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Abstract
The past decades have seen the rapid development of upper limb kinematics decoding

techniques by performing intracortical recordings of brain signals. However, the use of non-

invasive approaches to perform similar decoding procedures is still in its early stages. Re-

cent studies show that there is a correlation between electroencephalographic (EEG) sig-

nals and hand-reaching kinematic parameters. From these studies, it could be concluded

that the accuracy of upper limb kinematics decoding depends, at least partially, on the char-

acteristics of the performed movement. In this paper, we have studied upper limb move-

ments with different speeds and trajectories in a controlled environment to analyze the

influence of movement variability in the decoding performance. To that end, low frequency

components of the EEG signals have been decoded with linear models to obtain the posi-

tion of the volunteer’s hand during performed trajectories grasping the end effector of a pla-

nar manipulandum. The results confirm that it is possible to obtain kinematic information

from low frequency EEG signals and show that decoding performance is significantly influ-

enced by movement variability and tracking accuracy as continuous and slower movements

improve the accuracy of the decoder. This is a key factor that should be taken into account

in future experimental designs.

Introduction
Brain-Machine Interfaces (BMIs) provide a new hope to restore motor functions of the severely
disabled people by controlling external devices with volitional commands extracted from brain
signals [1–3]. For this reason, the use of BMIs as an assistive technology for motor substitution
has been widely explored [4, 5]. The recent advances in BMI technology allow training patients
to control their brain signals and enable people with severe motor disabilities to interact with
their environment by bypassing their impaired neuromuscular system [6–8]. In the case of
stroke, motor impairment is the major cause of permanent disability. These people usually suf-
fer from upper limb movement limitations in their affected side, and the recovery of the arm
movement is often variable and incomplete [9]. This recovery is crucial in order to perform ac-
tivities of their daily life, so the assistance during the rehabilitation may be a key factor of
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improvement [10]. In these sense, BMIs could be a very useful tool to induce plasticity in
motor recovery procedures [11].

A rapid development of upper limb kinematic decoding techniques has arisen from intra-
cortical recordings of brain signals during the last decades. Now, it is possible to decode infor-
mation obtained from a large population of neurons, or even a single neuron, into accurate
kinematic parameters [12, 13]. In some studies, the motor cortical activity of monkeys was
used to perform reaching and grasping activities with a robotic arm [14], or to perform three
dimensional movements that included grasping for self-feeding using a mechanical device
[15]. Invasive approaches have been successfully used in people with motor disabilities to per-
form reaching and grasping tasks [16, 17]. So far, the remarkable progress of this approach has
provided a solid step towards the feasibility of the application of intracortical decoding not
only under laboratory conditions, but also in a real world environment. Thus, the use of these
techniques can be very useful to control robotic exoskeletons.

However, the use of non-invasive approaches to perform similar decoding procedures is still
in its early stages. Currently, a direct neural control from non-invasive brain recordings is far
from being achieved. Recent offline studies show that there is a correlation between electroen-
cephalographic (EEG) signals and hand-reaching kinematic parameters [18, 19]. This correla-
tion was found after applying a simple decoder based on linear regression between signals. In
these works, the volunteers were asked to perform random selections of eight targets in a 3D
environment. The results showed that better correlations between velocity and EEG recordings
were found when the users performed linear hand-reaching movements and decreased when
the movement variability was higher. In other works, the use of low frequency components
(< 2Hz) showed high correlation results when performing continuous right arm movements
[20]. In this case, volunteers were asked to perform natural arm movements with a variable
speed. The existence of an actual relationship between EEG signals and upper limb kinematics
is really encouraging, but there is still a great gap between current findings and an accurate and
reliable non-invasive neural decoding. Linear decoding methods applied to low frequency EEG
signals are rather controversial and there is no general agreement about the metrics used to
compare decoded and real kinematics. In [21], authors claim that there is a misinterpretation
of the results obtained from offline approaches [18]. Nonetheless, first closed loop attempts
have already been undertaken in recent studies by using a discrete four target visual interface
[22]. Again, there is a current discussion about the methods employed to assess performance,
which may throw overoptimistic results similar to the ones obtained from random data [23,
24].

Here, we assess the validity of linear decoders in tracking activities using a manipulandum.
On this basis, what seems to be clear is that the accuracy of upper limb kinematics decoding de-
pends partially on the characteristics of the performed movement in terms of velocity, trajecto-
ry and variability. As a consequence, different arm movements have been evaluated to quantify
the influence of speed and movement variability in the decoding performance. The results con-
firm that it is possible to obtain kinematic information from low frequency EEG signals and
show that decoding performance is significantly influenced by movement variability and track-
ing accuracy as slower and more continuous movements obtained a better correlation. This is a
key factor that should be taken into account in future experimental designs.

Material and Methods

Subjects
Five healthy volunteers (all male and right-handed) with ages between 25 and 30 years (mean
27.8±2.0) took part in the experiments. All volunteers are engineering students or researchers
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and are familiar to the technologies applied in this work. EEG human recordings used in this
study have been approved by the ethics committee of the Miguel Hernández University of
Elche, Spain. Written consent according to the Helsinki declaration was obtained from
each subject.

Experimental Paradigm
The volunteers were asked to follow a disc that moved randomly on the screen with a constant
speed by controlling a black cursor (Fig 1). To that end, the disc randomly changed its orienta-
tion each 100 ms (10 degrees clockwise or anti-clockwise) and instantaneously moved forward
a particular amount of pixels depending on the speed of the disc. In previous works, it was
proved that subjects do not fixate on the moving object but on the initial and final point of the
movement [25]. However, in these tests, subjects were specifically asked to focus on the cursor
movement without losing sight of the tracked disc. This condition was aimed at preventing the
appearance of ocular artifacts due to fast ocular movements back and forth to localize the disc.
To control the cursor, the volunteer had to move the end effector of a planar manipulandum
inside a workspace of 225 × 150 mm (1350 × 900 pixels). Four different speeds were defined
(20, 30, 40 and 50 mm/second). For each speed, 3 sessions, with a different disc size (5, 7.5 and
10 pixels/diameter), were performed. Each session consisted of five runs of continuous move-
ments during 45 seconds. After each run, a success percentage, representing the time the volun-
teer was able to stay inside the disc, was shown and a resting period of 4 seconds was included
between runs (for more details, see Fig 2). The total time of the experiment was about 1 hour.

Fig 1. Experimental environment showing the subject performing the tracking movements in front of
a screen. The subject should follow the red circle by controlling a black cursor with the planar manipulandum.

doi:10.1371/journal.pone.0128456.g001

Fig 2. Blocking structure of the experimental procedure. Time blocking (up) and tasks order (down).

doi:10.1371/journal.pone.0128456.g002
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All volunteers sat in front of a computer screen in an isolated room to avoid disturbances dur-
ing the recordings.

EEG Recordings and Preprocessing
For the recordings, a g.GAMMACap with 16 sintered Ag/AgCl ring electrodes g.LADYbird
(gTec, GmbH, Austria) was used. The electrodes were placed over the scalp with the following
distribution: FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P3, Pz, P4, PO3 and PO4,
according to the International 10/10 System. The electrodes placement was chosen around
motor and premotor cortex which is the area where more information was expected to appear.
Moreover, frontal electrodes, which can be influenced by ocular artifacts, were not selected.
EEG signals were registered and amplified through a g.USBamp device (gTec, GmbH, Austria)
with a sampling rate of 1200 Hz and then resampled to 120 Hz. EEG signals were also band-
pass filtered between 0.1 and 200 Hz with a high-order Chebyshev filter. Then, a zero-phase
4th order Butterworth low-pass filter was applied to eliminate frequencies higher than 2 Hz. Fi-
nally, EEG data from each electrode were standardized by subtracting, for each time sample (t),
the mean ( �V ) of the signal and dividing the result by the standard deviation (SDV) as shown in
Eq (1). This standardization was computed for each performed run and prior to the decoding
procedure.

EV½t� ¼ V ½t� � �V
SDV

ð1Þ

Data Decoding Procedure
To decode the position of the upper limb, a similar procedure to the already used to decode
hand velocity in [18] has been applied. In Eq (2) and Eq (3), the linear model used to decode
hand position from EEG signals is shown. The transformation parameters a and b represent
weight variables obtained from a linear regression. In Eq (2), x[t] represents the position of the
hand in the X-Axis at time t. In Eq (3), y[t] represents the position of the hand in the Y-Axis at
time t. For both equations, N represents the total number of electrodes (16 in this case) and L
(with a value of 10) is the number of time lags. A gap of 10 time samples between each selected
lag has been introduced to match the processing window to approximately 83 ms. This pro-
cessing time window was selected similar to previous studies [18]. Sn[t−k] represents the volt-
age difference measured at sensor n in the lag time k.

x½t� ¼ ax þ
XN
n¼1

XL

k¼0

bnkxSn½t � k� ð2Þ

y½t� ¼ ay þ
XN
n¼1

XL

k¼0

bnkySn½t � k� ð3Þ

The resulting decoded hand positions (x[t] and y[t]) have been compared to the original
hand positions. To that end, the Pearson correlation coefficient has been obtained for each axis
after performing a 5-fold cross validation after concatenating all five runs for each session and
using one run as test data and the remaining four as model data. The average decoding perfor-
mance (DP) is obtained for each speed and size of the disc. Additionally, shuffled data have
been used as input to assess if the decoding accuracy was above chance levels. Shuffled data
have been obtained by randomly mixing time points of the recorded data and then computed
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the same way as the original data. To that end, shuffled data have been filtered and standard-
ized before computing decoding performance (as shown in EEG Recordings and Preprocessing
section). Decoding coefficients have been computed 100 times to avoid chance effects due to
the stochastic nature of the process.

Movement variability
To compute the influence of the movement in the decoding performance, movement variabili-
ty (MV) and tracking accuracy (TA) have been compared. This relationship has been obtained
by computing the correlation coefficient (r) between all the values obtained for each speed and
disc size. The r value has been averaged (mean±STD) between all subjects. To compute MV,
the standard deviation of the position profiles (X and Y trajectories) has been obtained for each
speed and disc size (averaged between runs). TA corresponds, for each condition, to the relative
time the subject is able to correctly maintain the cursor inside the tracked disc for each run i,
averaged between N runs, as shown in Eq (4).

TA ¼
PN

i

SuccessTimei
TotalTimei
N

ð4Þ

Additionally, the correlation of both parameters (MV and TA) with the decoding perfor-
mance (DP) has been computed in a similar way.

Electrodes and frequency contribution
The relative contribution of the recorded electrodes used to decode hand positions has been
obtained for each time lag and electrode according to the formula:

Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nx þ b2ny

q
ð5Þ

where bnx and bny are the weight variables of the linear regression corresponding to each elec-
trode n. The average across all folds has been computed and represented for each time lag
through the topoplot function (EEGLAB toolbox of Matlab). To examine the importance of
each time lag to the decoding, the relative contribution of each time lag was defined as follows:

%Ci ¼ 100�
PN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nix þ b2niy

q

PN
n¼1

PL
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nkx þ b2nky

q ð6Þ

for time lags i from 0 to L, where %Ci is the relative contribution for a scalp map at time lag i.
Additionally, the Power Spectral Density (PSD) of the position profiles has been computed

between 0.1 and 100 Hz and then, the power of the 0.1–2 Hz band has been divided by the
power of the 0.1–100 Hz band to obtain the spectral contribution (SC) of low frequency com-
ponents. These values have been compared with the decoding performance by computing the
correlation coefficient (r) between all the values obtained for each condition.

Results
In Fig 3, an example of a bidimensional trajectory is shown (up-left). The gray path represents
the original disc trajectory, while the black path shows the one performed by the subject con-
trolling the planar manipulandum. Table 1 shows the tracking accuracy measured during the
performed trajectory. This percentage represents the amount of time the volunteer is able to
stay inside the disc during each run. The average tracking accuracy (μ) for each speed and disc
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size and the standard deviation (STD) is also presented. In Fig 4, an example of decoded trajec-
tories is shown. The decoded x and y position is shown for Subject 4 with the minimum speed
(20 mm/s) and the smallest disc size. The decoded trajectory (gray) follows the original trajec-
tory (black).

Table 2 shows the Pearson correlation coefficients obtained for each volunteer after per-
forming the hand position decoding. The results are shown for each speed and disc size regard-
ing X-axis and Y-axis. The mean (μ) and standard deviation (STD) is also presented for each

Fig 3. Example of the trajectory followed by the subject. 2D representation of the trajectory (top-left). X and Y axis trajectories (right). Appearance of the
visual interface (bottom-left).

doi:10.1371/journal.pone.0128456.g003

Table 1. Accuracy percentages (%) for different disc speeds (mm/s) and sizes (diameter in pixels).

SPEED SIZE S1 S2 S3 S4 S5 AVG

20 10 99.29 99.56 97.69 99.47 87.38 96.68±5.25

7.5 96.71 96.89 96.62 97.69 73.29 92.24±10.60

5 93.24 82.22 84.53 87.29 42.44 77.94±20.27

30 10 96.00 97.87 95.38 94.67 63.24 89.43±14.69

7.5 90.76 84.71 88.89 88.89 50.27 80.70±17.15

5 73.78 59.56 70.93 68.98 27.51 60.15±19.01

40 10 28.31 45.64 38.31 37.11 45.91 39.59±6.29

7.5 22.36 16.18 33.38 25.42 37.47 26.96±8.53

5 16.00 6.09 15.38 9.38 15.91 12.55±4.55

50 10 28.22 27.11 35.11 31.96 29.73 30.43±3.19

7.5 21.33 13.29 24.00 15.64 17.64 18.38±4.31

5 9.60 4.22 12.36 6.13 9.24 8.31±3.18

doi:10.1371/journal.pone.0128456.t001
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Fig 4. Example of a decoded trajectory for Subject 4. Horizontal axis (left) and vertical axis (right).

doi:10.1371/journal.pone.0128456.g004

Table 2. Pearson correlation coefficients after decoding hand trajectories performed with the planar manipulandum for different disc speeds (mm/
s) and sizes (diameter in pixels).

SUBJECT S1 S2 S3

SPEED SIZE X-AXIS Y-AXIS X-AXIS Y-AXIS X-AXIS Y-AXIS

20 10 0.38 0.37 0.38 0.38 0.13 0.20

7.5 0.34 0.40 0.22 0.39 0.41 0.22

5 0.35 0.40 0.44 0.41 0.37 0.37

30 10 0.19 0.20 0.22 0.17 0.19 0.31

7.5 0.38 0.25 0.30 0.20 0.49 0.29

5 0.26 0.24 0.32 0.27 0.37 0.13

40 10 0.18 0.19 0.20 0.11 0.13 0.26

7.5 0.17 0.27 0.15 0.15 0.15 0.20

5 0.22 0.17 0.08 0.12 0.15 0.18

50 10 0.16 0.10 0.21 0.14 0.14 0.12

7.5 0.15 0.11 0.21 0.18 0.17 0.16

5 0.12 0.10 0.06 0.16 0.10 0.10

SUBJECT S4 S5 MEAN±STD

SPEED SIZE X-AXIS Y-AXIS X-AXIS Y-AXIS X-AXIS Y-AXIS

20 10 0.29 0.29 0.30 0.14 0.30±0.10 0.27±0.10

7.5 0.26 0.45 0.13 0.25 0.27±0.11 0.34±0.10

5 0.34 0.54 0.25 0.23 0.35±0.07 0.39±0.11

30 10 0.36 0.29 0.22 0.14 0.24±0.07 0.22±0.08

7.5 0.28 0.35 0.23 0.19 0.34±0.10 0.25±0.07

5 0.43 0.29 0.27 0.26 0.33±0.07 0.24±0.06

40 10 0.16 0.09 0.10 0.10 0.15±0.04 0.15±0.07

7.5 0.29 0.19 0.12 0.16 0.18±0.07 0.19±0.05

5 0.14 0.19 0.16 0.22 0.15±0.05 0.17±0.03

50 10 0.23 0.17 0.26 0.25 0.20±0.05 0.16±0.06

7.5 0.23 0.15 0.20 0.29 0.20±0.03 0.18±0.07

5 0.26 0.28 0.14 0.22 0.13±0.08 0.17±0.08

doi:10.1371/journal.pone.0128456.t002
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axis and speed, showing a decrease in the decoding performance for faster trajectories. Fig 5
shows a graphical representation of the averaged Pearson correlation coefficients for the differ-
ent disc sizes and speeds. It also presents the results for shuffled condition. The significance of
the decoding performances has been analyzed from these results. To that end, shuffled condi-
tion has been compared to the average decoding coefficients obtained for different disc sizes
and speeds running a Wilcoxon Sum-Rank Test with a confidence interval of 90% and then ap-
plying a Bonferroni-Holm iterative correction for multiple comparisons. This analysis has
shown that decoding performance of slow speeds (20 and 30 mm/s) is predominantly above
chance levels (p< 0.1) for both axes and for all disc sizes. In the case of faster trajectories (40
and 50 mm/s), this occurs only for a medium disc size.

To obtain a proper relationship between movement factors, Movement Variability (MV)
and Tracking Accuracy (TA) have been computed and compared between them and with De-
coding Performance (DP) by calculating the correlation coefficient (r) averaged between sub-
jects. The results show that MV has a high negative correlation with DP (Fig 6, A) and TA has
a high positive correlation with DP (Fig 6, B). The correlation between TA and MV has also
been calculated showing a high negative correlation (Fig 6, C). Additionally, a significant rela-
tionship between movement speed and TA was found after performing a non-parametric test
(Kruskal-Wallis two-way ANOVA analysis) (p< 0.05) using DP as the dependant variable
showing that higher speeds are correlated with a decrease in the decoding performance for
both axis. The relative contribution of the 0.1–2 Hz band has been computed in relation to the
contribution of the 0.1–100 Hz band for all the position profiles (each speed and disc size). The
correlation between this spectral contribution (SC) and the decoding performance (DP) has
been obtained showing high negative correlations (Fig 6, D).

Discussion
The presence of significant decoding correlations in most of the experimental conditions dif-
fers from what is obtained in [21], where decoding performance of upper-limb movements was
not above chance, and suggests that kinematic parameters of hand movement can be inferred
from neural information through linear regression models. Nonetheless, the improvements ob-
tained when reducing movement speed may be caused by the inherent properties of the corre-
lation metric [21]. However, the decoding performance increases with lower contributions of
the 0.1–2 Hz band suggesting that correlations are not caused (or at least not entirely caused)
by the application of linear regression to similar frequency bands (both EEG slow cortical

Fig 5. Decoding performance regarding speed (mm/s) and disc size (small, medium, big). The stars represent significant differences with respect
shuffled condition.

doi:10.1371/journal.pone.0128456.g005
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potentials and low frequency kinematics) and that there is an important influence of motor re-
lated cortical activations. Also, the decoding performance may be benefited by motor learning
induced from a longer training with the manipulandum.

Fig 7 shows the individual contribution of the recorded electrodes to the decoding perfor-
mance for the different time lags (Subject 4, right arm). The relative contribution of each time
lag has also been computed. The scalp maps show a peak of contribution around 50 ms prior

Fig 6. r values between different compared parameters: Movement Variability (MV), Decoding
Performance (DP), Tracking Accuracy (TA) and Spectral Contribution (SC) of the position profiles for
the 0.1–2 Hz band. A—MV vs DP, B—TA vs DP, C—MV vs TA and D—SC vs DP.

doi:10.1371/journal.pone.0128456.g006

Fig 7. Contribution of the 16 recorded electrodes to the decoding performance for Subject 4, right arm (in gray, Cz electrode). The scalp maps are
computed for each time lag (around 8.3 ms) and show parietal and strong central involvement. The relative contribution (%) for each lag is also computed
showing a peak around 50 ms prior to the decoded instant corresponding to a 12.05% contribution. The remaining subjects show a similar behavior.

doi:10.1371/journal.pone.0128456.g007

Assessing Movement Factors in Upper Limb Kinematics Decoding

PLOS ONE | DOI:10.1371/journal.pone.0128456 May 28, 2015 9 / 12



to the decoded instant corresponding to a 12.05%. The results show a high ipsilateral contribu-
tion of central regions and minor contributions of parietal regions, meaning that cortical activi-
ty is mainly centered on the motor cortex. This is similar to previous studies where activity,
although mainly contralateral, revealed frontal, central and parietal involvement particularly
on sensor CP3 [18] and it is more consistent with a recent study by the same authors [22]. In
[20], this activity is distributed along the midline. The discrepancy of cortical areas involved in
the decoding still needs a proper evaluation and it is an important issue for future research.
However, all the studies agree to show an important contribution of the central area around 50
ms prior to the decoded instant.

Table 1 shows a natural decreasing in the TA when the speed increases and the disc gets
smaller. This relationship is similar for most of the subjects. However, Subject 5 shows a very
low TA compared to the rest of subjects likely biased by his/her ability to control the planar
manipulandum. The high positive correlations between TA and DP suggest that the linear de-
coder behaves better in more accurate trajectories. This conclusion is also supported by the
high negative correlation obtained between TA and MV, i.e., subjects had more difficulties to
track the disc when the trajectory performed was more variable. Also, Fig 3 shows that slower
speeds show a better decoding performance. This is not surprising as, in general, slower speeds
decrease the difficulty of following the disc with the manipulandum and, as a consequence, are
related to an increase in TA and a decrease in MV. These findings are consistent with the re-
sults obtained in [18], where movement variability was in inverse proportion to decoding per-
formance. Also, the high correlation coefficients shown in [20], where natural and round hand
reaching movements were assessed, point in the same direction.

Conclusion
In this work, we reported the influence of speed, trajectory and movement variability in hand
kinematics decoding by performing bidimensional trajectories with a planar manipulandum.
To that end, five healthy volunteers were asked to follow a disc, which moved randomly on the
screen with a constant speed, by controlling a cursor with the planar robot. The presence of sig-
nificant decoding correlations in most of the experimental conditions suggests that kinematic
parameters of hand movement can be inferred from neural information through linear regres-
sion models. The results also show that decoding performance (DP) is significantly influenced
by movement variability (MV) and tracking accuracy (TA) as continuous and accurate move-
ments obtained a better decoding performance. This is consistent with the results obtained in
[18, 20], where continuous and linear movements obtained a high decoding performance. Ad-
ditionally, the scalp maps represented for the recorded sensors show a high contribution of
central regions and minor contributions of parietal regions, meaning that cortical activity is
mainly centered on the premotor cortex.

The study has gone some way towards enhancing our understanding of the neural mecha-
nisms during upper limb movement and it serves as a first step to apply this kinematics decod-
ing technique to control assistive robotics in a more natural way. There is abundant room for
further progress in determining how movement variability affect the decoding performance
that could be aimed at particularizing experimental procedures to assess different movement
factors. Also, in future works, real time testing is needed to show if this decoding is feasible in
upper limb decoding applications. Also, brain signals variability of patients, particularly people
suffering from a stroke, should be studied to prove the viability of this method in rehabilitation
procedures. This research will serve as basis for future studies regarding upper limb kinematics
decoding where further research to eliminate artifact influence and improve accuracy should
be undertaken.
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