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Abstract: Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most
prevalent forms of the chronic and progressive pathological condition known as cardiomyopathy.
These diseases have different aetiologies; however, they share the feature of haemodynamic
abnormalities, which is mainly due to dysfunction in the contractile proteins that make up the
contractile unit known as the sarcomere. To date, pharmacological treatment options are not
disease-specific and rather focus on managing the symptoms, without addressing the disease
mechanism. Earliest attempts at improving cardiac contractility by modulating the sarcomere
indirectly (inotropes) resulted in unwanted effects. In contrast, targeting the sarcomere directly,
aided by high-throughput screening systems, could identify small molecules with a superior
therapeutic value in cardiac muscle disorders. Herein, an extensive literature review of 21 small
molecules directed to five different targets was conducted. A simple scoring system was created to
assess the suitability of small molecules for therapy by evaluating them in eight different criteria.
Most of the compounds failed due to lack of target specificity or poor physicochemical properties.
Six compounds stood out, showing a potential therapeutic value in HCM, DCM or heart failure
(HF). Omecamtiv Mecarbil and Danicamtiv (myosin activators), Mavacamten, CK-274 and MYK-581
(myosin inhibitors) and AMG 594 (Ca2+-sensitiser) are all small molecules that allosterically modulate
troponin or myosin. Omecamtiv Mecarbil showed limited efficacy in phase III GALACTIC-HF
trial, while, results from phase III EXPLORER-HCM trial were recently published, indicating that
Mavacamten reduced left ventricular outflow tract (LVOT) obstruction and diastolic dysfunction and
improved the health status of patients with HCM. A novel category of small molecules known as
“recouplers” was reported to target a phenomenon termed uncoupling commonly found in familial
cardiomyopathies but has not progressed beyond preclinical work. In conclusion, the contractile
apparatus is a promising target for new drug development.
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1. Introduction

Cardiovascular diseases are a major cause of morbidity and mortality worldwide. In particular,
cardiomyopathies and ischemic heart diseases are the most common causes of a chronic and progressive
pathological condition termed heart failure [1,2]. Cardiomyopathy is a term that refers to abnormalities
of heart muscle contractility, covering a heterogeneous range of aetiologies [3].
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Dilated cardiomyopathy (DCM) is characterised by cardiac dilatation and impaired contractility
(reduced ejection fraction and cardiac output), and 20–50% of cases are thought to be due to inherited
mutations, linked to over 40 cardiac genes [4]. Heart failure with preserved ejection fraction (HFpEF)
is a heterogeneous clinical syndrome, which in many patients is characterised by impairment of the left
ventricle’s ability to relax and fill during diastole, resulting in insufficient blood flow to meet the body’s
needs. HFpEF is estimated to affect approximately three million people in the US and is associated with
significant morbidity and mortality. In both HFrEF and HFpEF, the primary abnormality is usually not
in the contractile apparatus. Hypertrophic cardiomyopathy (HCM) is characterised by left ventricular
hypertrophy and hypercontractility [5,6]. It is almost always caused by mutations of genes encoding
sarcomeric proteins [5].

Current pharmacological treatment strategies of HCM, DCM and heart failure (HF) are mainly
centred on managing the symptoms as well as minimising disease progression; however, these strategies
are not disease-specific since they target neurohormonal system and excitation–contraction coupling
while the basic disease mechanism remains untreated.

Cardiomyopathy is fundamentally due to abnormal contractility; therefore, targeting the contractile
apparatus of cardiac muscle is critical. We now know enough about the mechanisms of contractility
and its Ca2+-regulation and modulation by phosphorylation and mutations to be able to define suitable
targets for drug treatments to alleviate the abnormalities of cardiomyopathies. The current focus of
cardiac muscle studies is in the direction of developing new therapeutic approaches that act directly
on the contractile apparatus or its regulators and thus, in theory, avoid many of the side effects of
current treatments.

We have identified five classes of small molecule activity that have potential for various
cardiomyopathies (see Figure 1). Hypertrophic cardiomyopathy (HCM) is manifested as hypercontractility
of cardiac muscle and therefore should be targeted by myosin inhibitors or Ca2+-desensitisers [7,8]. A wider
range of contractile abnormalities is found in myopathies characterised by inadequate cardiac muscle
contractility such as HFrEF, HFpEF or DCM. In skeletal muscles, hypocontractile diseases occur as a
result of mutations leading to congenital skeletal muscle myopathies [9]. In cardiac muscle, however,
hypocontractility associated with heart failure is more complex in its nature and it is unlikely that we
could target all its forms via a single compound. Currently, hypocontractility research is in the direction
of myosin activation and Ca2+ sensitisation of thin filament and this may only be appropriate for a
small range of cardiomyopathies. In this study, we have focused on the effects of small molecules
on dilated cardiomyopathy (DCM), both familial and idiopathic. Lastly, there have been reports of a
phenomenon termed Uncoupling that is associated with some cases of DCM and HCM and can be
reversed by recoupling agents [10,11].

Already, some promising small molecules have been developed, such as the myosin activator
Omecamtiv Mecarbil, to treat HF and DCM, and myosin inhibitor Mavacamten, to treat HCM.
Both drugs have shown the viability of this approach of treatment for various forms of cardiomyopathy.

In this review, we investigate the potential therapeutic targets in the cardiac and skeletal muscle
contractile apparatus and the actions of small molecules that act directly on contractile apparatus.
We then offer an assessment of the advantages and disadvantages of these as treatments.
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Figure 1. Five potential therapeutic targets in the contractile apparatus for small molecules. Original figure
was made by using BioRender.com. The availability of myosin heads for interaction can be ameliorated via
myosin activators or alleviated by myosin inhibitors. Similarly, affinity of troponin C towards Ca2+ ions
can be increased (Ca2+-sensitisers) or decreased (Ca2+-desensitisers). Protein kinase A (PKA)-dependent
phosphorylation of TnI was found to be lost in some forms of hypertrophic cardiomyopathy (HCM)
and dilated cardiomyopathy (DCM), but it can be restored via Recouplers. Figure was created by using
Biorender.com.

2. Contractile Activators as Treatments for Heart Failure and Muscular Myopathies

HFrEF is associated with structural or functional abnormalities of cardiomyocytes which, as a
consequence, trigger neurohormonal axis activation and cardiac remodelling as compensatory
mechanisms that ultimately result in chronic heart failure and death [12,13]. Current therapies,
including β-blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers
(ARBs), mineralocorticoid receptor antagonists and angiotensin receptor–neprilysin inhibitors,
act indirectly to perturb these compensatory mechanisms with a minimal capability to enhance
cardiac function [14–16]. It has been hypothesised that direct activation of the contractile proteins
would be a more effective treatment approach.

2.1. Cardiac Muscle Ca2+-Sensitisers (or Positive Inotropes)

Early attempts at developing cardiac agents were focused on finding compounds that can improve
cardiac output identified as positive inotropes. Positive inotropes have been studied for decades
and they can be categorised into either “calcium mobilisers”, which act by elevating the magnitude
of calcium ions entering the myocytes or “calcium sensitisers”, which increase the sensitivity of
myofilaments towards Ca2+ ions. It has been proposed that a successful inotropic drug would be one
that increases contractility by directly increasing Ca2+ sensitivity independent of excitation–contraction
coupling (EC-coupling) and adrenergic system. Ca2+-sensitisers that act upon troponin are considered
as a subclass of inotropic agents. Several drugs with Ca2+ sensitising activity have been tested in the
clinic over the last 30 years.

Levosimendan is a positive inotrope that can improve cardiac contractility without increasing
oxygen demand of the myocardium unlike most inotropes [17,18]. Levosimendan binds to the
hydrophobic patch of the N-domain of cardiac troponin C with EC50 of approximately 1 µM [19].
Unfortunately, levosimendan also has the ability to activate ATP sensitive K+ channel in addition to
inhibiting III isoform of PDE enzyme [20]. Several large clinical trials of levosimendan in heart failure
patients were conducted, summarised in Table 1. Although levosimendan appears to be more effective
than dobutamine in acute situations it has not been found to be of value in long-term treatments.
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Pimobendan is an oral Ca2+-sensitiser but also a PDE inhibitor developed by Boehringer
Ingelheim Pharma KG. The pimobendan in congestive heart failure (PICO) trial in 1996 revealed
that pimobendan contributed in increased risk of mortality compared to placebo (Table 1) [21,22].
Nowadays, pimobendan is approved only for the treatment of heart failure in dogs [23,24].

Bepridil is an oral Ca2+-sensitiser that is also a calmodulin (CaM) antagonist, Ca2+ channel
blocker (negative inotrope) and potassium channel blocker. It is still marketed in US, Japan, Belgium,
France and Ireland indicated for Angina pectoris [25]. Papadaki et al. showed that bepridil uncoupled
troponin I phosphorylation from changes in Ca2+ sensitivity as well as enhancing Ca2+ sensitivity [10].

MCI-154 (Senazodan) is a PDE III inhibitor and Ca2+-sensitiser developed by Mitsubishi Pharma
Corporation in Japan. It exerts its positive inotropic and chronotropic effects by binding directly
to troponin C. Senazodan was tested in five trials in the 1990s and early 2000s, and in all of those
trials, the small molecule showed favourable haemodynamic profile, as compared to dobutamine;
nevertheless, no data were published thereafter about its development [26].

EMD57033 is a thiadiazinone derivative and a positive inotrope that increases the force of
the contraction without altering intracellular the Ca2+ transient and has minimal PDE inhibition
activity [27]. EMD57033 acts as a Ca2+-sensitiser by binding to the hydrophobic pocket of the C-domain
of troponin C leading to a weak cTnC–TnI interaction [18]. Baudenbacher et al. showed the left
shift in log Ca2+ vs. relative force in mice was associated with a higher susceptibility to ventricular
arrhythmias [28]. As a “pure” Ca2+-sensitiser, EMD57033 ought to be a superior inotrope but due to
bioavailability problems, it has not been tested in the clinic.

AMG 594 is an allosteric cardiac troponin activator that is claimed to be direct and specific,
developed by Cytokinetics for the treatment of HF [29]. Conference proceedings reported that AMG
594 acts solely on the sarcomere by sensitising cardiac troponin to Ca2+ ions, leading to more myosin
heads engaging with actin filaments, and more contractile force being generated [30]. A phase I clinical
trial of AMG 594 was completed on August 2020, but there are no available data so far.

Ca2+-sensitisers that act upon troponin are considered as subclass of inotropic agents. In principle,
developing a “pure” Ca2+-sensitiser that can enhance cardiac contractility without affecting EC-coupling
or compromising cardiac energetics would avoid most of the defects of current compounds. In clinical
practice, bepridil, pimobendan, MCI-154 and levosimendan have failed as treatments for chronic
HF largely because of the off-target effects of such drugs, notably PDE inhibition and enhanced
arrhythmia [28,31].

The only well-researched apparently pure Ca2+-sensitiser is EMD57033 with preclinical data,
suggesting that the concept of troponin Ca2+ sensitisation may be viable; however, its bioavailability
problems have prevented any clinical studies. The new troponin activator developed by Cytokinetics
(AMG 594) claims to be a “pure” and selective cardiac troponin activator, although little data have
been published, and phase I clinical trial has only recently completed. According to the preclinical
data, AMG 594 seems to be enhancing cardiac contractility independently of EC coupling in a similar
way to Omecamtiv [30]. It should be noted that myofilament Ca2+ sensitisation by any route has the
potential to enhance arrhythmias which may limit the clinical utilisation of any Ca2+-sensitiser [28].
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Table 1. Overview of reported clinical trials on calcium sensitisers.

Drug Name Trial and Year(s) Study Design (n) Targeted Population Aim Key Findings Ref.

Pimobendan
PICO
1996

Randomised,
double blind,
placebo controlled trial

(317) Patients with LVEF ≤ 45% To determine the effects of pimobendan
2.5 and 5 mg daily on exercise capacity
in patients with chronic HF

-Increase exercise tolerance,
-Pimobendan increased mortality

[21]

Levosimendan

RUSSLAN
2002

Randomised,
double-blind,
placebo-controlled study

(504) Patients with LV failure
complicating AMI

To evaluate the safety and efficacy of
levosimendan in patients with left
ventricular failure complicating acute
myocardial infarction

-Low-dose levosimendan reduced
the risk of worsening HF

[32]

LIDO
2002

Multicentre,
randomised,
double-blind,
double-dummy,
parallel-group trial

(203) Patients with ADHF To evaluate the effects of levosimendan
vs. dobutamine on haemodynamic
performance and clinical outcome in
patients with low-output HF

-Improved haemodynamic performance more
effectively than dobutamine
-Reduced mortality with levosimendan for up
to 180 days

[33]

NCT00048425
REVIVE I and II
2004,2013

Randomised,
multicentre,
double blind,
2 sequential trials

(700) Patients with ADHF To evaluate efficacy of iv levosimendan
vs. placebo in the short-term treatment
of decompensated chronic heart failure

-Rapid and durable symptomatic relief
-Increased risk of adverse cardiovascular
events and 14-day mortality

[31]

NCT00348504
SURVIVE
2007

Randomised,
double-blind,
multicentre,
Parallel-group study

(1327) Patients with ADHF To assess the effect of a short-term IV
infusion of levosimendan or dobutamine
on long-term survival

-Initial reduction in BNP
-No significant reduction of all-cause mortality
at 180 days
-No effect on any secondary clinical outcomes

[34]

LVEF, left ventricular ejection fraction; HF, heart failure; LV, left ventricle; AMI, acute myocardial infarction; ADHF, acute decompensated heart failure; IV, intravenous; BNP, B-type
natriuretic peptide.
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2.2. Cardiac Myosin Activators

The development of direct myosin activators was fuelled by hypothesising that direct activation of
cardiac sarcomere can improve cardiac performance with an additional advantage of being independent
of the usual neurohormonal response and cardiac remodelling [35,36]. Selective activation of the
actin and myosin interaction aims to avoid disadvantages of classic inotropic agents that enhance
cardiac contractility but, at the same time, increase oxygen demand, heart rate and intracellular calcium
transient which are linked to hypotension, arrhythmias and mortality [31,33,37,38].

2.2.1. Omecamtiv Mecarbil

A high-throughput screening (HTS) of around 40,000 small molecules, using a myofibrillar ATPase
screen, led to the discovery of Omecamtiv Mecarbil (OM) [36,39]. OM (formerly known as CK-1827452
and AMG-423) was developed by Cytokinetics in collaboration with Amgen as a novel, allosteric cardiac
myosin activator. The molecular mechanism initially proposed by the Cytokinetics group was that
OM binds the catalytic S1 domain of the myosin, causing four-fold acceleration of the phosphate (Pi)
releasing step thus, enhancing duty ratio [35,40]. However, once the compound became available to
third party researchers several inconsistencies in the model were found. Nagy et al. pointed out that
OM increased the Ca2+ sensitivity at concentrations of 0.1 µM and higher in permeabilized rodent
cardiomyocytes. Furthermore, activation was biphasic and concentrations above 1 µM, OM inhibited
force production [41]. Moreover, Liu et al. demonstrated that OM reduced the velocity of crossbridge
cycles in an in vitro motility assay, using porcine fibres [42].

The molecular mechanism was explained by Woody et al.; they showed that OM caused a 10-fold
reduction in the size of the working stroke (from 5.4 nm to around 0 at 10 µM) as well as five-fold
prolongation in the actomyosin attachment duration [43]. These observations account for the inhibitory
and Ca2+-sensitising effect of OM by being a cooperative activator of the thin filament [43,44]. All in
all, it is clear now that OM exerts its action by recruiting more crossbridge cycles instead of altering
their dynamics which can be described as “more hands pulling on the rope”.

A preclinical model of pigs with left ventricular dysfunction showed that treatment with OM
contributes to elevated myocardial O2 consumption [45]. It has been argued that the elevation of
myocardial O2 demand, a sign of cardiac ischemia, was due to the administration of high concentrations
of OM [46]. Similarly, Teerlink et al. reported in their first-in-man trial that signs of myocardial
ischemia emerged at plasma concentrations above 1200 ng/mL [47]. This is a negative property of OM
as it contributes to narrow its therapeutic window.

There have been several clinical trials of OM that are detailed in Table 2. OM has been studied in
healthy men, patients with chronic systolic HF and patients with acute HF. Phase I trials were conducted
in healthy participants to assess pharmacokinetics and pharmacodynamics of OM in intravenous and
oral formulations. So far, OM has been well-tolerated and elevation in ejection fraction and cardiac
output was observed. However, in one of these trials (ATOMIC-HF) the primary (relief of dyspnoea)
and secondary endpoints were not met which has led some to question the value of further trials [48,49].
Recently, results of a large randomised, placebo-controlled phase III Global Approach to Lowering
Adverse Cardiac Outcomes through Improving Contractility in Heart Failure (GALACTIC-HF) trial
were published (see Table 2) [50]. The primary outcome was a composite of a heart-failure event or
cardiovascular death (whichever comes first). Secondary outcomes included cardiovascular death,
change in in the total symptom score on the Kansas City Cardiomyopathy Questionnaire (KCCQ) from
baseline to week 24, first hospitalisation for heart failure or death. A significant yet modest reduction
in the incidence of the composite primary outcome was shown in 37% of the OM group and in 39.1% of
the placebo group (95% confidence interval (CI), 0.86 to 0.99; p = 0.03). Moreover, the trial did not show
any significant improvement in the secondary outcomes and the incidences of myocardial ischemia,
ventricular arrhythmias and death were similar in both OM and placebo groups. It is worth noting
that a higher treatment benefit was suggested in patients with LVEF of 28% or less (New York Heart
Association (NYHA) class of III or IV).
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2.2.2. Danicamtiv

Danicamtiv (formerly known as MYK-491) is the lead candidate myosin activator in a programme
developed by MyoKardia (now sold to Bristol Meyers Squibb) in collaboration with Sanofi for the
treatment of systolic heart failure, and specifically DCM. The small molecule is catching up with OM
and currently just finished a phase II clinical trial. MyoKardia claims that “MYK-491 directly activates
cardiac actomyosin, enhancing the initial step of the force-producing chemo-mechanical cycle by
Increases the rate of Pi release and availability of myosin-heads”; studies on the molecular mechanism
have not been published but it is suggested that the mechanism is similar to OM [51,52].

Danicamtiv binds selectively to human cardiac myosin isoform without binding to skeletal or
smooth muscle isoforms resulting in the elevation of ATPase turnover rate (+85% in ventricular
myofibrils) and increased Ca2+ sensitivity (+0.35 pCa unit) [53]. In acutely treated male beagle dogs
with induced HF (n = 7), administration of Danicamtiv prolonged SET and improved LVEF in addition
to cardiac output [53].

Danicamtiv has been studied in a single-ascending dose phase IIa trial in 40 patients with chronic
and stable HFrEF (see Table 2). The small molecule caused a dose-dependent elevation in left ventricular
stroke volume (LVSV) and an increase in SET in medium and high concentrations. No changes in
diastolic blood pressure or heart rate were reported except for a minor reduction systolic blood pressure
in high concentration cohort. Moreover, no signs of cardiac ischemia were reported at the doses
used [53]. Most of these results are rather similar to OM; however, the effects of chronic treatment have
not been studied.
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Table 2. Overview of all reported clinical trials on cardiac myosin activators.

Drug Name Trial, (Phase) and Year(s) Study Design (n) Targeted Population Dose and (Trial Duration) Primary Endpoint/or Aim Key Findings Ref.

Omecamtiv Mecarbil
(formerly CK-1827452
OR AMG 423)

NCT01380223
(I)
2005–2006

Double-blind,
randomised,
four-way crossover,
placebo-controlled,
dose-escalation, single-centre study

(34) Healthy males IV 0.005–1.0 mg/kg/h
(6 h)

To determine maximum tolerated dose
of OM

-OM increases SET, SEF, SV, FS (all p < 0·0001)
-Maximum tolerated dose of OM was
0·5 mg/kg/h

[47]

NCT00624442
(II)
2007–2009

Double-blind,
randomised,
placebo controlled,
dose-escalation,
multicentre international study

(45) Patients with stable
chronic systolic heart failure

IV
Loading
0.125–1.0 mg/kg/h;
maintenance
0.0625–0.5 mg/kg/h
(4 treatments at least 7 days apart)

To assess safety and tolerability of OM -OM caused a concentration-dependent
increases in SET and SV, also a reduction in HR
was reported (p < 0.0001)
-Cardiac ischaemia was observed in
two patients at high plasma concentrations
(» 1750–1350 ng/mL)

[54]

NCT00682565
(II)
2008

Double-blind,
randomised,
placebo-controlled,
multicentre study

(94) Patients with ischemic
cardiomyopathy and angina

IV
Loading
24–48 mg/h for 2 h
maintenance
6–11 mg/h for 18 h
(7 days)

To assess the safety and tolerability of OM
during symptom-limited exercise in
patients with ischemic cardiomyopathy
and angina

-Asymptomatic elevation in troponin and
CPK-MB levels

[55]

NCT01300013
(IIb)
ATOMIC-AHF
2013–2015

Double-blind,
randomised,
placebo-controlled,
multicentre Study

(613) Patients with acute
systolic heart failure (AHF)

IV
Loading
7.5–20 mg/h for 4 h
maintenance
1.5–4 mg/h for 44 h
(48 h)

Dyspnea relief in patients assessed after 6,
24 and 48 h (using the 7-point Likert scale)

-No improvement in primary endpoint or
secondary outcomes
-Similar rates of adverse events between
treatment and placebo groups
-OM increased SET and decreased LVESD

[48]

NCT01786512
(IIb)
COSMIC-HF
2011–2015

Double-blind,
randomised,
placebo-controlled, multicentre,
dose-escalation study

(448) Patients with systemic
chronic heart failure with
LVEF ≤ 40%

Oral
25 mg twice daily or
PK-guided
titration to
50 mg twice
Daily
(20 weeks)

To assess safety, tolerability and
pharmacokinetics of OM in 20 weeks
of treatment

- OM increased SET and SV
- OM reduced HR and NT-proBNP
- Comparable adverse events between
the groups

[56,57]

NCT02929329
(III)
GALACTIC-HF
2020

Double-blind,
randomised,
placebo-controlled,
multicentre international study

(8256) Patients with
symptomatic chronic HF
with EF ≤ 35%

Oral
25 mg twice daily
or PK-guided titration to
50 mg twice
Daily in addition to standard
HF therapy
(21.8 months)

Time to the next cardiovascular death or
first HF event whichever occurred first

-Primary-outcome event occurred in 37% of
the OM group and in 39.1% of the placebo
group (95% CI 0.86 to 0.99; p = 0.03)
-10% reduction in the median NT-proBNP level
in OM group than placebo group at week 24
compared to Baseline; the median cardiac
troponin I level was 4 ng/L higher
than baseline.

[50,58,59]

NCT03759392
(III)
METEORIC-HF
2021

Double-blind,
randomised,
placebo-controlled,
multicentre study

(270) Patients with
chronic HFrEF

Oral
25 mg twice daily
Or PK-guided titration to
50 mg twice
Daily
(20 weeks)

Change in pVO2 on cardiopulmonary
exercise testing from baseline to Week 20

Ongoing phase III trial [60]
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Table 2. Cont.

Drug Name Trial, (Phase) and Year(s) Study Design (n) Targeted Population Dose and (Trial Duration) Primary Endpoint/or Aim Key Findings Ref.

Danicamtiv
(MYK-491)

NCT03062956
(I)
2017

Randomised,
placebo-controlled study of single
ascending oral doses

(67) Healthy volunteers Oral
Range 3–550 mg
(5 days)

To investigate safety, tolerability,
pharmacokinetics and pharmacodynamics
of MYK-491

-Dose and concentration dependent
increased contractility
-Modest increase in SET and SV
-The drug was generally well-tolerated in the
range of 3 to 550 mg

[52]

NCT03447990
(IIa)
2018–2019

Randomised,
double-blind,
placebo-controlled,
two-part adaptive design study

(40) Patients with HFrEF 175–550 mg or placebo
(9 days then follow-up for a week)

To further investigate safety, PK/PD and
tolerability of MYK-491

-50 mg BID achieved steady state
concentrations at 2000 to 3500 ng/mL
-Dose-dependent increase in LVSV, SET
-No reports of cardiac ischemia

[53]

OM, Omecamtiv Mecarbil; IV, intravenous; SET, systolic ejection time; SEF, systolic ejection fraction; SV, stroke volume; HR, heart rate; CPK-MB, cardiac creatinine kinase myocardial band;
LVESD, left ventricular end-systolic dimension; AHF, acute heart failure; LVEF, left ventricular ejection fraction; PK, pharmacokinetic; PD, pharmacodynamic; NT-proBNP, N-terminal
pro-B-type natriuretic peptide; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; BID, twice daily; LVSV, left ventricular stroke volume; pVO2 peak oxygen uptake.
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2.2.3. EMD57033

EMD57033 has also been proposed as a myosin activator, in addition to being a positive inotrope
and Ca2+-sensitiser acting on cardiac troponin [27]. However, a recent study shows that EMD57033 is
an effective preserver of myosin activity rather than an activator [27,61].

2.2.4. Assessment of Myosin Activators

Investigating the literature led to finding reports on three compounds that may have cardiac
myosin activation properties, and only two of those compounds (Omecamtiv Mecarbil and Danicamtiv)
made it to the advanced stages of drug development, with the first in phase III and the latter catching
up. Both Omecamtiv Mecarbil and Danicamtiv have been formulated in oral and intravenous dosage
which is necessary for further drug development.

Despite the encouraging results of Omecamtiv Mecarbil as a myosin activator in vitro and as a
contractile activator in vivo in animal studies, the small molecule shows a limited efficacy in clinical
trials [48,56]. It has been questioned whether continued trials with Omecamtiv Mecarbil are worthwhile [49].
Nevertheless, Omecamtiv Mecarbil has been granted fast track designation as a potential new treatment
for heart failure from the US Food and Drug Administration (FDA) [62]. With the limited data so far,
it appears that Danicamtiv acts in the same way as OM.

Current therapeutic options for the treatment of HFrEF have been successful in reducing mortality
rates which sets the bar high for any new therapy. All available treatments for HFrEF are focused
on reducing the load on the heart, thus preserving the heart function only without improving its
mechanical output. Myosin activators have the advantage of acting directly on the contractile apparatus
to enhance cardiac contractility by prolonging systolic ejection time (SET), a property that cannot
be found in the conventional positive inotropes. The question remains, will direct activation of the
contractile apparatus be of benefit for a long-term treatment of chronic HF? Phase III GALACTIC-HF
clinical trial was conducted for around 22 months and showed a minor reduction in the incidence of a
composite of HF-event or death due to cardiovascular causes. With such results it seems that myosin
activators (OM specifically) are unlikely replacing current standard therapies any time soon.

Although myosin activators increase contractility in a selective manner which can be valuable in
treating systolic heart failure, their Ca2+ sensitising effect, which might promote diastolic dysfunction
and arrhythmias, limits the expectations of their future therapeutic worth. This is an inevitable
consequence of the cooperative allosteric mechanism of regulation of contractility that the compounds
act upon. This cooperative allosteric mechanism is likely to be responsible for the diastolic dysfunction
observed at high doses that could limit the therapeutically safe range of doses. Indeed, a narrow
therapeutic window is implied by the need for dose titration in most clinical studies.

In most aspects, the effect of OM mimics the effect of mutations that cause hypertrophic
cardiomyopathy. In particular, both increase myofilament Ca2+-sensitivity by similar amounts leading
to hypercontractility at the expense of possible diastolic dysfunction and enhanced arrhythmia [7,35,43].

In their book Therapeutic strategies for managing heart failure (2000), Silber and Katz described the
failing heart as “a sick, tired horse pulling a wagon up a steep hill”, which is an excellent analogy
to view heart failure and its therapeutic options for helping the horse and wagon “up the hill” [63].
The currently used therapies are mostly based on “unloading the wagon” as their mode of action
whilst myosin activators are thought to be “whipping the horse”, which may not be therapeutically
advantageous for long-term treatment.

Omecamtiv Mecarbil has been studied in a spectrum of aetiologies of HF, unlike Danicamtiv,
which has been promoted as potential therapy for DCM. This raises the question, would a more precise
target such as familial DCM, especially if caused by mutations in contractile proteins, lead to better and
more successful outcomes? At the same time, would it be worthwhile to target such a small fraction of
HFrEF patients?
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2.3. Skeletal Muscle Activators and Ca2+-sensitisers

Skeletal muscle congenital myopathies are characterised by muscle weakness. They can be due to
abnormalities of the contractile apparatus or a reduction in the density of muscle innervation, the rate
of neuromuscular junction activation or the efficiency of synaptic transmission. It was proposed that
a small-molecule fast-skeletal–troponin activator, would increase muscle strength in myopathy due
to mutations in contractile proteins but could also be useful by amplifying the response of muscle
when neural input is otherwise diminished secondary to neuromuscular disease [64]. This is possible
because, unlike cardiac muscle, skeletal muscle has the advantage of being regenerative thus muscle
activation can promote muscle growth [65]. A screen for Ca2+ sensitising agents that target fast skeletal
muscle troponin by Cytokinetics yielded the following compounds: Tirasemtiv (or CK-2017357),
Reldesemtiv (or CK-2127107) and CK-2066260.

2.3.1. Tirasemtiv

Tirasemtiv (or CK-2017357) was developed by Cytokinetics as an orally administered, highly specific
small molecule fast skeletal troponin activator (FSTA) with affinity of 40 nM. Russell et al. proposed
that amplifying the sarcomeric response to insufficient neuronal input by increasing Ca2+ sensitivity to
troponin-tropomyosin complex can improve muscular force generation and physical performance in
patients with neuromuscular disorders such as Myasthenia gravis and amyotrophic lateral sclerosis
(ALS). In a passive transfer experimental autoimmune myasthenia gravis (PT-EAMG) rat model,
Tirasemtiv increased the force of muscle contraction at submaximal nerve stimulation frequencies,
increased grip strength, and decreased muscle fatigability [64].

Hansen et al. reported that Tirasemtiv augmented the skeletal muscle response to nerve input in healthy
human males, in a randomised, double-blind, four-period crossover study [66]. Tirasemtiv underwent phase
II clinical trials in patients with ALS (ClinicaltrialNCT01709149), peripheral vascular disease (NCT011310313)
and myasthenia gravis (NCT01268280). The ability of Tirasemtiv to pass the blood–brain barrier (BBB)
contributed in adverse events such as dizziness and fatigue.

Nevertheless, in 2012, Tirasemtiv was granted fast track designation from the American FDA
in addition to the orphan drug status for ALS in Europe and the US [67]. Despite all that, in 2017,
Cytokinetics decided to suspend the development of Tirasemtiv due to the negative results from the
VITALITY-ALS trial [68].

2.3.2. Reldesemtiv

Reldesemtiv (formerly known as CK-2127107 or CK-107) is a next generation, orally available
FSTA developed also by Cytokinetics in collaboration with Astellas Pharma with a potential benefit in
improving skeletal muscle function and physical performance in neuromuscular disorders such as
spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), in addition to muscle fatigue
in chronic obstructive pulmonary disease (COPD) [69]. In phase I clinical trials in healthy human,
Reldesemtiv showed significant elevation in tibialis anterior muscular response in a dose-dependent
fashion that appears to be superior to Tirasemtiv [70]. Results from FORTITUDE-ALS trial indicated
that there was no statistical significance in its primary endpoint which is change from baseline in slow
vital capacity (SVC) and after 12 weeks of dosing based on a pre-specified dose-response relationship
(p = 0.11) [71].

CK-2066260 is also a Tirasemtiv-structural analogue FSTA developed by Cytokinetics, in collaboration
with Astellas, as a part of skeletal muscle activator research programme. Unlike Tirasemtiv and Reldesemtiv,
CK-2066260 has been tested on nemaline myopathy patients with nebulin mutations [72,73].

These newly developed skeletal muscle troponin-specific Ca2+-sensitisers provide an interesting
comparison with cardiac Ca2+-sensitisers. Skeletal muscle is resistant to arrhythmia and is also capable
of regenerating; therefore, Ca2+-sensitisers are safer and also can stimulate nerve and muscle growth
thus potentially alleviating a wide range of neuromuscular disorders. Nevertheless, preclinical potential
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has not translated into successful trials yet as the lead compound, Tirasemtiv, has been suspended and
its analogue Reldesemtiv failed in meeting its endpoints in the FORTITUDE-ALS trial (Table 3).

2.3.3. Piperine

Nogara et al. suggested that myosin activation of fast skeletal muscles can be of therapeutic
benefit in treating obesity and type 2 diabetes. Transferring myosin heads from the super-relaxed (SRX)
to the disordered-relaxed (DRX) state can increase the metabolic rate of the whole human body by
2–4 MJ per day [74,75]. Additionally, Nogara et al’s study found a fluorescent probe on regulatory
light chain (RLC) of myosin that shows shorter wavelengths upon the transition from the SRX to
the DRX. This was used for a high throughput screening a library of over 600 compounds which
resulted in identifying Piperine a naturally occurring alkaloid extracted from black pepper as a suitable
candidate [74,76].

As a cardiac myosin activator, Piperine fails due to the lack of specificity for skeletal muscle and
off target effects. It is conceivable that further development from piperine targeted at cardiac muscle
SRX destabilisers may uncover a useful compound.
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Table 3. Overview of reported key clinical trials on skeletal muscle activators.

Drug Name Trial and Year(s) Study Design (n) Targeted Population Aim Key Findings Ref.

Tirasemtiv (formerly known as
CK-2017357)

NCT01709
149
BENEFIT-ALS
2012–2014

Multi-national,
double-blind, randomised,
placebo-controlled study

(596) Patients with ALS To evaluate the safety and effectiveness of
CK-2017357 when taken with or without
riluzole in patients with ALS

-Primary endpoint was not met.
-Mixed results were observed for the
secondary endpoints.

[77,78]

NCT02496767
VITALITY-ALS

Multi-national,
double-blind,
randomised,
placebo-controlled,
parallel-group study

(744) Patients with ALS To confirm and extend results from a large
phase IIb trial and maximize tolerability with
a slower dose escalation

-Primary and secondary endpoints did not
show significant differences.
-Dizziness, fatigue, nausea, weight loss, and
insomnia occurred more frequently
on Tirasemtiv.
-Tirasemtiv was poorly tolerated.

[79,80]

NCT02936635
VIGOR-ALS
2016–2018

Open-label extension study (280) Patients who Completed
VITALITY-ALS

To assess the long-term safety and tolerability
of Tirasemtiv in patients with ALS

-No available data [81]

Reldesemtiv (CK-2127107)

NCT03065959
2017

Randomised,
double-blinded study

(42) Elderly patients with
muscle fatigue

To evaluate the effect of Reldesemtiv in elder
patients with muscle fatigue

-Trial terminated [69]

NCT03160898
FORTITUDE-ALS
2018–2019

Double-blind, randomised,
dose-ranging,
placebo-controlled parallel
group study

(458) Patients with ALS To evaluate effect of CK-2127107 vs. placebo
on respiratory function and other measures of
skeletal muscle function in patients with ALS

-No statistical significance
In the primary endpoint of change from
baseline in SVC after 12 weeks of treatment
-All Reldesemtiv groups had declined SVC
and ALSFRS-R less than patients on placebo

[71]

ALS, amyotrophic lateral sclerosis; BNP, B-type natriuretic peptide; SVC, slow vital capacity; ALSFRS-R, ALS Functional Rating Scale.
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3. Contractile Inhibitors as a Treatment for Hypertrophic Cardiomyopathy (HCM)

Hypertrophic cardiomyopathy is a hypercontractile disease and the majority of known mutations
that cause HCM are in thick filament proteins, myosin and MyBP-C [82,83]. It is, therefore, valuable to
find small molecules that inhibit cardiac myosin in the contractile apparatus for targeted treatment
HCM [84–86].

HCM can be divided into two categories: obstructive hypertrophic cardiomyopathy (HOCM or
oHCM), in which the left ventricular outflow tract (LVOT) is obstructed; or non-obstructive hypertrophic
cardiomyopathy (nHCM), which is characterised by the absence of LVOT at rest (<30 mm Hg) [87].
Pharmacological treatment options for patients with HOCM and nHCM include non-vasodilating
β-receptor blockers titrated to maximum tolerated dose, anti-arrhythmic drug disopyramide as an
add-on treatment (for HOCM) or non-dihydropyridine calcium channel blockers [88]. The current
therapeutic options lack specificity and they have modest efficacy in controlling LVOT gradients as
they do not target the main cause for the disease which is the hypercontracting sarcomere.

3.1. Ca2+-Desensitisers

Ca2+-desensitisers that act on troponin are a group of small molecules that, theoretically, aim to
treat HCM by desensitising the thin filament toward Ca2+ ions, thus reducing contractility.

3.1.1. Green Tea Catechins (EGCg and ECg)

Consumption of green tea has been linked to a lower risk of cardiovascular diseases in several
studies mainly due to the presence of biologically active compounds in green tea are the polyphenols
known as Catechins [89–91]. Epigallocatechin-3-gallate (EGCg) is the most widely studied catechin
which has been reported as a Ca2+-desensitiser [92]. Tadano et al. also reported that epicatechin
gallate (ECg) shares the direct Ca2+ desensitisation property with EGCg through binding to troponin
C. In skinned cardiac muscle fibres, EGCg showed a greater desensitisation effect than ECg and
cardiac-selective molecular action. In isolated working hearts of an HCM mouse model with increased
Ca2+ sensitivity, EGCg restored cardiac output by improving diastolic dysfunction suggesting a
potential therapeutic benefit in HCM. When applied to isolated cardiomyocytes of guinea pig HCM
model, EGCg showed a poor potency as it requires 30–100 µM to desensitise the myofilament, while at
lower concentrations (<1 µM), significant off-target effects were observed [93].

3.1.2. Nebivolol

Nebivolol is a β-adrenergic receptor antagonist that also has a Ca2+ desensitisation activity
at EC50 of 10 µM [94,95]. Nebivolol selectively desensitised permeabilised cardiac muscle from
Mybpc3-targeted knock-in (KI) cardiomyopathy mouse model without resulting in any significant
change in contractility [95]. The drug also had a negative impact on shortening in the cardiomyocyte,
while causing a slower contraction and relaxation [96].

Troponin based Ca2+-desensitisers have not been researched much and have not gone beyond
in vitro studies for various reasons. EGCg and related compounds are known to act promiscuously
in vivo with multiple actions that preclude their use outside in vitro situations and no therapeutic
benefit should be anticipated [97–99]. Nebivolol, on the other hand, seems to be a more promising
desensitiser as it, so far, ticked all the boxes needed in a good desensitiser. The small molecule
is cardio-specific that effectively worked in animal models and already approved as a β-blocker,
accordingly, it has an established safety profile. Since β-blockers are currently the first line of
treatment in HCM; therefore, having a compound that acts as β-blocker and Ca2+-desensitiser may act
synergistically to treat HCM.
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3.2. Recouplers

Protein kinase A (PKA)-mediated phosphorylation of MyBP-C and troponin I modulate the Ca2+

switch within the contractile apparatus. The absence of modulation of Ca2+ sensitivity by troponin
I phosphorylation results in blunted response to adrenergic stimulation in a phenomenon known
as uncoupling. In familial cardiomyopathies, mutations in thin filament proteins often associated
with the loss of this modulation, thus uncoupling is postulated to contribute to the HCM or DCM
phenotype [10,11,100,101]. In support of this, in vivo transgenic mouse studies showed that uncoupling
leads to heart failure under stress [102].

Recouplers are a novel category of small molecules that demonstrated the ability to reverse
the uncoupling of troponin I phosphorylation and Ca2+ sensitivity. Compounds that are shown
to be effective as recouplers, to date, include EGCg, Silybin B, Dehydrosilybin B, resveratrol,
novobiocin [97]. As compounds under this category are in early stages of research, our assessment
system seemed inapplicable.

3.3. Myosin Inhibitors

The concept of utilising myosin inhibitors in biochemical and physiological studies has been
around for a long time. Early myosin II inhibitors include of 2,3-butanedione monoimine (BDM),
N-benzyl-p-toluene sulphonamide (BTS) and blebbistatin; of these, only blebbistatin has been considered
as a drug prototype [103–106]. Recently a new range of unrelated cardiac muscle specific myosin
inhibitors has been developed as potential treatment for HCM.

3.3.1. Blebbistatin and Its Analogues

Blebbistatin is a myosin II inhibitor that has been widely used as a research tool in various areas
such as muscle physiology, cancer, cell migration and differentiation [107]. Structural and functional
studies showed that the inhibitory effect of blebbistatin is due its ability to stabilise myosin heads of
the thin filament in SRX thus decreasing the number of active force producing myosin heads [108].

The majority of myosin II isoforms are inhibited by blebbistatin with the highest affinity to skeletal
muscle myosin II (EC50 0.1–5 mM) and intermediate affinity for cardiac and non-muscle myosin II
isoforms (EC50 1–10 mM) ruling out blebbistatin as a cardiac compound [107]. Multiple derivatives
of blebbistatin have been developed in order to improve its physicochemical and pharmacological
properties [109], but improved specificity has not been achieved yet.

3.3.2. Mavacamten

The journey of developing Mavacamten as a small molecule for treatment of HCM started with a
hypothesis that excess sarcomere power can be the primary cause of HCM and thus, the pathological
phenotype of HCM could be alleviated by normalising the hyperdynamic sarcomeric power [110–112].
A chemical screening for compounds with the ability to reduce actin-activated ATPase rate of myosin
by MyoKardia yielded MYK-461 or “Mavacamten”.

Transient kinetic analyses showed that Mavacamten decreases the rate of inorganic phosphate
(Pi) release, the rate-limiting step of the chemomechanical cycle without altering the rate of ADP
release in actin-activated state. Mavacamten binds to myosin where it stabilises the super-relaxed (SRX)
conformation [113,114]. In mouse cardiac and bovine myofibrils, treatment with Mavacamten showed
that Mavacamten reduced ATPase activity (EC50 0.3 µM in mouse) [112]. Similarly, a dose-dependent
reduction in fractional shortening (FS) without affecting calcium transient was observed in isolated rat
cardiomyocytes (EC50 0.18 µM) [112].

In vivo effects of long term Mavacamten treatment were investigated in mouse models of HCM
expressing α-cardiac myosin heavy chain mutations and showed diminution of fibrosis and myocyte
disarray [112]. A Feline model of HCM showed that IV treatment with Mavacamten resulted in reduction
of cardiac contractility, indicated by reduced fractional shortening (p = 0.01), and left ventricular
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outflow tract (LVOT) pressure gradient (p = 0.0007) [115]. Similarly, Del Rio et al. assessed acute and
chronic cardiac responses of dogs to Mavacamten. In acute studies, Mavacamten reduced inotropic
indices (p-value < 0.05) whilst maintaining systemic pressure (MBP: 107 ± 6 to 109 ± 5 mmHg) [116].

Pharmacokinetic properties were extensively studied by Grillo et al. showing that Mavacamten
can be administered via both oral and intravenous routes. Notably, Mavacamten has a high volume of
distribution (Vd = 9.5 L/kg), plasma clearance of 0.51 mL/min/kg and half-life (t1/2) of 9 days [117].

Clinical trials on Mavacamten are detailed in Table 4. Earlier clinical trials (PIONEER-HCM and
PIONEER-OLE) targeted patients with HOCM, followed by MAVERICK-HCM, a trial designed for
patients with nHCM. In the PIONEER-HCM trial, Mavacamten was well-tolerated in the two cohorts
of patients with HOCM [118]. Moreover, PIONEER-OLE is an open-label extension trial in patients
from PIONEER-HCM and it showed reduced LVOT obstruction and improve exercise capacity without
cardiac-related adverse events [119]. MAVERICK-HCM, on the other hand, was conducted on patients
with nHCM and was designed to evaluate the dosing and safety of Mavacamten. Adverse events
reported in the trial in 90% of Mavacamten group while in 68% in the placebo group [120]. The most
commonly reported adverse events were palpitations, dizziness and fatigue [120]. Moreover, the trial
showed reduction in cardiac markers N-terminal pro b-type natriuretic peptide (NT-proBNP) and
Cardiac troponin I (cTnI) [120].

The results of phase III clinical trial (EXPLORER-HCM) were presented in European Society of
Cardiology virtual congress on August 2020 [121]. EXPLORER-HCM was the largest placebo-controlled
randomised clinical trial in HCM with 251 patients from 13 countries. The primary endpoint was an
elevation in peak oxygen consumption (pVO2) by 1.5 mL/kg per min or greater and at least one NYHA
class reduction OR a 3.0 mL/kg per min or greater pVO2 increase without NYHA class worsening [122].
The composite primary endpoint was met in 37% of Mavacamten group versus 17% of the placebo
group (p = 0.0005). Moreover, complete abolition of all LVOT gradients (resting and post-exercise)
was achieved in 57% patients in Mavacamten group. In general, Mavacamten was associated with
improvement in exercise capacity, LVOT obstruction and NYHA functional classification with reduction
in plasma NT-proBNP and cTnI.

Further developments by MyoKardia have yielded compounds that may have a better
pharmacological profile than Mavacamten. Preclinical pharmacodynamics data of MYK-581 were
presented at the American Heart Association Scientific Sessions 2019 [123]. MYK-224 is another new
Mavacamten analogue. There are no available preclinical data on MYK-224 besides what is stated
on MyoKardia’s website [124]. A Phase I clinical trial of MYK-224 has been initiated to assess safety,
tolerability and pharmacokinetics of MYK-224 in healthy participants. The trial was suspended on
May 2020 in response to the COVID-19 pandemic and resumed recruitment again in August 2020 [125].
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Table 4. Overview of reported clinical trials on cardiac myosin inhibitors.

Drug Name Trial, (Phase) and Year(s) Study Design (n) Targeted Population Dose and (Trial Duration) Primary Endpoint/or Aim Key Findings Ref.

Mavacamten (formerly
known as MYK-461)

NCT02329184
(I)
2014–2016

Open-label,
First-in-human study

(15) Patients with HCM No available data
(28 days)

To assess safety, tolerability, preliminary
pharmacokinetics and pharmacodynamics
of single ascending oral doses

-No available data [126]

NCT02842242
PIONEER-HCM
(II)
2016–2017

Open-label,
Nonrandomised,
Pilot Study

(21) Patients with HOCM
with resting LVOT gradients
of ≥30 or ≥50 mm Hg of
provoked gradient

Cohort A
Mava 10–20 mg/day w/o
background medications
Cohort B
Mava 2–5 mg/day with
b-blockers allowed
(12 weeks)

Change in post-exercise peak LVOT
gradient from baseline to week 12

-In cohort A, Mava reduced mean post-exercise
LVOT gradient from 103 to 19 mmHg at
week 12 (p = 0.008), reduced resting LVEF and
increased Peak VO2
-In cohort B, Mava decreased post-exercise
LVOT gradient from 86 to 64 mm Hg
(p = 0.020), 6% mean change in resting LVEF
and elevated peak VO2
-Most serious AEs are reduced LVEF at higher
plasma concentrations and atrial fibrillation

[118,127,128]

NCT03496168
PIONEER-OLE
(II)
2018–2020

Open-label extension study (13) Patients with HOCM
from PIONEER-HCM

After 6-18 months of
PIONEER-HCM, Mava was
administered in doses of
5,10 or 15 mg (48 weeks)

Frequency and severity of adverse events
and serious adverse events

-Interventricular septal thickness was reduced
without changes in posterior wall thickness
-AEs were mostly mild and transient in nature,
no serious adverse events were reported
-Mava reduced resting and post-exercise LVOT

[119]

NCT 03442764
MAVERICK-HCM
(II)
2018–2020

Randomised,
double-blind,
exploratory,
placebo-controlled,
multicentre,
dose-ranging study

(59) Patients with nHCM Initial dose 5 mg
1 dose titration at week 6
(2.5, 5, 10 or 15 mg)
(16 weeks followed by
8 weeks washout)

To assess the safety and tolerability of Mava
in patients with systemic nHCM

-SAEs occurred in 10% of participants on Mava
and in 21% participants on placebo, indicating
significant no difference.
-Reversible reduction in LVEF ≤ 45%
-NT-proBNP decreased by 53% in the pooled
Mava group versus 1% in the placebo group
(p = 0.0005), 34% reduction in cardiac troponin
I in Mava group (p = 0.009)

[120,129,130]

NCT03470545
EXPLORER-HCM
(III)
2018–2020

Multicentre, randomised,
double-blind,
placebo-controlled
parallel-group study

(250) Patients with HOCM Starting dose 5 mg
(30 weeks)

1.5 mL/kg per min or greater increase in
pVO2 and at least one NYHA
class reduction
OR
3 mL/kg per min or greater pVO2 increase
without NYHA class worsening

-37% of patients on
Mava vs. 17% on placebo met the composite
primary endpoint (p = 0·0005)
-A post-exercise LVOT gradient 50 mmHg was
achieved in 74% of patients in Mava group and
increased pVO2
-complete ablation of all LVOT was achieved
in 57%

[121,122]

NCT03723655
MAVA-LTE
(III)
2018–2025

Randomised,
long-term safety
extension study

(310) Patients
who completed
MAVERICK-HCM or
EXPLORER-HCM

No available data
(252 weeks)

Frequency and severity of
treatment-emergent adverse events and
serious AEs

Ongoing phase III trial [131]

NCT04349072
VALOR-HCM
(III)
2020–2024

Randomised, double-blind,
placebo-controlled study

(100) Patients with HOCM
who are eligible for septal
reduction therapy

No available data
(32 weeks)

Septal Reduction Therapy (SRT) Status Ongoing phase III trial [132]
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Table 4. Cont.

Drug Name Trial, (Phase) and Year(s) Study Design (n) Targeted Population Dose and (Trial Duration) Primary Endpoint/or Aim Key Findings Ref.

CK-274

NCT03767855
(I)
2018–2020

Double-Blind, randomised,
placebo-controlled,
multi-part,
single and multiple
ascending dose study

(115) healthy volunteers No available data
(Up to 29 days)

To assess safety, PK and PD of CK-274 - CK-274 was safe and well tolerated in healthy
participants.
-No serious AEs and clinically meaningful
changes in vital signs, ECGs or laboratory tests
were observed
-Dose-dependent reduction in LVEF

[133–135]

NCT04219826
REDWOOD-HCM
(II)
2020–2021

Multicentre,
randomised,
double-blind,
placebo-controlled,
dose-finding study

Patients with HOCM Cohort A
5–10 mg [ECG guided]
Cohort 3
10–30 mg of oral CK-274
(10 weeks of treatment and
4 weeks of washout)

To determine the safety and tolerability
of CK-274

Ongoing phase II trial [136]

OM, Omecamtiv Mecarbil; IV, intravenous; SET, systolic ejection time; SEF, systolic ejection fraction; SV, stroke volume; HR, heart rate; CPK-MB, cardiac creatinine kinase myocardial
band; LVESD, left ventricular end-systolic dimension; AHF, acute heart failure; LVEF, left ventricular ejection fraction; PK, pharmacokinetic; PD, pharmacodynamic; HF, heart failure;
HFrEF, heart failure with reduced ejection fraction; BID, twice daily; LVSV, left ventricular stroke volume; pVO2, peak oxygen uptake; ECG, electrocardiogram; OLE, open-label extension.
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3.3.3. CK-3773274 (or CK-274)

CK-274 is described as a next generation, oral cardiac myosin inhibitor developed by Cytokinetics
to treat HCM. Its mechanism is not detailed but is likely to be the same as Mavacamten. CK-274 was
studied in bovine cardiac myofibrils, using the ATPase assay as described in Malik et al., for OM;
which resulted in identifying a cardiac-specific inhibitory effect (EC50 1.26 µM) with little effect on
Ca2+-sensitivity [35,137,138]. Using healthy male Sprague Dawley (SD) rats, cardiac contractility
was assessed in vivo via single oral doses ranging from 0.5 to 4 mg/kg at multiple time points after
administering the single dose [138]. Echocardiography results indicated that CK-274 caused a FS
reduction in a dose-dependent manner that peaked at 1 hour. CK-274 decreased FS in a similar manner
in both WT and R403Q (HCM mutation) transgenic mice [139]. Currently, CK-274 is under investigation
in REDWOOD-HCM trial (Table 4) for patients with HOCM which has been temporarily suspended
due to COVID-19 pandemic [140]. All available data come from unpublished conference proceedings.

3.3.4. Assessment of Cardiac Myosin Inhibitors

Blebbistatin is the prototype direct myosin inhibitor and further investigation led to identifying
5 compounds with therapeutic potential in cardiac muscle. There are other small molecules with myosin
inhibition properties excluded, such as BTS, BDM and others as they only target myosin isoforms that
are found in fast skeletal muscle fibres or due to poor physicochemical and pharmacological properties.

Compared to Omecamtiv Mecarbil, Mavacamten seems to be developing in the process of drug
development faster with more favourable results. In particular, the effect of Mavacamten especially
in HOCM seems to be largely independent of HCM genotype which is valuable in a heterogeneous
disease such as HCM [121,141]. The reason for the success of Mavacamten vs. OM is most likely related
to the disease targeted. The abnormality in HCM is well understood and confined to the sarcomere
and stabilising the SRX presents a specific mechanism, whereas the abnormalities targeted by OM are
much more diffuse.

The positive results of PIONEER-HCM, MAVERICK-HCM and EXLORER-HCM show
Mavacamten to be an effective treatment for nHCM and HOCM in patients with a mean age of
around 50. Additionally, Mavacamten could be especially beneficial in younger patients to minimise
cardiac remodelling and avoid invasive surgical interventions. Moreover, it has been hypothesised
that Mavacamten could be valuable as a long-term sole treatment without the need for β-blockers and
calcium channel blockers. Two clinical trials are currently progressing (see Table 4). VALOR-HCM
is an ongoing trial that will investigate the impact of Mavacamten in younger HOCM patients who
are eligible for septal reduction therapy, while MAVA- LTE trial aims to study the long-term effect of
Mavacamten for up to five years.

The only downside of Mavacamten is that it has less favourable pharmacokinetic profile which
include long t1⁄2 (≈9 days) and low plasma clearance rate (≈0.51 mL/min/kg) [117]. CK-274 has a much
shorter half-life (about 12 h) and MyoKardia has recently developed multiple Mavacamten analogues
such as MYK-581 and MYK-224 for shorter half-life which can reduce the time necessary to achieve
steady-state concentration.

4. Discussion

In this review, the contractile apparatus of cardiac and skeletal muscle and the small molecules
that can target it were investigated, with the objective of identifying the proper small molecule to
treat muscle diseases (Figure 2). In the past decade, interest in developing small molecules that can
act directly on the contractile apparatus have emerged. This phase of research was suggested as the
“fourth wave” of muscle research [65].
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Figure 2. Assessment of therapeutic potential of small molecules that act on the contractile apparatus.
Searches of the literature yielded 21 compounds worth further consideration. The compounds were
evaluated and scored according to eight different criteria summarised in the figure. Created by using
Venngage infographic maker.
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4.1. Targets within the Contractile Apparatus

The targets we have defined do not act on the crossbridge cycle; instead, they interfere with
the cycle magnitude by “modulating its modulators”, as illustrated in Figure 3. As myopathies
are due to either hypercontracting or hypocontracting muscle, modulating the sarcomere at the
troponin or myosin level might be more effective in treating cardiac muscle disorders. In case of
HCM, a classic cardiac muscle gain-of-function disorder, myosin inhibitors and Ca2+-desensitisers
address the defect directly. Experimentally, myosin inhibitors seem promising while developing the
appropriate Ca2+-desensitisers appears to be more challenging. In contrast, HFrEF and DCM have
more complex aetiologies. Compensatory mechanisms such as neurohormonal axis activation and
cardiac remodelling (i.e., fibrosis and inflammation) are often associated with HFrEF and DCM leading
to chronic heart failure [12,13]. Heart failure also involves abnormalities in myocardial metabolism
which can trigger systemic metabolic changes [142]. Nevertheless, enhancing contractility directly
via myosin activation and Ca2+ sensitisation have been proposed as a possible approach, using small
molecules with better pharmacological profiles than existing inotropes.

Figure 3. The chemomechanical crossbridge cycle and its regulation via troponin–tropomyosin
(thin filament state) and super-relaxed/disordered-relaxed (SRX/DRX) equilibrium. The crossbridge is
represented in the blue circle. The availability of actin-binding sites is regulated by the state of thin filament
(top left). The equilibrium between blocked (no myosin bound) and closed (weak myosin-binding) is
controlled by Ca2+. Myosin heads regulate the closed-open state in a cooperative fashion. Only thin
filament in open state can participate in the chemomechanical cycle. Two small molecules that interact
with both transitions are illustrated. The availability of myosin heads is regulated by the SRX/DRX
equilibrium, and only myosin heads in DRX can be part of the crossbridge cycle. Four small molecules
can regulate the transition, as shown. Figure was created by using Biorender.com as a modified version
from References [65,83].
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4.2. Selected Small Molecules with Potential Therapeutic Value

Out of 21 compounds investigated, only six compounds showed any potential to be of therapeutic
value. Omecamtiv Mecarbil and Danicamtiv (myosin activators), Mavacamten, CK-274 and MYK-581
(myosin inhibitors) and lastly AMG 594 (Ca2+-sensitiser) are small molecules that act allosterically
to correct cardiac muscle abnormalities. OM acts by allosterically recruiting more crossbridge cycles
and just recently completed phase III GALACTIC-HF clinical trial as a treatment for HF. Danicamtiv
is another myosin activator with what appears to be a similar mode of action as OM; however, it is
targeted more narrowly to DCM as a form of HF. Mavacamten is a first-in-class myosin inhibitor
that showed clinical benefit in patients with HCM proved by the recently published results from
phase III EXPLORER-HCM trial. CK-274 is another myosin inhibitor developed by Cytokinetics and
currently in phase II trials. MYK-581 is a Mavacamten analogue developed with the aim of improving
pharmacokinetic properties. AMG 594 is a novel Ca2+-sensitiser and troponin activator suggesting a
therapeutic benefit in HF.

4.3. Limitations and Difficulties

The scarcity of published peer-reviewed data on some of the compounds in their early stages of
development is a major problem for making a critical evaluation of the small molecules. What we were
able to obtain came from the companies in the form of abstracts, posters, press releases or presentations
at private meetings. As all of these forms of literature are unpublished and non-peer-reviewed,
they were largely uninformative with the possibility of bias. Another problem is that the structure of
the new molecules is not always published and that the small molecules themselves are not necessarily
available to third parties for investigation. This is important for basic research; the best example for that
is the molecular mechanism of action of OM which was not worked out until the drug was available to
third parties and was quite different from Cytokinetics’s original proposed mechanism [35,43].

4.4. Future Prospects

In the case of myosin and troponin activators in cardiac muscle disorders, clinical trials indicated
moderate improvement in cardiac functions; however, whether they will be able to replace the current
therapies remains unlikely. In contrast, clinical trials showed that myosin inhibitors, as exemplified
by Mavacamten, are promising small molecules in treating HOCM. Its success raises the possibility
that myosin inhibitors could be a curative therapy for HOCM and it is now also being proposed as
“a unique and precise therapy, to our non-obstructive HCM patients and potentially other similar
individuals suffering from HFpEF” [143]. The subgroup identified for future evaluation of Mavacamten
is estimated to include approximately 10–20% of the broader HFpEF population.
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