activity-dependent gene regulation is a hallmark of key
neuronal phenomena, including long-term potentiation, homeostatic plasticity, long-term memory
formation and adaptive behavior. Therefore, a central focus of ongoing attempts to understand
enhancer function in the central nervous system has utilized activity-responsive enhancers found near
genes that are rapidly controlled by neuronal depolarization and other stimuli.

Addressing this question, a pioneering study by Kim et al. discovered ~12,000 activity-regulated
enhancers in murine neurons. Enhancer activation was accompanied by stimulus-dependent CBP
recruitment to enhancers near activity-regulated genes (e.g., Fos, Rgs2 and Nr4a2). Activity-dependent
recruitment of Creb, Mef2, Npas4 and Fos to enhancer regions further demonstrated the importance
of this activity-dependent mechanism for enhancer regulation [73,74]. Not only did enhancers
respond to stimulation but their responses were specific to the received stimuli, potentially providing
an opportunity to fine tune transcriptional responses to various forms of neuronal activation [26].
This has been suggested to be the underlying mechanism of transcriptional plasticity in response to
experience [11].

The best characterized activity responsive enhancers are located around the Fos gene. The five
enhancers surrounding the murine Fos locus have been shown to respond to neuronal activity [26,57,58]
and show different activation patterns (measured by eRNA induction) in response to neuronal
depolarization (KCl), neurotrophic factor stimulation (BDNF) or cyclic AMP signaling (Forskolin)
treatments. While all three treatments increased mRNA expression, each of the surrounding enhancers
showed different levels of induction to the respective stimulus. The same stimuli evoked enhancer
activation in a luciferase reporter assay with a minimal Fos promoter and the respective Fos enhancers.
These authors further confirmed that in vivo, different stimuli (kainic acid injections or sensory
stimulation of the visual cortex with light) result in different combinations of enhancer activation.
Together, these findings highlight how combinatorial enhancer activation can distinguish between
different stimuli and potentially fine tune and adjust the transcriptional response to a certain
stimulus [56]. Importantly, this demonstrates that enhancers can alternate or compete to regulate the
same gene but can also act in combination to promote additive or synergistic effects (Figure 2b). In other
cases, one enhancer or group of enhancers might regulate several related genes either simultaneously
or selectively (Figure 2c). Additionally, entire networks of genes may be linked by SE complexes that
help to maintain expression of programs that define neuronal function (Figure 2c).

Another well studied activity dependent enhancer is located upstream of the murine Arc gene.
This immediate early gene encodes a cytoskeleton protein crucial for synaptic plasticity and has been
shown to underlie enhancer mediated regulation [62,75]. Neuronal activity induces enhancer-promoter
interactions at this locus and eRNA induction is crucial for the release of the negative regulator of
transcription elongation (NELF) and RNAP2 to initiate gene transcription [62]. Similarly, Telese et al.
showed that Reelin, an extracellular matrix protein that modulates synaptic plasticity and long term
potentiation [76,77], induces a subset of neuronal enhancers when bound to its receptor (LRP8) [78].
Reelin-activated enhancers thereby translate synaptic inputs into transcriptional programs important
for synaptic plasticity, suggesting that activation of these enhancers might also be fundamental for
learning and memory formation.
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Together with their cell type specific nature, enhancers’ ability to respond to neuronal activity is
extremely important to understand how different cells in circuit or brain region function on a cellular
as well as on a network level (Figures 1 and 2). This understanding can help us understand how
different stimuli can influence gene expression, how gene expression can drive neuronal physiology
and how this interplay can ultimately influence behavior in developing and adult animals. Other
excellent reviews have focused on the role of enhancers in neuronal activity in more detail [11,79,80].

3.4. Enhancer Dysregulation in Brain Disease

Numerous studies have linked neurological diseases to mutations and variants in DNA. While
in some cases a specific gene mutation can be identified as the cause for a disease, for many diseases
of the brain this is not the case. However, a large number of sequence variants have been linked to
such diseases via genome-wide association studies. Interestingly, the majority of disease linked SNPs
fall into non-coding regions and are increasingly linked to enhancer function. As normal enhancer
activity requires a complex sequence of interaction partner binding and chromatin remodeling to
induce transcription (Figure 3a), the logical conclusion is that mutations in such interaction partners
(Figure 3b) or different enhancer variants (Figure 3c,d) likely induce different levels of expression at
their target genes and might predispose or even contribute to disease development [9,13,70].
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Figure 3. Enhancer dysfunction in genetic brain diseases and disorders. a, Illustration of
enhancer-mediated interactions including transcription factor (TF) binding to motifs in enhancer
DNA sequence, recruitment of chromatin modifying enzymes and RNA polymerase (RNAPII), as well
as transcription of eRNAs. These interactions increase binding of transcription factors and epigenetic
modifiers at gene promoters to regulate linked genes in cis. b, Mutations in chromatin modifiers and
TFs commonly found at enhancers often lead to neurodevelopmental and intellectual disability. This
could occur via loss of DNA binding, loss of catalytic activity, or loss of protein-ribonucleotide or
protein-protein interactions that mediate enhancer function. c-d, Sequence polymorphisms located in
enhancers could confer either loss of function (e.g., if polymorphism includes TF motif or results in
change to eRNA sequence that abolishes protein-ribonucleotide interactions), or potentially gain of
function (e.g., via recruitment of new TFs or novel eRNA-protein interactions).

Genetic mutations could interfere with enhancer function and disrupt transcriptional regulation
in various ways (Figure 3). First, mutations linked to enhancer regions could lead to aberrant eRNA
expression (e.g., incorrect levels or improperly folded eRNAs) or even cause a complete loss of eRNA
transcription. Secondly, mutations in TFs and epigenetic modifiers that are normally recruited to
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enhancers could lead to significant dysregulation of enhancer function across the genome (Figure 3b).
Finally, enhancer mutations could cause loss of binding motifs for key regulators of enhancer looping
or regulation by TFs, which would impair interactions with promoter regions (Figure 3c) or even
lead to increased interactions and enhancer function resulting in over-activation of the target gene
(Figure 3d). The following subsections will discuss these possibilities in more detail.

3.5. Mutations of Enhancer Loci

Neurodevelopmental disorders—Prevalent neurodevelopmental disorders have been linked
directly to polymorphisms in enhancer regions. Autism Spectrum Disorder (ASD) presents with a
wide range of clinical symptoms and numerous mutations and genetic variants have been linked to
increased ASD susceptibility. The 5p14.1 locus is a region between the cadherin CDH10 and CDH9
genes and a prominent locus for GWAS hits for ASD linked variants. This ASD-associated locus
exhibits enhancer activity that regulates expression in cortical layer II/III, striatal and cerebellar
neurons in human BAC2 transgenic mice [16].

A number of diseases have been associated with short tandem repeats [81] and these also have
the potential to alter enhancer function. One such repeat has been linked to Fragile X syndrome,
a genetic neurodevelopmental disorder characterized by intellectual and learning disabilities. Sun et al.
discovered that many disease-associated repeats fall into chromatin domain boundaries [81]. In Fragile
X syndrome, a CGG triplet repeat disrupts TAD boundaries around the FMR1 gene, resulting
in impaired CTCF binding. Aberrant CTCF binding could disturb enhancer looping to target
promoters and result in altered gene expression levels. Neurological diseases—Even though
enhancers are typically associated with development, enhancer dysregulation does not only lead
to neurodevelopmental problems but has also been implicated in neurodegenerative and psychiatric
diseases, as well as in mental health. Alzheimer’s disease (AD) is a devastating progressive
neurodegenerative disease characterized by dementia and loss of cognitive function. Various studies
have identified and linked mutations and sequence variants to AD, including APP, APOE4 and
BIN1 [9,82,83]. Hnisz and colleagues identified 5 SNPs linked to AD in SE regions of the brain. Two
of these SNPs fell into a SE that regulates BIN1 expression [9,83]. Another recent study associated
the PM20D1 locus with AD risk [84]. The PM20D1 locus interacts via CTCF-mediated chromatin
loops with an AD-associated haplotype that shows enhancer-like characteristics. This region displayed
an enrichment for epigenetic enhancer marks and increased expression in a luciferase assay and the
interaction with PM20DI was haplotype dependent. Interestingly, PM20DI expression increased in
response to neurotoxicity and overexpression alleviated cell death, decreased Aβ levels and improved
cognitive function. Therefore, risk-haplotype carriers might be left with an impaired cellular defense
in AD as a result of decreased PDM20DI expression. Together these studies highlight the potential
impact of enhancer function on AD predisposition and manifestation.

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders and is
characterized by late disease onset and complex interactions between genetic and environmental
risk factors. The SNCA gene was identified as one of the strongest risk loci associated with sporadic
PD and mutations of the gene have been shown to cause familiar PD [85,86]. Intriguingly, Soldner et al.
identified a PD-associated SNP that falls into an enhancer element in intron-4 of the alpha-synuclein
gene SNCA in patient derived pluripotent stem cells [87]. Alpha-synuclein is a key factor in PD
development and pathogenesis and this work suggests that an enhancer region variant is accompanied
by disrupted TF binding and altered SNCA expression. This study demonstrates how sequence
variants in enhancers can impair enhancer functions such as proper TF binding and thereby promote
disease-related expression imbalances.

Psychiatric disorders—Schizophrenia (SZ) is one of the most common psychiatric disorders
characterized by positive, negative and cognitive symptoms and a complex interplay between genetic
and environmental risk factors. There is increasing evidence for an enrichment of enhancers and
promoters in SZ-linked gene variants and several SZ associated SNPs have been shown to fall into
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non-coding regions with enhancer activity [15,70,88,89]. Variants in or near the L-type calcium
channel subunit CANCA1C have been shown to fall into enhancer regions and affect their interactions
and functions [15,70,88,89]. These enhancer SNPs lead to transcriptional dysregulation, possibly
contributing to SZ manifestation. This new layer of gene regulation could help untangle the genetic
and clinical heterogeneity of SZ.

Alcohol dependence and depression are psychiatric disorders that often occur together. A number
of genetic variants likely influence the development of both disorders [14]. Two SNPs that were
associated with depression have been shown to fall into the GAL enhancer. As proper GAL expression
is required for food and alcohol intake as well as the regulation of mood, these SNPs could also have
implications in alcoholism and obesity. Interestingly, the more conserved sequence shows strong
enhancer activity while the less conserved and disease-linked variant was associated with decreased
gene induction capacity [12]. Thus, enhancer-mediated gene induction could be directly contributing
to the phenotypes observed in the different diseases.

As we continue to study disease associated SNPs, the importance of enhancer function becomes
abundantly clear. Future work will not only identify other disease-linked regions with enhancer activity
but also help understand the underlying mechanisms of enhancer function and their contribution to
disease manifestation.

3.6. Mutations of Interaction Partners

In addition to mutations in enhancer elements directly, mutations in interaction partners can also
obstruct enhancer function and result in disease-related expression patterns. For example, mutations
of the Mediator complex, which is crucial for enhancer looping, have been associated with a number
of neurological and neurodevelopmental disorders [90–96]. Mutations in different Mediator complex
subunits like MED12 and MED23 disrupt transcriptional regulation of immediate-early genes and
have been linked to intellectual disabilities. Similar developmental delays and defects develop as a
result of mutations of Cohesin or the Cohesin loading protein NIBL. These disorders are also referred
to as Cohesinopathies [29,97–100]. Likewise, haploinsufficiency of YY1 has recently been shown to
cause chromatin and transcriptional dysregulation and this is likewise associated with intellectual
disabilities [28]. The histone acetyltransferases CBP and p300 function as transcriptional coactivators
in the regulation of enhancer function and gene expression. Mutations in either CBP or p300 have been
shown to cause the congenital disorder Rubinstein-Taybi syndrome [101], which is associated with
neurodevelopmental and learning disabilities. Thus, a common feature of enhancer-linked proteins is
that mutations in these proteins give rise to cognitive disorders (see Figure 3b). All of these mutations
are thought to disrupt chromatin structure and enhancer-mediated transcriptional regulation that
ultimately results in expression changes that underlie these intellectual disabilities.

3.7. Future Directions

With growing understanding of the importance of enhancers in brain health and disease, future
research will need to elucidate the mechanisms and dynamics of enhancer activity in response
to neuronal stimulation. While the ability of enhancers to respond to stimuli such as neuronal
depolarization has been appreciated for nearly a decade, the role of different enhancers in regulating
the response of the same gene to different stimuli is much less clear. This activity could potentially
provide a key mechanism by which a specific context or experience can be translated and integrated
into specific transcriptional response patterns. Thus, a critical area of focus should be to unravel how
enhancer activation and inactivation is mediated in different brain regions and in response to different
intrinsic and extrinsic stimuli. This knowledge will help explain how enhancers regulate and fine tune
transcriptional responses in a specific context and how the disruption of enhancer activity contributes
to disease formation.

Likewise, even though we know several key events that regulate enhancer activation (such
as binding of key TFs and chromatin remodelers as well as stable architectural changes), recent
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discoveries in the field of phase separation open up intriguing possibilities for how groups of enhancers
are co-regulated. While there is initial evidence linking enhancers to phase-separated condensates,
it is unclear how this is regulated and whether this is a general mechanism for enhancer function.
Nevertheless, the concept of phase separation offers exciting possibilities for dynamic enhancer
regulation and allows for quick responses to various signals. This mechanism could explain how
enhancers can rapidly accumulate and induce complex gene expression programs in response to a
stimulus. Simultaneously, phase separation could also create condensates that promote degradation of
other proteins and transcripts to further balance the cellular transcriptome and achieve a balanced
cellular composition.

Technological advances have provided a number of important avenues to utilize enhancers to
understand the basic biology of the nervous system. For example, recent efforts have capitalized on
the cell-type specific nature of many enhancers to drive gene expression in a highly cell-type or brain
region specific manners. While previous technologies (such as BAC transgenic animals; [102]) enable
population-specific gene regulation using more proximal gene promoters (up to 50 kb upstream of TSS)
to drive Cre recombinase or fluorescent reporters, use of more distal enhancers as tools to label specific
cell populations and/or to control expression of a transgene or endogenous genes could significantly
expand these capabilities. For example, enhancer-driven gene regulation could be used to mimic complex
expression patterns important for a certain tissue, developmental state or even behavior. Likewise,
enhancer targeting and control over expression patterns also provides potential new approaches for
cellular reprogramming. To achieve this, groups of enhancers or SEs that regulate certain expression
programs in response to a stimulus or in a particular cell type could be targeted and activated.

Technological innovations have also generated useful ways to dissect enhancer function, identify
mechanistic interactions and distinguish biochemical roles of specific proteins, nucleic acids and
molecules (see Box 1). For example, novel CRISPR/dCas9 tools that fuse effector proteins like
transcriptional activators or epigenetic modifiers to dCas9/gRNA complexes can be targeted to specific
enhancer sites to induce their activity and downstream transcription profiles. Given the importance of
epigenetic states to enhancer function, the use of TALEN systems or CRISPR/dCas9 constructs that
anchor epigenetic modifiers at enhancers are promising tools to not only deepen our understanding
of enhancer dynamics but also to target and modulate enhancer function [24,61,103–107]. Similarly,
high-throughput reporter assays have the potential to further develop our understanding of key
regulatory sequences in enhancer function, while also providing a platform for combinatorial directed
evolution strategies to develop synthetic enhancers with novel properties.

Finally, it will also be important to investigate how enhancer dynamics contribute to brain
health and disease, as this provides another layer in which enhancer mediated gene regulation is
vulnerable to disruption. Thus, in addition to transcriptional control as a research tool, advances in our
understanding of enhancer biology could also provide promising new therapeutic avenues. Enhancer
activity could potentially be targeted to correct aberrant gene expression caused by dysregulation of the
enhancer (e.g., enhancer mutation) but might also be used to alleviate dysregulated gene expression in
conditions with other underlying enhancer-independent mechanisms. As enhancers and particularly
SEs can regulate multiple genes, targeting SEs could alleviate aberrant gene expression of entire
gene programs or pathways simultaneously. Furthermore, by identifying genes that are regulated by
disease-linked SEs, we could discover previously unknown elements in disease mechanisms as well
novel therapeutic targets. These targets could be harnessed in the near future in several ways, including

(1) use of cell-penetrant antisense oligonucleotide strategies to modulate functional enhancer RNAs,
(2) targeting enhancer-linked proteins (e.g., histone acetyltransferases) using small molecule drugs,
(3) or use of enhancer sequences to drive expression in gene therapy approaches.

Additionally, future strategies could leverage human GWAS datasets with gene editing to enable
pursuit of even more targeted therapeutic approaches.
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Box 1. Technical challenges to studying enhancers focusing on how we can identify enhancer elements,
functionally validate them, screen for target genes, and functionally dissociate and study genomic
enhancers and their corresponding enhancer RNAs.

Box 1: Technical challenges to studying enhancers.
Identifying enhancer regions
Based on our knowledge about the chromatin structures and epigenetic signatures of enhancer regions,

ChIP-seq for these characteristic histone marks has evolved as common screening method for enhancers. Often
these studies focus on H3K27 acetylation when searching for active enhancers. RNA-seq data can complement
these searches and help identify active enhancers as well.

One of the challenges in studying enhancers is that they typically only function in specific cell types. As
a result, there are limitations when studying neuronal enhancers in many common and easy to use dividing
cell lines. This also highlights the importance of single-cell techniques to study enhancers. More recently
developed high-throughput ATAC-seq techniques to study chromatin accessibility in single cells have great
potential to drive enhancer research forward with increased cellular resolution [24,108]. However, single cell
sequencing methods that allow the assessment of the non-coding eRNAs have yet to be developed as most
available technologies require polyadenylated RNA.

Assessing enhancer function
High throughput enhancer reporter assays such as massively parallel reporter assays (MPRAs) [109] or

STARR-seq [110] have haven been valuable in large scale screens of genomic regions with enhancer function. In
these assays, whole libraries of putative enhancer DNA sequences can be tested for their enhancer activity on
a minimal promoter which makes it possible to test many target regions simultaneously. Even though these
approaches have provided tremendous insight into the enhancer landscape, in vivo screens of enhancer activity
will be the next necessary step to directly identify regions with enhancer activity in different cell types and brain
regions over time and in response to different environmental stimuli.

Identifying enhancer targets
While enhancers often regulate nearby genes, they can act over long distances or even regulate multiple

genes [111]. It therefore remains challenging to identify target genes of enhancers. Chromatin capture sequencing
approaches such as Hi-C-seq can help identify enhancer interactions with other regions in the genome and
provide information about potential target genes. Unfortunately, this approach cannot currently be combined
with techniques that asses functional readout (e.g., MPRAs) to be able to identify enhancer function associated
with specific chromatin configurations.

Technological advances that allow mapping of RNA-genome interactions (MARGI) are particularly promising
in revealing eRNA interactions on a genome-wide scale. An atlas of non-coding RNA interactions could
help identify previously unknown enhancer and eRNA targets and provide a deeper understanding for how
non-coding RNAs affect chromatin conformation and transcriptional regulation genome-wide [112–114].

Studying enhancers vs eRNAs
Enhancer transcription is commonly used as a marker of active enhancer, which leads to the next question:

How do we dissociate genomic enhancers from their enhancer RNAs when studying their function? Traditional
mutations of the enhancer region do not allow us to tease apart which observed effects are based on the
genomic enhancer and which are based on its eRNA. Even new genome and epigenome editing tools such
as the TALEN or CRISPR-dCas9 systems, in which chromatin remodelers, and transcriptional activators or
repressors can be targeted to the enhancer, cannot fully dissociate the two functional units. In addition to
direct RNA knockdown approaches that don’t affect the underlying DNA, recent studies have employed
CRIPSR-Display, a tool that allows for RNA tethering to the enhancer to study the effects of non-coding RNAs in
a more direct fashion [60,61,103,115]. Nonetheless, studying the genomic enhancers without affecting eRNAs
remains problematic.

4. Conclusions

Enhancers are key genomic features that not only define the development of the central nervous
system but also contribute to numerous neurodevelopmental, neuropsychiatric and neurodegenerative
diseases. Our understanding of enhancer function in the brain is rapidly accelerating, in part
due to innovative technologies that overcome many previous limitations (Box 1). In addition to
defining how enhancers work at the molecular level, this increased understanding has led to a
new appreciation for the genetic substrates underlying diseases marked by enhancer dysfunction,
while also providing intriguing new therapeutic targets. However, much remains unknown about
enhancers. For example, technical limitations make it difficult to assign specific functional roles to all
annotated enhancers—much of this work will require detailed and laborious mechanistic investigations.
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Likewise, the hierarchy of specific biomolecular events in enhancer activation, maintenance and
decommissioning remains unclear. Finally, despite numerous breakthroughs, the extent to which
enhancers can be harnessed for disease prevention or treatment is largely unknown. Thus, while
previous efforts have provided the necessary first steps in dissecting enhancer activity in the genome,
future work will be required to capitalize on these insights to influence human health and disease.
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