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Abstract: Major depressive disorder (MDD) is a leading cause of disability worldwide. Adolescence
is a crucial period for the occurrence and development of depression. There are essential distinc-
tions between adolescent and adult depression patients, and the etiology of depressive disorder is
unclear. The interactions of multiple genes in a co-expression network are likely to be involved in
the physiopathology of MDD. In the present study, RNA-Seq data of mRNA were acquired from the
peripheral blood of MDD in adolescents and healthy control (HC) subjects. Co-expression modules
were constructed via weighted gene co-expression network analysis (WGCNA) to investigate the
relationships between the underlying modules and MDD in adolescents. In the combined MDD and
HC groups, the dynamic tree cutting method was utilized to assign genes to modules through hierar-
chical clustering. Moreover, functional enrichment analysis was conducted on those co-expression
genes from interested modules. The results showed that eight modules were constructed by WGCNA.
The blue module was significantly associated with MDD after multiple comparison adjustment.
Several Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways associated with stress and inflammation were identified in this module, including histone
methylation, apoptosis, NF-kappa β signaling pathway, and TNF signaling pathway. Five genes
related to inflammation, immunity, and the nervous system were identified as hub genes: CNTNAP3,
IL1RAP, MEGF9, UBE2W, and UBE2D1. All of these findings supported that MDD was associated
with stress, inflammation, and immune responses, helping us to obtain a better understanding of the
internal molecular mechanism and to explore biomarkers for the diagnosis or treatment of depression
in adolescents.

Keywords: major depressive disorder; gene expression; adolescent; WGCNA

1. Introduction

Major depression disorder (MDD), a serious and common mental disease, is char-
acterized by a poor mood, cognitive impairment, social withdrawal, and even suicide
tendencies [1]. It is one of the major causes of disability worldwide, with profound social
and economic consequences [2]. Adolescence is a crucial period for the occurrence and
development of depression [3], as depression often begins in adolescence [4], and among
them has dramatically high incidence and prevalence [5,6]. There are obvious differences
in the clinical symptoms [7,8], neurophysiological characteristics [9,10], and treatment
responses [11] of adolescent and adult depression. Adolescent depression symptoms
generally persist into adulthood [12], accompanied by health problems [13] and severe
psychosocial deficits [14].

Although it is widely acknowledged that depressive disorder is a complicated disease
affected by interactions between genetic and environmental factors [15], the underly-
ing mechanisms remain unclear. Additionally, the current diagnostic systems based on
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self-reporting and clinical behavioral observation [16] do not adequately reflect the neurobi-
ological alterations that induce the modified behavioral patterns in depressive patients [17].
Biomarkers of etiological pathways could provide objective, laboratory-based information
to enhance the diagnosis of depression [18]. Genome-wide association studies (GWAS)
have identified numerous single nucleotide polymorphisms (SNPs) related to major de-
pression, and have found that depression-risk SNPs affect major depression susceptibility
by changing gene expression in a tissue-specific manner. Some studies found SNPs that
regulated the expression of genes in brain tissue which play putative roles in biological
pathways related to synaptic signaling and neuronal system, and other studies revealed
changed immune pathways in whole blood [19,20]. Regardless, in most instances, these
depression risk loci are primarily located in noncoding regions of the genome, which are not
immediately indicative of a causal gene, severely restricting biological interpretation [20].
Plenty of studies have used microarrays and RNA-seq to detect the gene expression pro-
file of peripheral blood in depression, albeit the results have been inconsistent [21,22].
The transcripts discovered in prior studies were exhibited relations of various biological
processes with depression, including nucleotide binding, chromatin assembly [23], DNA
damage, DNA replication, repair processes, cell proliferation [24], neuronal apoptosis [25],
inflammation [26], immune activation [24,25], signal transduction pathways [27], etc. The
complexity of understanding the pathology of depression and discovering biomarkers for
diagnosis and prognosis is attributed, at least in part, to the heterogeneity of the disease [28].
Besides, the limitations of traditional transcriptome approaches that identify significant
single gene effects, such as over dispersion and multiple hypothesis testing [21,24], have
hindered the discovery of genetic biomarkers for depression. Gene–gene interaction and
network methods may summarize the variable spaces and enrich the information to further
explain the specific genes and biological pathways underlying depression [29].

Modularity is a universal characteristic of biological systems [30,31]. A module is a
collection of genes that are closely interrelated, and as a result, tend to share a biological
function [32,33]. The dilemma of multiple hypothesis testing with RNA-Seq data is greatly
alleviated by modular analyses of co-expression networks to confirm sets of differentially
expressed genes in psychiatric disorders [34–36], including autistic spectrum disorder [37]
and depressive disorder [38]. Thus, modular analysis has been proven to be a valuable
method for studying the molecular underpinnings of complex diseases [39]. However,
there have been few studies investigating the expression profile from a modular angle in
depression so far. To our knowledge, no existing studies have examined the co-expression
network modules of MDD in adolescents.

Weighted gene co-expression network analysis (WGCNA) is a systems biology ap-
proach for statistical analysis to investigate the complicated interactions between genes and
clinical traits. It can be used to cluster genes that are highly correlated and construct gene
co-expression network modules based on similar gene expression patterns, and to detect
intramodular hub genes and related gene modules with clinical traits [40]. Co-expression
modules are determined by unsigned hierarchical clustering [41], which is widely applied
in multidimensional spaces [42]. The dynamic tree cut method is performed to identify
the clustering dendrogram corresponding to modules [43] that are biologically meaning-
ful [44]. WGCNA is commonly used to identify candidate biomarkers for prognosis and
treatment in a variety of diseases, including cancer [45,46]. However, the application of
WGCNA has received less attention for psychiatric illnesses, with only a few studies on
depression. Zhao and colleagues determined enrichment of the estrogen signaling pathway
and glucagon signaling pathway in brains of depression patients [47]. Another case-control
study identified enrichment of apoptosis and B cell receptor signaling pathways associated
with depression using the transcriptome from peripheral blood mononuclear cells [33].
Gerring et al. integrated the gene co-expression data with SNPs genotype data, discovering
the enrichment of synaptic signaling, neuronal development, and cell transport pathways
in co-expression modules in peripheral blood and numerous brain tissues related to de-
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pression [20]. These results suggested that gene expression affected major depression in a
tissue-specific manner apart from the heterogeneity of MDD [48].

Herein, we attempted to identify gene co-expression network modules and hub genes
in relation to MDD in adolescent via WGCNA technology. RNA-Seq data from peripheral
blood mRNA were used to construct co-expression modules for the combined MDD and
healthy control (HC) adolescent participants. The dynamic tree cut from the WGCNA tool
was used to generate hierarchical clusters of similar size [40]. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then used
to annotate the genes in the interesting modules regarding functionality and pathways.
The present study may contribute to further understanding of the molecular mechanisms
underlying the physiopathology of MDD adolescents [49,50].

2. Materials and Methods
2.1. Subjects

The adolescent MDD patients were recruited from the Shandong Mental Health Center,
Jinan, China. Ten MDD Chinese adolescents (4 males, 6 females) and ten healthy controls,
14–19 years of age, were included as the subjects. Written informed assent and consent to
participate in the study were obtained from all the participants.

MDD participants were included if they were experiencing their first onset of MDD
according to the diagnostic criteria for depression of the DSM-V [51] and had a 17-item
Hamilton Depression Rating Scale (HDRS) score ≥ 24. Clinical diagnoses were confirmed
by two experienced psychiatrists applying the Structured Clinical Interview for DSM-
V disorders [52]. Healthy controls were included if they did not meet the criteria for
depression and scored ≤ 4 on the Patient Health Questionnaire-9 (PHQ-9) [18]. Patients
and healthy controls matched each other by age, race, sex, and Tanner stage. Tanner Self-
Rating Schematic Drawings were used to measure the pubertal stage [53]. The PHQ-9 was
applied because it is specific to depression, with its items mapping onto diagnostic criteria
for MDD [18].

Participants were excluded if they: (1) met diagnostic criteria for other psychiatric disorders
(schizophrenia, bipolar disorder, etc.) or depression of organic etiology (e.g., hypothyroidism);
(2) reported alcohol or substance abuse; (3) met diagnostic criteria for major medical
illnesses or organic brain disorders; (4) were pregnant; (5) had received any antidepressant
pharmacotherapy or individual psychotherapy before; (6) had a history of depression or
other psychiatric disorders in themselves or family members.

2.2. Methods
2.2.1. RNA-Seq Data Generation and Processing

Peripheral blood samples were collected into PAXgene Blood RNA tubues (Qiagen)
and whole-blood RNA was extracted utilizing the PAXgene Blood RNA Kit (Qiagen)
according to the manufacturer’s protocol. The RNA sample quality was assessed using the
Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA, USA). Following
the manufacturer’s instructions, sequencing libraries were created. The paired-end RNA
library was sequenced on an Illumina HiSeq 4000 sequencer (2 × 150 bp reading length).
The generated sequence reads were trimmed and mapped to the human reference genome
using Tophat2. Gene expression was normalized to the fragments per kilobase of transcript
per million fragments mapped (FPKM). Cufflinks was employed to analyze gene expression
and changes.

2.2.2. Weighted Co-Expression Network Construction

The WGCNA algorithm, which was assumed to follow a scale-free distribution, was
applied to perform the co-expression network module constriction of MDD [40]. The
WGCNA package within R software was applied in this study. First, we employed correla-
tion analysis to assess the co-expression relationship, and screened results for power values
using the gradient method. The power values could facilitate calculating the dissimilarity
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coefficients of different nodes. Then, we utilized the topological overlap matrix (TOM) to
build a hierarchical clustering tree, and we conducted approximate scale-free correlation
analysis, which has been widely utilized for various diseases [54]. Furthermore, we pre-
pared modules by assembling genes with high similarity into the same modules and genes
with low similarity into separate modules. To ensure high dependability of the result, the
minimum number of genes was set to 30.

2.2.3. Module–Trait Correlation and Key Module Identification

Module–trait correlations were tested by applying the association between each mod-
ule eigengene and trait, making it simple to determine the expression set (module) highly
associated with the phenotype. Gene significance (GS) and module membership (MM)
were defined for genes in the interested module eigengene (ME) [54]. Pearson correlation
analysis is widely used as the default measure among co-expression network tools. In
this study, Pearson correlation analysis between module–trait genes and phenotypes was
used to calculate module-trait correlations to identify module members. The modules with
adjusted p-values < 0.01 that showed the highest correlation coefficients were identified as
the target modules. Furthermore, since the number of genes in each module was unequal,
and some modules had large numbers of genes, the concept of dimensionality reduction
was used to filter ME. Using ME to represent a huge body of genes for correlation analysis
made gene module-to-module analysis easier [55].

2.2.4. Functional Enrichment Analysis of Genes in Key Modules

Co-expressed genes are commonly involved in the same biological processes (BP) [56].
In a sense, modules are highly enriched with genes that share functional annotations [57].
Specific gene classes should be noticeably enriched with ideal modules [58]. GO enrichment
analysis was carried out to provide further biological insight into the target module [59].
To explore which pathways were implicated in the strongly associated key modules, the
pathway enrichment of this module was tested using KEGG pathway analysis [60]. KEGG
can deduce high-level functions and utilities from molecular-level data generated by
transcriptome sequencing [61]. p-values < 0.05 were defined as significant differences [62].
The top 10 records were extracted if there were more than 10 records.

2.2.5. Hub Genes Identification

Hub genes were identified by two approaches. According to MM and GS, values of
the genes in key modules were used to identify the hub genes. |GS| > 0.5, |MM| > 0.7
were employed as the thresholds to screen candidates in interesting modules. Furthermore,
we conducted module analysis using cythubba with the Maximal Que Centrality (MCC)
method in Cytoscape (Version 3.7.2) [63]. The top ten genes ranked by MCC values were
considered as hub candidates [64–67]. The overlapped candidates obtained from the two
methods were identified as the hub genes.

3. Results
3.1. RNA-Seq Data and Analysis

According to the t-test (Table 1), there were no differences in age, sex, or race between
the MDD and HC groups. MDD and HC participants were matched for age, gender, and
race. The MDD group displayed significantly more severe depressive symptoms than the
HC group (based on HDRS score). The transcriptome data were collected using RNA-seq on
the 20 subjects. After removing adaptor and low-quality reads, a total of 148.32 GB of clean
data were produced by RNA-seq. At least 6.66 GB of clean data with >89.08 percent of them
above Q30 was generated per sample (Supplementary Table S1). These results indicated
that our transcriptome sequencing data were of high quality and sufficient for identifying
differentially expressed genes (DEGs) and building the co-expression network. A total of
18,930 DEGs were discovered utilizing the criteria of a false discovery rate (FDR) < 0.05.
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Table 1. Characteristics of MDD and HC adolescents.

Variable HC (n = 10) MDD (n = 10)

Age 16.5(1.6) 15.9(1.4)
Gender (male/female) 4/6 4/6

HDRS Mean (s.d) 1.5(0.7) 42.1(11.8)
PHQ-9 Mean (s.d) 1.4(1.3) 23.3(1.8)

3.2. Identification of Key Modules

We constructed co-expression modules utilizing the R WGCNA package base on the
expression values of 18,930 genes obtained from 20 subjects. The results revealed that all
samples could be used in our analysis without the outliers from the hierarchical clustering
tree. The power value was an essential parameter that influenced the independence
and average connectivity of the network [40]. For the network topology, we used a soft-
threshold power of four to exhibit the scale independence and average connectivity degree
of the co-expression modules (Figure 1A). Then, the gene clustering tree of the co-expression
network was used for module cutting after screening the power values. Eight modules
decorated with diacritical colors were constructed (Figure 1B). The number of genes in
each module varied from 35 to 295 (Table 2, Supplementary Table S2). The genes whose
FPKM values < 5 in each sample were excluded in this analysis. The interactions of eight
co-expression modules are depicted in Figure 1C. The co-expression relationship of genes
in the key module was revealed to be significant by graphing the adjacency heatmap, and
the eight modules were comparatively independent of each other (Figure 2A).
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Figure 1. (A) Clustering of samples and determination of soft thresholding power. (B) Hierar-
chical dendrogram of genes. Eight modules were constructed, each decorated with a different
color. (C) Visualizing gene co-expression network TOM. A light color represents a low overlap, and
gradually darker red indicates high overlap.

Table 2. Numbers of genes in the eight modules.

Module Colors Gene Number

black 56
blue 215

brown 295
green 77

magenta 35
pink 41
red 58

turquoise 294
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VS.module membership (MM) in the blue module.

3.3. Identification of Key Co-Expression Network Modules for MDD

The module-trait correlation and GS values were calculated to identify the co-expression
modules. The correlations between modules and traits were visualized using an eigengene
dendrogram (Figure 2A) and a heatmap (Figure 2B). The interrelationships between co-
expression modules and specific traits were determined by utilizing correlations between
module eigengenes and traits. By calculating the correlation coefficient, the blue module
was found to be the most closely related to MDD. The blue module unveiled significant
correlations with MDD (r = 0.63, adjusted p-value = 0.003), indicating that genes involved
in this module most likely participate in the occurrence and development of MDD in
adolescents. Gender, age, and Tanner stage were not shown to be associated with gene
modules. There were 215 genes in the blue module. Scatterplots of GS and MM were
plotted in the blue module (Figure 2C).

3.4. Functional Enrichment Analysis of Genes in the Blue Module

Further analysis of the blue module, which included 215 genes, was performed to
explore more valuable genes. GO and KEGG enrichment analyses were conducted to detect
gene functions and biological pathways closely related to MDD in the blue module. The
results exhibited that the genes of the blue module mainly participated in regulation of
transcription via RNA polymerase II promoters in response to hypoxia, positive regulation
of histone H3-K9 methylation, and calcium ion transport in BP ontology. In cellular
component (CC) ontology, genes were primarily involved in the actin cytoskeleton, and are
related to postsynaptic density and neuron projection terminus. Genes in the blue module
were involved in inward rectifier potassium channel activity, phosphatidylserine binding,
positive regulation of T cell mediated immunity, etc., in molecular function (MF) ontology
(Figure 3A, Supplementary Table S3).

The results of KEGG pathway enrichment analysis of the DEGs between the MDD and
HC groups in the blue module are shown in Figure 3B (Supplementary Table S4), which
illustrated that genes in the blue module are mainly involved in apoptosis, TNF signaling,
and NF-kappa β signaling, and they are related to ubiquitin mediated proteolysis.
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3.5. Gene Interactions within Blue Module and Hub Genes Identification

The constructed gene interaction network can be imported into the Cytoscape software
for visualization [63]. The hub candidate genes were screened based on GS and MM values
of genes in the blue module. As a result, 33 hub candidate genes were obtained from blue
module (Figure 4, Supplementary Table S5). Additionally, using the MCC algorithm in
Cytoscape, the top ten were screened as hub candidates (Supplementary Table S6). Com-
bining the two methods, at last, five down-regulated genes were identified as hub genes
closely related to MDD in adolescents: CNTNAP3, IL1RAP, MEGF9, UBE2W, and UBE2D1.
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4. Discussion

MDD, a serious and common mental disorder, has sparked broad concern and emerged
as a major public health problem. In the present study, RNA-seq was performed on
peripheral blood samples of ten MDD adolescents and ten healthy control adolescents,
yielding 18,930 differentially expressed genes. Applying the WGCNA method, eight co-
expression modules were constructed for these DEGs to explore the relationship between
MDD and the transcriptome. Only one co-expression module, the blue module, was shown
to be strongly linked to MDD. GO enrichment analysis illustrated that the genes in the
blue module were predominantly involved in positive regulation of histone methylation,
positive regulation of T cell mediated immunity, and postsynaptic density. The DEGs
in the blue module are involved in apoptosis, the TNF signaling pathway, and the NF-
kappa β signaling pathway, which are cellular functions and pathways associated with
the response to stress and immunity. Five down-regulated transcripts, including MEGF9,
IL1RAP, CNTNAP3, UBE2W, and UBE2D1, were identified as the hub genes of MDD in
adolescents. In prior gene expression studies of MDD, a single gene was commonly used
as the unit of analysis for differential expression. There have been few studies focused on
co-expression gene modules via transcriptome analysis. To our knowledge, this is the first
research to identify co-expression modules of MDD in adolescents.

WGCNA is concerned with the association between co-expression network modules
and complex diseases (in this case, MDD) [68]. Module-based analysis can be utilized to
determine gene modules that are remarkably related to depression without overfitting in
the lower-dimensional hypothesis space. In this study, the WGCNA algorithm provided
more effective information which had the potential to explore biomarkers for the diagnosis
or treatment of depression in adolescents.

The present study identified one co-expression module correlated with major depres-
sion. GO and KEGG enrichment analysis elucidated that the genes in the blue module are
predominantly involved in positive regulation of T cell mediated immunity, postsynaptic
density, apoptosis, TNF signaling, and NF-kappa β signaling. The enrichment levels of
genes in postsynaptic density, apoptosis, and signaling pathways were consistent with
some results of GWAS and transcriptome studies, showing that depression risk genes are
involved in central nervous system development, synaptic plasticity, and immune path-
ways [19,20]. Moreover, existing studies of co-expression modules conducted by WGCNA
identified enrichment of apoptosis, B cell receptor signaling in blood [33], estrogen sig-
naling, glucagon signaling in the brain [47], synaptic signaling, neuronal development,
and cell transport pathways in peripheral blood and numerous brain tissues [20]. These
results suggested some overlap between brain and peripheral blood; meanwhile, gene
expression affected major depression in a tissue-specific manner apart from the complexity
and heterogeneity of MDD [48].

It has been recognized that environmental stress, such as childhood maltreatment,
emotional trauma, and interpersonal conflict, are closely associated with depression [69–71].
However, the underlying mechanisms are largely unknown. Mounting evidence has mani-
fested strong correlations among epigenetic changes and depression [69,70,72]. Histone
acetylation is a category of common epigenetic modification that functions in the regula-
tion of DNA-templated reactions, such as transcription. In animal models, chronic stress
increased anxiety-like behavior, accompanied by the alteration of histone acetylation in
the forebrain, which showed that rats which suffered early life stress displayed greater
stress vulnerability [73,74]. The histone methylation processes have also been linked to a
variety of psychiatric diseases [75]. The present study revealed that the blue module was
primarily associated with the positive regulation of histone H3-K9 and H3-K4 methyla-
tion. The results demonstrated the correlation between stress-related epigenetic alteration
and depression.

According to the inflammatory and neurodegenerative hypothesis [76], depression is
closely correlated with inflammation and immune function, accompanied by neurodegen-
eration and declined neurogenesis [77]. A body of evidence have demonstrated the features
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of major depressive disorder, including the interrelationships between the inflammatory
response and cell-mediated immune activation [78]. The activation of the inflammatory
response system during stress exposure is associated with hypothalamic–pituitary–adrenal
axis (HPA) hyperactivity, indicating that HPA hyperactivity in depression is contributed
by proinflammatory cytokines, such as IL-1β and TNFα [77]. Consequently, cell-mediated
immune activation contributes to the serotonergic disturbances in depression. Moreover,
the activation of NF-κB and other inflammatory pathways aroused from stress stimuli,
triggered neuronal apoptosis [78]. Our results exhibited that genes in the blue module
were significantly involved in regulation of T cell-mediated immunity and predominantly
associated with pathways linked to apoptosis, TNF signaling, and NF-kappa B signaling;
and IL1RAP, associated with inflammation [79], was detected to be down-regulated in
MDD in this research. Evidence at the molecular level above illustrated the correlation
between inflammation and depression.

UBE2W and UBE2D1 relevant to immune and tumors are involved in the ubiquitin-
proteasome system, which mediates protein degradation in eukaryotes [80]. Previous
studies have found that UBE2W expression is significantly correlated with the immune
environment, and it is associated with neurodegenerative diseases and Huntington’s
disease [81,82]. Although previous studies have not identified UBE2W and UBE2D1 to be
closely correlated with depression, transcriptome analyses have discovered that depression
is linked to a range of biological processes which may be involved in inflammation and
immune activation. In this research, UBE2W and UBE2D1 were detected to be down-
regulated in MDD adolescents, indicating down-regulation the in immune function of major
depression. The results were consistent with some previous GWAS studies which showed
altered immune pathways in peripheral blood [21,83]. Gene expression studies found
that genes of major depression heavily involve the immune response against infections as
well [84]. These findings implied that depression might influence the immune response,
and immune system regulation should be applied to MDD therapy in adolescents.

CNTNAP3, a member of the CASPR (contactin associated protein) family, has been
found to be associated with several psychiatric disorders in prior studies. An animal experi-
ment found that CNTNAP3 was detected in various regions of the mouse brain (e.g., cortex,
frontal lobe, corpus callosum, hippocampus) and was suggested to play a role in cellular
recognition of neural networks [85]. The dysregulation of CNTNAP3 was found to be
linked to neurocircuit impairment in schizophrenia patients’ brains [86,87]. Researchers
found that CNTNAP3 deficiency leads to delayed motor learning [88]. However, the rela-
tionship between CNTNAP3 and depression has rarely been studied. The expression of
CNTNAP3 was down-regulated in depressed patients in the current study, demonstrating
the weaker impairment in neurocircuit. The results indicated that the dysregulation of
CNTNAP3 might affect brain function and consequently influence the onset of depression.
Therefore, CNTNAP3 might be validated as a candidate gene for transcript biomarker in
further studies.

Notably, this study found MEGF9 to be a novel candidate critical gene associated with
adolescents. MEGF9 is a transmembrane protein that contains several epidermal growth
factor-like repeats. MEGF9 is recognized to have a role in the development, maintenance,
and injury response of the nervous system [40]. Prior studies illustrated that MEGF9 was
highly expressed in neuronal and glial cells of the central nervous system and peripheral
nervous system [49]. In this study, the dysregulation of MEGF9 expression in MDD patients
indicated that the development of the nervous system and injuries to it were closely
correlated with MDD in adolescents. The dysregulated expression of BP associated with
development might be the underlying mechanism of the dramatic increase in the incidence
and prevalence of depression in adolescence. Therefore, MEGF9 might have the potential
to be the specific biomarker for MDD in adolescents.

Although the pathophysiological mechanisms of MDD in adolescents are unclear,
mounting evidence has revealed that genetic factors [89] and environmental factors such
as stress are dominantly implicated in the pathology of depression [90]. The results of
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the current study revealed genes associated with stress (e.g., positive regulation of his-
tone methylation), inflammation (e.g., IL1RAP), and immune response (e.g., UBE2W and
UBE2D1), supporting the hypothesis that the pathological processes of depression are
regulated by stress-related genes and immunological inflammation [91]. Individuals with
depressive disorder showed an increased inflammatory response to stress, accompanied
by elevated inflammatory genes. Moreover, environmental factors such as stress could
influence the occurrence and development of depression by affecting signal transduction
pathways, possibly due to the fact that genes involved in signal transduction mechanisms
are more sensitive to the emotional trauma experienced by individuals [92–94].

To the best of our knowledge, the current study was one of the early attempts to explore
the transcriptome in MDD adolescents by WGCNA and identified key genes as potential
biomarkers. In particular, we focused on transcriptome analysis of MDD in adolescence,
which is a critical period in the development of major depression that has received too little
attention. However, several limitations should be considered. Firstly, the sample size was
relatively small, and would be worthwhile to obtain sufficient data from a larger sample
size in further study. Secondly, the WGCNA strategy summarized the score for a module to
one value, which lead to putative information loss at the single gene level [40]. Moreover,
the results in this study were based on WGCNA data mining without further validation
by experiments. Finally, another potential limitation of this study was adopting gene
expression from peripheral blood. Although peripheral blood is an easily accessible source
of cells, supplying some new insights for clinical biomarkers of depression [95], it includes
various cell types and may not detect brain-specific mechanisms [21,22]. Multi-tissue
gene expression approaches may have the potential to elucidate the complex biological
mechanisms underlying major depressive disorder.

5. Conclusions

In the current research, WGCNA was applied to construct a gene-weighted co-
expression network to detect key gene modules and hub genes which were highly related to
MDD in adolescents. The blue module was identified, and genes in the blue module were
mainly enriched with positive regulation of histone methylation, positive regulation of T
cell mediated immunity, and postsynaptic density by GO analysis. Moreover, we found
that apoptosis, TNF signaling, and NF-kappa B signaling were involved in MDD. Five
hub genes related to immunological inflammation and the nervous system with significant
changes in depressed adolescents were identified as candidate biomarkers for MDD in
adolescents. Therefore, the current study supported the inflammatory and neurodegenera-
tive hypothesis of depression [71]. All of these findings reinforced that MDD is associated
with stress, inflammation, and immune responses, helping us to better understand the
internal molecular mechanisms and investigate biomarkers for the diagnosis or treatment
of depression in adolescents.
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