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Abstract
Phenotypic switching in cancer cells has been found to be present across tumor types.
Recent studies onGlioblastoma report a remarkably common architecture of fourwell-
defined phenotypes coexisting within high levels of intra-tumor genetic heterogeneity.
Similar dynamics have been shown to occur in breast cancer and melanoma and are
likely to be found across cancer types. Given the adaptive potential of phenotypic
switching (PHS) strategies, understanding how it drives tumor evolution and therapy
resistance is a major priority. Here we present a mathematical framework uncovering
the ecological dynamics behind PHS. The model is able to reproduce experimen-
tal results, and mathematical conditions for cancer progression reveal PHS-specific
features of tumors with direct consequences on therapy resistance. In particular, our
model reveals a threshold for the resistant-to-sensitive phenotype transition rate, below
which any cytotoxic or switch-inhibition therapy is likely to fail. The model is able
to capture therapeutic success thresholds for cancers where nonlinear growth dynam-
ics or larger PHS architectures are in place, such as glioblastoma or melanoma. By
doing so, the model presents a novel set of conditions for the success of combination
therapies able to target replication and phenotypic transitions at once. Following our
results, we discuss transition therapy as a novel scheme to target not only combined
cytotoxicity but also the rates of phenotypic switching.
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1 Introduction

Phenotypic plasticity is a widespread phenomenon across the tree of life. From bacte-
ria to multicellular development, epigenetic pathways generate a population of diverse
phenotypes from homogeneous, stable genomes (Sultan 2000; Piggliuci 2001; Mar-
gueron and Reinberg 2010; Balalszi et al. 2011). Phenotypic switching (PHS) is a
stochastic phenomenon known to maintain population diversity in unicellular organ-
isms as a means to survive in fluctuating environments (Kussell and Leibler 2005;
Balaban et al. 2004). This mechanism can also be found to boost non-genetic het-
erogeneity in a special multicellular context: cancer cell populations (Flavahan et al.
2017). In this context, tumors can take advantage of already existing differentiation
hierarchies to promote unlimited self-renewal or senescence and drug resistance with
no need of selecting somatic mutations (Dean et al. 2005; Shackleton et al. 2009).

Phenotypic switching is a source for non-genetic heterogeneity in cancer beyond
Cancer Stem Cells hierarchies (Flavahan et al. 2017; Marusyk et al. 2012; Brock
et al. 2009). Beyond the well-known plasticity related to the Epithelial-Mesenchymal
transition driving metastatic release (Kalluri and Weinberg 2009; Yeung and Yang
2017), more complex architectures with more than two switching phenotypes in place
are being uncovered across cancers. A most recent example comes from Glioblas-
tomas,where tumor cells are found to organize around fourwell-definedmeta-modules
resembling—though aberrant—healthy brain cell lines (Neftel 2019). This arrange-
ment is highly robust: tumors initiated by single cells from a biopsy evolve toward the
previous phenotypic composition, regardless of the specific phenotype of the original
cell, showing that stochastic transitions happen between all of the four phenotypes.
Similar dynamics have been described in breast cancer (Gupta et al. 2011), as well as in
melanoma (Quintana 2008;O’connell andWeeraratna 2013) and prostate cancer (Jolly
et al. 2018), and are nowadays considered key in the observation of non-Darwinian
evolution of adaptive resistance across cancer types (Sharma 2010; Pisco et al. 2013;
Su et al. 2017).

The existence of phenotypic plasticity in tumors has important consequences for
therapy. Tumor relapse after therapy is usually acknowledged to be a consequence
of pre-existing or acquired resistance mutations, present in a given subclone that sur-
vives and repopulates the tumor (see e.g., Diaz 2012). This image is often correct, yet
further mechanisms in many therapeutic settings, from stem cell senescence (Jordan
et al. 2006) to immunological editing (Sharma et al. 2017) prove that a wider scope
is key when trying to understand therapeutic failure. The stochastic nature of switch-
ing between rogue cellular phenotypes allows robust and plastic tissue architectures,
resulting in an adaptive mechanism that might be even harder to target (Sharma 2010).
How does this affect therapeutic strategies? Models of phenotypic switching in cancer
have helped in our understanding of metastatic dissemination (Gerlee and Nelander
2012; Jolly et al. 2017;Mathis et al. 2017), epigenetic drug combination (Alarcón et al.
2021) or the possible role of plasticity in maintaining one or more resistant phenotypes
in place (Su et al. 2017; Jolly et al. 2017; Folguera-Blasco et al. 2019).

Here we present a toy model to study the characteristics of phenotypic plasticity in
cancer by exploring the population dynamics of cellular replicators exhibiting tran-
sitions among them (Fig. 1). The model allows in particular to analyze the rise of
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Fig. 1 Phenotypic switching in cancer. Genetic analysis reveals four transitioning phenotypes in Glioblas-
toma (a) and thus a set of cancer cell populations (b, after Neftel 2019). Different transitions occur, linking
phenotypes Ck by means of a matrix of transition rates, as sketched in (c)

the switching populations and the equilibrium conditions for stable heterogeneity in
tumor scenarios involving uncontrolled cellular outgrowth, interphenotypic compe-
tition or nonlinear tissue-level growth constraints. Solving the ecological dynamics
might render cues on the requirements to tumor extinction, with implications on novel
therapeutic approaches when more than two phenotypes are in place.

2 Phenotypic Switching Dynamics

In this section, we explore several features exhibited by different versions of a toy
model of cancer cell populations exhibiting PHS. Our goal is to provide some basic
bounds to the response of these systems to cytotoxic or targeted agents acting on the
switching dynamics. Ecological models of heterogeneous cancer populations can be
represented by means of a set of replicator equations (Nowak 2006). Consider a set
of N phenotypes, where C = (C1, ...,CN ). The i-th cancer cell-type population will
change in time following:

dCi

dt
= �i (C)Ci

+
∑

k �=i

ωkiCk −
∑

k �=i

ωikCi − Ciφ(C) (1)

with (i, k = 1, . . . , N ). Here �i (C) indicates the functional form of the replication
rate associated with the i−th clone, which in general will be a nonlinear function of
clone or tumor size (Roose et al. 2007). The three last terms in the rhs correspond to (1)
the phenotypic transitions from other phenotypes to phenotype Ci (i.e., Ck → Ci ) (2)
the complementary transitions from Ci to the rest (i.e., Ci → Ck) and (3) an outflow
term that allows introducing competition and resource limitation effects. The previous
set of equations can be re-written as follows:

dCi

dt
=

⎛

⎝�i (C) −
∑

k �=i

ωik

⎞

⎠Ci +
∑

k �=i

ωkiCk − Ciφ(C) (2)
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Fig. 2 Bifurcation diagram for the reduced N = 2 PHS model with two strains, as defined by Eq. (5) where
theC1 population is analyzed under CPC. This diagram represents the fixed pointsC∗

1 against the transition
rate ω21. A critical switching threshold is defined here for a given ωc

21 separating a heterogeneous phase
(gray) from a homogeneous one. Here r1 = 1, r2 = 3/2 and ω12 = 1/2, which gives a critical value
ω21 = 1.0 (Eq. 8)

By aggregating those terms affecting Ci , we can appreciate the fact that the effective
growth rate of Ci involves a trade-off between intrinsic replication and the likelihood
that it shifts to a different cell type. However, a negative balance can be counterbal-
anced by the net inflow from the rest of the phenotypes holding Ci in place. As a
first approximation for rapidly growing cellular clones, a constant replication rate is
associated to each phenotype (i.e., �i (C) = ri ). We will later illustrate the effects of
PHS under nonlinear growth dynamics by studying a particular example of tissue-level
limitations in the Epithelial-Mesenchymal switch (Kalluri andWeinberg 2009; Yeung
and Yang 2017).

What is the impact of PHS on potential therapeutic approximations? Are there
novel attractors or alternative pathways to avoid targeted death? Relevant insight can
be obtained by considering a first minimal system, where a finite set of cancer clones
replicate at rate ri , defined as the effective difference ri = bi −di between birth bi and
death di rates, and that can be negative when cytotoxic therapy is effective (increasing
death beyond birth, see Fig. 3a). In this section, we consider the simplest models of
PHS in cancer populations.

2.1 Predictable Heterogeneity in PHS Tumors

Experimental evidence in cancer populations exhibiting PHS shows that a secondary
tumor evolves to the original phenotypic distribution of the primary malignancy,
regardless of the initiating cell type (Neftel 2019; Gupta et al. 2011). This is an inter-
esting outcome of PHS: the system has the potential to reliably restore population
diversity in a predictable fashion. Instead of the often unpredictable heterogeneity
driven by somatic mutations, we have here a surrogate of developmental dynamics
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Fig. 3 Transition therapy. Targeting proliferation of a single phenotype in a switching tumor (a). In the
presence of PHS strategies, the resistant population r1 is able to maintain tumor growth. Targeting sensitive
cell death (d2, b) or inhibiting transitions toward resistance (w21, (c)) is likely to fail provided resistant
cells replicate faster than they transition into the sensitive phenotype (r1 > w12). PHS modeling indicates
that only therapies draining c1 into c2 are effective across the whole parameter space (d)

driven by epigenetic changes. A first mathematical approach and its consequences are
easily derived considering a population of two switchers (N = 2) under a constant
population constraint (CPC) (Balaban et al. 2004). Such CPC constraint allows for
direct analysis of population fractions or densities ci = Ci/

∑
μ Cμ and writes

dc1
dt

= (r1 − w12)c1 + w21c2 − c1φ(C) (3)

dc2
dt

= (r2 − w21)c2 + w12c1 + −c1φ(C) (4)

This equation reduces to a simple competition model when ωi j = 0. Darwinian
selection would then be decided by the highest ri , eliminating the possibility for
heterogeneity.
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Assuming constant population, the competition term reads φ(C) = r1c1 + r2c2
and considering that ci are here densities and c1 + c2 = 1, this is in fact the average
replication rate, i.e., φ(C) = 〈r〉. Using this result, it is possible to reduce the system
to a one-dimensional ordinary differential equation for the fraction of one of the
populations, say c1:

dc1
dt

= γ c1(1 − c1) − w12c1 (5)

with γ = (r1 − r2 − w21). This model displays two fixed points, namely c∗
1 = 0

(extinction) and the heterogeneous point (where both populations persist) given by

c∗
1 = 1 − w12

γ
(6)

Interestingly, the presence of an heterogeneous attractor that is not dependent on
initial phenotypic composition can be compared to experimental evidence of cell
growth recapitulating original clonal distributions (Neftel 2019; Gupta et al. 2011).
In particular, it can be seen that the attractor for population distributions, c∗

1/c
∗
2, is

consistentwith the long-term stable distribution in the absence of intrinsic competition,
limt→∞C1(t)/C2(t), because the CPC assumption is equivalent to formulating the
model in terms of population concentrations (see SM). This result is consistent both
analytically and through computer simulations, so that the minimal model is able to
generate the basic in vitro properties of phenotypic switching. This, in turn, indicates
that experimental observations of phenotypic distributions can be used to estimate the
switching parameters that hold the heterogeneous cellular architecture, as previously
seen in Gupta et al. (2011), Su et al. (2017), Goldman et al. (2015).

Under which conditions is the system able to maintain heterogeneity beyond the
pressure of strictly-competitive Darwinian selection? The stability analysis of this
system shows that heterogeneity will persist (i.e., c∗

1, c
∗
2 > 0) and any initial condition

will recapitulate the whole attractor distribution provided that

ω21 − ω12 > r2 − r1. (7)

This inequality has an interesting, intuitive interpretation: c1 will be positive, even
if r2 > r1, provided that the difference between transition rates is larger than the
difference between growth rates, highlighting the ability of PHS to maintain tumor
heterogeneity (Fig. 2). This allows defining a threshold value: heterogeneity will be
observed when

ωc
21 = ω12 + (r2 − r1) (8)

which determines the threshold condition for the switching rateω21 required to sustain
C1, being other parameters fixed. The basic bifurcation diagram associated to this
model is shown in Fig. 2. Two phases are indicated. The first is associated to the
diverse switching phenotypes (for ω21 > ωc

21, gray area). Here a single attractor
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exists, which can be reached from any initial condition. Another, homogeneous phase
occurs for ω21 < ωc

21 where only the fastest replicating population persists.
The transition defines a tipping point that is determined (with other parameters

fixed) by the rate of recovery provided by the PHSmechanism. The diagram is obtained
under unfavorable replication: we use r1 < r2 which, in the absence of PHS, would
inevitably lead to the extinction ofC1. The presence of a heterogeneous phase indicates
that phenotypic populations can persist even in unfavorable competition scenarios.
How does the system evolve when these populations are targeted by therapy?

2.2 PHS in the Sensitive-Resistant Scenario

A first instance of PHS in cancer is observed in tumors deploying temporary resistant
cell subpopulations (Sharma 2010). In certain settings, such drug-tolerant pheno-
types can arise in the absence of resistance-conferring alterations (Talpaz et al. 2002;
Berrieman et al. 2004), indicating the role of non-Darwinian epigenetic plasticity in
generating and maintaining tolerant phenotypes in place (Goldman et al. 2015). Mod-
eling PHS can uncover the underlying dynamics of sensitive-resistant populations,
proposing specific therapeutic outlines.

In order to formulate this model, we remove the competition term ciφ(C) in the
previous Eqs. (3–4) and consider phenotypic populations away from their carrying
capacity. Now Ci are not densities, but actual population counts. We study the follow-
ing linear system

dC1

dt
= (r1 − w12)C1 + w21C2 (9)

dC2

dt
= w12C1 + (r2 − w21)C2 (10)

The unbounded system does not admit a single-population solution: the tumor either
gets extinct or both C1(t) and C2(t) undergo exponential growth. As previously dis-
cussed, long-term phenotypic composition C1/C2 is still predictable and independent
from initial conditions (see SM), as observed in experimental setups (Neftel 2019;
Gupta et al. 2011). We know that the (0, 0) attractor is stable if both effective growth
rates are negative. Since ri = bi − di , this can be true if death rates for both cell
types are increased beyond their birth rates by means of two different drugs. However,
provided C1 is a drug-tolerant state (Sharma 2010), chemotherapy will only increase
death rates of the C2 population.

Let us introduce a nomenclature for cytotoxic-sensitive and -resistant phenotypes.
Assume that cell type C1 has a positive replication rate r1 > 0 under chemotherapy.
In this setting, the drug-resistant phenotype will be labeled CR, growing at rate rR.
The death rate of cell type C2 can be increased by means of a cytotoxic therapy, so
that r2 = b2 − d2 could shift from positive to negative (Fig. 3a), and be labeled CS,
with rS = bS − dS < 0. The sensitive-resistant system now writes

dCR

dt
= (rR − wRS)CR + wSRCS (11)
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dCS

dt
= (rS − wSR)CS + wRSCR (12)

Stability analysis of the tumor-free attractor results in a threshold replication rate
for CR (see SM),

r∗
R = wRS

1 +
(

wSR

|rS|
) (13)

If CR replicates faster than this threshold level, it will repopulate the tumor and
maintain the sensitive population CS (Fig. 3). This is consistent with recent analytical
results from (Gunnarsson et al. 2020) for the progression of a tumor in the presence
of a drug-tolerant phenotype.

This result uncovers several potential therapeutic implications. In the setting that
CR is a drug-tolerant phenotype, therapy could focus on increasing dS , the death rate
of the sensitive phenotype (Tracqui et al. 1995), decreasing wSR, the rate at which the
sensitive phenotype becomes resistant (Hari et al. 2020), or increasingwRS, the rate at
which the resistant phenotype transdifferentiates into drug-sensitivity (Goldman et al.
2015). All approaches could potentially drive tumor extinction (Fig. 3).

However, if the drug-tolerant phenotype replicates faster than its transition rate
(rR > wRS), which is a plausible setting considering measured wi j rates in some
cellular substates (Gupta et al. 2011), any efforts on dS or wSR will fail at eliminating
the tumor (Fig. 3b, 3c). Mathematically, Eq. (11) implies a minimal resistant-sensitive
transition rate, below which the resistant population persists:

w∗
RS = rR (1 + θS) (14)

with θS = wSR/|rS| being the transition-to-death ratio of the sensitive population. In
very effective therapy settings, θ ∼ 0 and w∗

RS = rR. The only path to eliminating the
drug-resistant tumor is by increasing its transition rate beyond the threshold cycling
rate.

This threshold has potential implications on switching inhibition, in that therapies
targeting inhibition of sensitive-resistant transitions (wSR ∼ 0) are likely to fail unless
the same drug alters rR or wRS. This is a key result regarding therapeutic options
targeting EMT inhibition to prevent metastases (Tripathi et al. 2020; Ramesh et al.
2020).

Another particular example here is provided by the discovery of sensitive transient
states in chemotherapy experiments on breast cancer (Goldman et al. 2015). In them,
resistance to first-line chemotherapy implies a transition to a transient phenotype T
that can be resensitized by a second drug. Initial chemotherapy increases wRT, while
the second drug resensitizes this transient state to initial chemotherapy, inducing wTS.
The overall effect is that of a combination scheme that increases wRS. In the specific
setting of Goldman et al., the measured transition rates from stem-cells to the induced
state iswRT ≈ 0.96day−1, while rR ≈ 0.5day−1, so that therapeutic efficacy correlates
with the transition threshold condition (14). Towhich extent is this specific therapeutic
approach robust across cancer types?
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Our results highlight the potential limitation to be accounted for when designing
such PHS therapeutic strategies: increasing wRS, the rate at which CR switches to
CS, can drain the replicative phenotype into the one we can kill by cytotoxic therapy
(Fig. 3d), only if it overcomes CR replication. Transition to a sensitive state will only
be effective if the resistant state cannot persist and maintain the PHS architecture.

A therapeutic corollary of this is that a most effective combination therapy in a
sensitive-tolerant setting would contemplate increasing wRS while also decreasing rR
to facilitate the threshold condition. Even if initial cytotoxic efforts might not slow
down CR replication, other specific microenvironmental cues, in the form of antian-
giogenic (Ledzewicz and Schattler 2007) or dormancy-inducing (Goss and Chambers
2010) drugs targeting cell cycling rate are likely to help the overall transition therapy
scheme.

2.3 PHS in Nonlinear Growth Scenarios: Epithelial-Mesenchymal Plasticity

We have studied so far the role of PHS in allowing the growth of cellular phenotypes
under linear replication motifs (Eqs. 3–4, 11–12). This simplification on tumor growth
dynamics allows the uncovering of certain key thresholds, related with the ability of
PHS as a whole-tumor strategy to overcome the pressures of competition (Eq. 8) or
cytotoxic therapy (Eqs. 13–14).

However, cancer populations are known to follow markedly nonlinear growth
dynamics (Benzekry et al. 2014). How do PHS strategies modulate the growth and
survival of tumors in the presence of nutrient and spatial constraints hampering expo-
nential replication?

We here propose to explore PHS in nonlinear growth scenarios by studying a mini-
malmodel of the Epithelial-Mesenchymal plasticity (EMP), a fundamental example of
non-genetic heterogeneity in cancer (Kalluri andWeinberg 2009). On a first approach,
EMP involves two reversible PHS processes1: the Epithelial-Mesenchymal transition
(EMT), in which Epithelial cells lose their polarity and cell–cell adhesion, hereby
gaining enhanced migratory capacity and invasiveness leading to metastatic dissem-
ination (Yeung and Yang 2017), and the Mesenchymal-Epithelial transition (MET)
involving the opposite process.

To elucidate the ecological dynamics of this reversible process we propose a sim-
plified dynamical setting, where the Epithelial phenotype grows following logistic
dynamics, indicative of spatial constraints at the tissue level (Gatenby 1991). The
Mesenchymal phenotype, through the loss of cell–cell adhesion (Yeung and Yang
2017), can be approximated, during a first phase of rapid metastatic release (Schop
et al. 2008), to become released from carrying capacity limitations and grow expo-
nentially.

dE

dt
= (rE (1 − βE E) − wEM) E + wMEM (15)

1 A third intermediate phenotype, termed hybrid Epithelial/Mesenchymal, has been observed to play a key
role in metastatic dissemination, with hybrid E/M cells characterized by invasive traits but also a certain
degree of collective migratory behavior allowing the formation of Circulating Tumor Cell clusters (Jolly
et al. 2018)
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Fig. 4 Transition therapy in populations under nonlinear growth. Ecologicalmodels of phenotypic switching
highlight an important scenario: An exponentially growing phenotype (here, a mesenchymal phenotype
M growing beyond tissue boundaries) can be indirectly controlled by the carrying capacity of a limited
phenotype (here, an epithelial phenotype E constrained by spatial and nutrient limitations) following a brief
phase where E exceeds its carrying capacity due to temporary increased seeding by M . Separation between
cell population outgrowth (a) and tumor control (b) is given by a sharp threshold in the growth-to-switching
ratio of the exponential phenotype

dM

dt
= wEME + (rM − wME)M (16)

Here, β is the inverse of the carrying capacity of the epithelial tissue, so that the
Mesenchymal phenotype is considered to grow at β ≈ 0 during the modeled phase
(Schop et al. 2008). PHS is introduced as a stochastic switch at average rateswEM and
wME, respectively.

What are the potential ecological outcomes of this scenario, and how do they differ
from the previous models? A common treatment approach focuses on blocking the
EMT, by reducing wEM in the aim of minimizing metastatic dissemination (Ramesh
et al. 2020). Is this the most effective approach?

Several key results follow from studying the attractor states. Beyond (E∗, M∗) =
(0, 0), a novel coexistence attractor not seen in the model (11–12) appears:

E∗ = 1

β

[
1 − wEM

rE

(
1 − wME

wME − rM

)]
(17)

M∗ = wEM

wME − rM
E∗ (18)

The attractor state at the Epithelial level indicates a stable population, that could
exceed the carrying capacity of the tissue provided that wME > rM or else become
increasingly small until E∗ = 0. A more interesting scenario appears from looking at
M∗. In the absence of PHS or at least rM > wME, the mesenchymal population will
grow exponentially (or decay for rM < 0), potentially initiating metastatic disease
(Fig. 4a). However, PHS allows for a novel attractor state, where both populations are
controlled, even for rM > 0, if wME > rM (Eq. 18, Fig. 4b).
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This novel scenario, characterized by the presence of nonlinear growth dynamics
resulting from tissue-level constraints (Gatenby 1991), indicates that mesenchymal
cells, even if replicating under no growth constraints, could be indirectly controlled
by the growth limitation of the epithelial population, provided they are drained by a
combined cytotoxic+transition treatment achieving wME > rM (Fig. 4). This alterna-
tive version of transition therapy highlights how targeting the rate of theMET through
microRNAs (Yao et al. 2011; Wang et al. 2014) (instead of reducing the rates of the
EMT switch (Ramesh et al. 2020)) can provide a novel opportunity toward controlling
initial metastatic release in the presence of EMP.

2.4 Targeting PHS in Larger Architectures (N > 2)

We have used the N = 2 case to illustrate the concept of cancer growth with switching
and how different growth-transition trade-offs can influence therapeutic outcome in
simple Sensitive-Resistant scenarios. But tumor architectures often include more than
two coexisting phenotypes (Neftel 2019; Gupta et al. 2011) beyond the effects of
chemotherapy. Given a larger system with N phenotypes that switch stochastically,
can our mathematical framework define the limits of PHS resilience? The analytical
approach for N > 2 independent phenotypes becomes harder as we add dimensions,
and results now depend on N 2 parameters. However, certain average effects of given
therapy schemes can be predicted under symmetry assumptions.

Let us here suppose a common therapeutic scheme, where certain phenotypes are
sensitive to a first drug, while others tolerate it. This common scenario can be encoun-
tered in the development of adaptive resistance to docetaxel (DTX) in breast cancer
(N=3, (Gupta et al. 2011; Goldman et al. 2015)) or the targeting of either EGFR,
PDGFRA, or CDK4 only affecting one out of four phenotypes in Glioblastoma (N=4,
(Neftel 2019)).

The problem can be tackled as follows. Let us first consider the N = 3 case, as
indicated in Fig. 3a. In order to reduce the complexity of our calculations, we consider
a coarse-graining assumption: all resistant and sensitive cells do so at equal rates, rR
and rS, respectively, and transition rates between replicating and dying cells are also
homogeneous. This assumption is summarized in Fig. 3b.

In this scenario, suppose a system with two phenotypes that replicate at rR > 0 and
hold a sensitive phenotype rS < 0:

dC1

dt
= (rR − wRR − wRS)C1 + wRRC2 + wSRC3 (19)

dC2

dt
= (rR − wRR − wRS)C2 + wRRC1 + wSRC3 (20)

dC3

dt
= (rS − 2wSR)C3 + wRS(C1 + C2) (21)

Let us now indicate by σR the total population of resistant cells, i.e., σR = C1 +C2
(Fig. 3b). In this case, the system reduces to
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dσR
dt

= σRrR − σRwRS + 2wSRC3 (22)

dC3

dt
= C3rR − 2C3wSR + wRSσR (23)

For this two-compartment system, it can be shown that the minimal threshold for the
resistant population replication rate is:

r∗
R = wRS(

1 + 2
wSR

|rS|
) . (24)

This calculation, under our homogeneity assumptions, can be done in a systematic
way for a switching population with of N cell types (see SM). Specifically, we can
consider nR replicators with a positive effective growth rate rR and nS sensitive cell
types targeted by therapy, so that their death rate increases beyond birth and bS−dS =
rS < 0.

By aggregating the two different populations in σR and σS compartments, the prob-
lem of a tumor with N switching phenotypes can be studied (see SM). It can be shown
that the minimal growth rate for the positive replicators to sustain the tumor is

r∗
R(wRS, nS) = nS

wRS(
1 + (N − nS)

wSR

|rS|
) . (25)

Complete cancer eradication can happen if all phenotypes are targeted. Targeting less
than four phenotypes can prove useless if the other cell types maintain diversity by
replicating faster than (3) (Fig. 5). Through sequentially targeting several phenotypes,
we can increase nS and decrease nR = N − NS accordingly. This therapeutic inter-
vention results in a nonlinear increase in the pressure to maintain diversity and growth
(Fig. 5a).

(a) (b)

r3

r2r1

ω12

ω21
c1 c2

c3

c1 c2

c3

ω++

ω+−

ω−+

r−

r+ r+

ω+−
ω−+

σ+

Fig. 5 Transitions for N=3 phenotypes. For a N = 3 case study, the flow diagram (a) indicates all the
transition and replication rates. In order to determine the requirements for successful therapy when a
cytotoxic drug is used against C3, a homogeneous model (b) is used. + subscripts refer to therapy tolerant
or resistant phenotypes CR , while − indicate those phenotypes with negative effective replication under
the action of a drug
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Fig. 6 PHS therapy in larger architectures (N > 2). In a, replicating phenotypes (empty circles) maintain
drug-targeted phenotypes (gray) through stochastic switching. Therapies targeting replication through tar-
geting of genetic drivers such as EGFR in GBM are likely to increase nonlinearly the cost for resistance
phenotypes to maintain diversity (continuous line, equation displayed in the inset). Stochastic Gillespie
simulations result in a certain degree of deviation, where extinction in smaller populations can eventually
happen for values of r > rR. Filled dots indicate the value for which 95% of the computational experi-
ments result in population extinction, with error bars indicating 5% deviations from this value (see SM for
computational details). In b, the effect of combined transition therapies draining R phenotypes into S is
captured by a therapeutic efficacy landscape. In it, the effect of adding a transition therapy (wRS) or a novel
targeted agent (nS) is captured by the gradients (dark arrows), directly resulting in an analytical scheme to
compute best scenarios for combination therapy in PHS (Eqs. 27,28)

The existence of a threshold relating replication (i.e., drug sensitivity), targeted
phenotypes and phenotypic transitions to overall therapy effectivity is consistent with
results in Goldman et al. (2015), where several combinations of drugs inhibiting
plasticity-mediated resistance are tested in BRAF mutant melanoma. There is direct
correlation between the effect of drugs on transition rates and overall cellular growth,
with failure of vemurafenib-only therapy related with rR overcoming the threshold
(21) for all plastic populations (Goldman et al. 2015).

For a GBM setting, the threshold could be potentially exploited by a multi-gene,
multi-drug approach able to target the three main genetic pathways of the AC-like,
OPC-like and NPC-like populations through EGFR, PDGFRA and CDK4, respec-
tively (Neftel 2019). Each novel target is likely to induce a strong pressure for
replication to resistant phenotypes σR, eventually resulting in the mesenchymal phe-
notype alone bearing the pressure of the replication threshold (nS = 3, Fig. 6a). This is
a specially relevant result, since it provides a rough estimate of the potential obstacles
to replication-oriented therapy posed by the presence of N -dimensional switching.

What is the role of transition rates in therapeutic schemes for N > 2? We know
from the smaller system (11–12) that increasing CR draining beyond wRS ≥ rR is
a necessary condition for tumor eradication. When N phenotypes are at place, the
condition for Transition therapy to success writes:

wRS ≥ rR
nS

[
1 + (N − nS)

wSR

|rS|
]

(26)
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The multiple phenotypes architecture threshold differs from Eq. (14) when nS is
considered. This result implies a novel combination therapy landscape, able to charac-
terize overall therapeutic effectivity as a function of the parameter changes occurring
after each drug hit (Fig. 6b). The landscape offers the possibility of computing the
gradients (Fig. 6b), dark arrows) that indicate the pressure on r∗

R exerted by either
increasing wRS or nS. In given therapy settings, computing this landscape and its gra-
dients result in a preliminary indicator on choosing if the next drug should focus on
draining the untargeted phenotype (wRS) or targeting a novel sensitive phenotype (nS).
Overall, this could improve targeting of multi-phenotype plastic networks where wi j

is only targeted so far through inhibition and not increase (Goldman et al. 2015).
The gradients of ∂wRSr

∗ and ∂nSr
∗ therefore indicate a key evolutionary ingredient

for combination therapeutic designs

∂r∗
R

∂wRS
= nS(

1 + (N − nS)
wSR

|rS|
) , (27)

∂r∗
R

∂nS
=

wRS

(
1 + N

wSR

|rS|
)

(
1 + (N − nS)

wSR

|rS|
)2 . (28)

With given parameters (Table 1), adding single agents should follow from which
gradient of both is larger. If not, using drugs that induce small gradient effects on r∗

R
is likely to allow resistant phenotypes a window to explore escape mechanisms in the
lack of strong drug activity (Liau et al. 2017).

3 A Note on PHS and Evolutionary Game Theory

Evolutionary Game Theory (EGT) provides an optimal framework to understand the
evolution of species or phenotypes in a population, based on the notion that their
fitness (usually, replication rate) depends on the interaction with other species and
their abundances in a given ecological setting (Smith and Price 1973; Weibull 1997).
Among many other applications (see e.g., (Weibull 1997) for an extensive review),
EGT provides a framework to understand the relative abundances of species, here seen
as strategies played in the ecological game. Knowing this, one may ask if EGT is a
useful tool to model the phenotypic dynamics observed in tumors with evidence of
PHS.
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Table 1 Parameter description and approximated experimental values for the ecology of phenotypic switch-
ing. The replication of cancer cells and the fitting of tumor growth curves with nonlinear models has been
studied for decades (see e.g., (Benzekry et al. 2014) and references therein). More recently, evidence for
spontaneous and stochastic phenotypic transitions in cancer cells (Neftel 2019; Gupta et al. 2011; Su et al.
2017; Goldman et al. 2015) indicates that transition rates might happen at a rate inferior to that of malignant
cell replication

Parameter Description Experimental values References

ri Phenotype i
replication rate

0.2 ∼ 0.8 days−1 Benzekry et al. (2014) and
refs. therein

wi j Rate of phenotypic
transition i → j

(0.01 ∼ 0.5)×ri days
−1 (Gupta et al. 2011; Goldman

et al. 2015)

K Carrying capacity of
the cancerous tissue

2 × 109 ∼ 4 × 1010 (Kuznetsov et al. 1994;
Wilkie and Hahnfeldt 2013)

Very broadly, EGT can be brought up through the notion of the so-called Replicator-
Mutator model, where the abundance dynamics of phenotype xi follow

dxi
dt

=
N∑

j=1

x j f j (x)Q ji − xiφ(x), (29)

where f j (x) stands for the replication rate of phenotype j given the abundances of
all phenotypes in the population (often expressed as a Payoff Matrix), Q j i is the
mutation rate from phenotype j to i , and the last term accounts for the competition
dynamics associated to the ecosystem. By applying this dynamical framework, one
could predict the final distribution of phenotypes in an ecosystem by knowing how
each of these phenotypes (often representing species) interacts when finding any other
(Weibull 1997).

EGThas been successfully applied to several open problems inmathematical oncol-
ogy (Pacheco et al. 2014), where it has been used to target ecological phenomena such
as intra-tumor heterogeneity and tumor cell metabolism (Basanta and Anderson 2013)
or the effect of anti-cancer treatments (Swierniak et al. 2019). We hypothesize that
EGT will also be a candidate framework to study the dynamics and implications of
PHS beyond what has been studied in this work. To do so, however, two main issues
will need to be solved.

On the one hand, Replicator-Mutator dynamics are based on the notion that changes
between strategies (phenotypic mutations) happen during replication (as expressed in
f j (x)Q ji ), as errors in cellular DNA occur during cell division (Negrini et al. 2010).
The stochastic nature of phenotypic transitions and epigenetic switching, however,
spans a much broader scenario, where transitions can happen at any time, hereby
changing the overall dynamics into those of Eqs. 1–2.

More importantly, solving EGT models requires knowledge on the exact payoff
matrix: the benefit or cost that a given phenotype obtains when encountering another
(Pacheco et al. 2014; Basanta andAnderson 2013). Evidence for phenotypic switching
architectures with more than two phenotypes in cancer is still very recent (Neftel
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2019; Gupta et al. 2011; Su et al. 2017; Goldman et al. 2015). In this context, further
experimental insight rendering a clear picture of the ecological cues of phenotypic
interactions could bring up a first, preliminar description of PHS payoff matrices, that
combined with stochastic switching dynamics make up for a full model (Eqs. 1–2) that
would represent a breakthrough in our capacity to understand, and hence modulate
with therapy, epigenetic switching in cancer.

4 Discussion

Several considerations on therapy design arise directly from the previous results (and
our simplifying assumptions). A well-adapted population can maintain non-adapted
cell types, provided replication and transition rates are tuned accordingly. Evidence for
skewness in experimental transition rate values (Gupta et al. 2011; Su et al. 2017) could
indicate the evolution of PHS networks toward enhancing well-adapted phenotypes.
PHS offers therefore an alternative pathway to cancer heterogeneity and consequent
drug resistance (Easwaran et al. 2014). In this context, single-phenotype strategies are
likely to fail, steering tumor evolution toward other phenotypes instead of providing
a cure. Our mathematical framework provides a qualitative understanding of such
failure for N -dimensional PHS architectures.

In them, what is to be tackled is diversity itself: if only one phenotype can be
targeted, the model indicates that others can be drained by increasing the rates at
which they transition to the dying one. A key implication here is that inhibition of
resistant-phenotype transitions is not necessarily a successful approach if drug-tolerant
cell types are not specifically drained toward sensitivity.Furthermore, PHS provides
a therapeutic opportunity when different nonlinear growth dynamics are in place.
As a case example, we have explored the possibility of controlling an exponentially-
growingmesenchymal phenotype by increasing phenotypic switching toward a sibling
Epithelial population, whose growth is limited by tissue-level spatial and nutrient
limitations.

Therapeutic strategies that target differentiation pathways are already in place (de
Thé 2018), and much is known about dedifferentiation and reprogramming across cell
types (Jopling et al. 2011; Huang 2009). Clinical and experimental evidence points
to differentiation-regulating genes as potential targets of transition therapy. Poten-
tial examples are TBX3 affecting inter-phenotype switching (Gupta et al. 2011) or
SFK/Hck regulating chemotolerance (Goldman et al. 2015) in breast cancer cell lines.
Epigenetic drugs targeting DNAmethylation are nowadays another therapeutic oppor-
tunity (Gore et al. 2006; Juergens et al. 2011), and combinatorial antibody libraries
as regulators of cell fate (Lerner et al. 2015) or stem cell transdifferentiation (Xie
et al. 2013) might provide further options to induce phenotypic transdifferentiation
as a therapeutic strategy. Recent evidence indicates the relevance of obtaining a clear
portrait of the underlying Gene Regulatory Networks (GRNs) driving plasticity in
order to target possible feedback loops or hysteresis mechanisms of PHS (Hari et al.
2020; Celià-Terrassa et al. 2018). Furthermore, the possibility that phenotypic switch-
ing can be targeted beyond oncogenic phenotypes (Ishay-Ronen et al. 2019) opens up
the Waddington landscape (Waddington 1957) to be explored by transition therapy.
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When more than two phenotypes coexist it is likely that several cell types have
evolved oncogenic advantage (Neftel 2019; Su et al. 2017). Our approach indicates
that targeting several phenotypes increases nonlinearly the pressure for tumor sur-
vival. Drug combination targeting multiple cell types together with transition rates to
drain non-targeted phenotypes could result in increased benefits for patient survival if
specific PHS threshold conditions are fulfilled.

Sequential therapy schemes are known to drive tumor evolution by inducing pres-
sures that drive clonal selection (Gatenby and Brown 2018). Even in tumors where
phenotypes show self-renewal capacity after cytotoxic therapy, ourmodeling approach
is a predictive tool for the resulting phenotypic trajectories. Since we can compute the
stable phenotypic composition for any combination of parameters, knowing how they
change after therapy results in a quantitative prediction of the new tumor state.

Our framework, therefore, can prove helpful to understand tumor evolution after
each drug (Goldman et al. 2015; Amirouchene-Angelozzi et al. 2017). Sequential drug
effects have been studied for tumors under clonal evolution schemes (Bozic 2013),
but accumulated knowledge indicates that epigenetic plasticity introduces novel con-
ditions for eradication of resistant cell types (Easwaran et al. 2014). The ability to push
the system toward equilibria predicted by our model puts forward the opportunity of
directing evolution to pre-sensitize the tumor to a second drug (Basanta et al. 2012).
Following the notion of cancer attractors and combination therapy (Huang et al. 2009;
Huang and Kauffman 2013), increasing (instead of only inhibiting) transition rates
offers a new way of thinking in how to tackle PHS-driven heterogeneity under a more
“developmental” perspective. Future extensions might need to be considered, such
as putting together our ecological perspective with that of single-cell developmental
reprogramming (Alarcón et al. 2021; Folguera-Blasco et al. 2019) or including the
dynamical effects of spatially explicit structure (Strobl et al. 2021), niche architecture
or tissue hierarchy (Solé and Aguadé-Gorgorió 2021). Each extra layer will undoubt-
edly modify our basic bounds, but we conjecture that the ways PHS influences tumor
responses will be basically the same.
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