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Abstract—Advances in high-throughput sequencing techniques now allow relatively easy and affordable sequencing of large
portions of the genome, even for nonmodel organisms. Many phylogenetic studies reduce costs by focusing their sequencing
efforts on a selected set of targeted loci, commonly enriched using sequence capture. The advantage of this approach is
that it recovers a consistent set of loci, each with high sequencing depth, which leads to more confidence in the assembly
of target sequences. High sequencing depth can also be used to identify phylogenetically informative allelic variation
within sequenced individuals, but allele sequences are infrequently assembled in phylogenetic studies. Instead, many
scientists perform their phylogenetic analyses using contig sequences which result from the de novo assembly of sequencing
reads into contigs containing only canonical nucleobases, and this may reduce both statistical power and phylogenetic
accuracy. Here, we develop an easy-to-use pipeline to recover allele sequences from sequence capture data, and we use
simulated and empirical data to demonstrate the utility of integrating these allele sequences to analyses performed under
the multispecies coalescent model. Our empirical analyses of ultraconserved element locus data collected from the South
American hummingbird genus Topaza demonstrate that phased allele sequences carry sufficient phylogenetic information
to infer the genetic structure, lineage divergence, and biogeographic history of a genus that diversified during the last 3 myr.
The phylogenetic results support the recognition of two species and suggest a high rate of gene flow across large distances
of rainforest habitats but rare admixture across the Amazon River. Our simulations provide evidence that analyzing allele
sequences leads to more accurate estimates of tree topology and divergence times than the more common approach of
using contig sequences. [Aves; gene tree; heterozygous sites; mitochondrial genome; SNP; species tree; target enrichment;

Trochilidae.]

Massive parallel sequencing (MPS) techniques enable
time- and cost-efficient generation of DNA sequence
data. Instead of using MPS to sequence complete
genomes, many researchers choose to focus their
sequencing efforts on a set of target loci to lower
costs while achieving higher coverage and more reliable
sequencing of these target regions (Faircloth et al.
2012, 2013; Mirarab et al. 2014; Smith et al. 2014;
Faircloth 2015; Harvey et al. 2016; Meiklejohn et al.
2016). These multilocus data sets typically contain
hundreds or thousands of target loci, and most are
generated through enrichment techniques such as
sequence capture (synonym: target enrichment, Gnirke
et al. 2009). After collecting sequence data from these
targeted loci, many researchers assemble their high
coverage sequence reads into “contigs” using de novo
genome assembly software, and the “contig sequence”
output by these assemblers often ignore the variants
at heterozygous positions that are expected in diploid
organisms. Typically, variable positions are treated as
sequencing errors and assembly algorithms output
“contig sequences” containing the more probable (i.e.,
numerous) variant while discarding the alternative
(Igbal et al. 2012). As a result, the “contig sequences”
that are produced contain only canonical nucleobases,
losing the information about read variability at variable
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positions. Hereafter, we use “contigs” and “contig
sequences” to refer to the sequences that are output by
de novo assemblers.

One alternative approach to generating contig
sequences uses the depth of sequencing coverage to
programmatically identify variable positions within a
targeted locus [also known as “calling” single nucleotide
polymorphisms (SNPs)] and subsequently sorting (or
“phasing”) these SNPs into two allele sequences or
“haplotypes” which represent alleles on the same
chromosome present at that locus. These approaches
have been used to estimate demographic parameters
such as effective population size, rate of migration,
and the amount of gene flow between and within
populations. However, it is rarely acknowledged (c.f.
Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016;
Eriksson et al. 2017) that allelic sequences are useful for
phylogenetic studies to improve the estimation of gene
trees, species trees, and divergence times (Garrick et al.
2010; Potts et al. 2014; Lischer et al. 2014). The common
practice of neglecting allelic information in phylogenetic
studies possibly results from historical inertia and a lack
of computational pipelines to prepare allele sequences
for phylogenetic analysis using MPS data.

In addition to the problems of determining allelic
sequences, the proper analysis of allelic information
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Depiction of the workflow used in this manuscript. Colored boxes represent different types of MSAs used for phylogenetic inference

in this study. In addition to the standard UCE workflow (boxlabel: classic workflow) of generating contig MSAs (Faircloth et al. 2012; Smith
et al. 2014; Faircloth 2015), we extended the bioinformatic processing to generate UCE allele MSAs, and to extract SNPs from these allele MSAs
(boxlabel: upgraded workflow). We added these new functions to the PHYLUCE pipeline (Faircloth 2015). Additional data processing steps
(boxlabel: additional steps) were executed in this study to test different codings of heterozygous positions.

in phylogenetic studies remains a challenging and
intensively discussed topic (Garrick et al. 2010; Lischer
et al. 2014; Potts et al. 2014; Schrempf et al. 2016; Leaché
and Oaks 2017). Various approaches have been proposed
to include this information into phylogenetic methods
(Lischer et al. 2014; Potts et al. 2014; Schrempf et al.
2016). One is to code heterozygous sites using the
International Union of Pure and Applied Chemistry
(IUPAC) ambiguity codes and to include these as
additional characters in existing substitution models for
gene tree and species tree inference (Potts et al. 2014;
Schrempf et al. 2016). While these studies demonstrate
that integrating additional allelic information in this
manner increases accuracy in phylogenetic inference,
(Lischer et al. 2014) found that coding heterozygous sites
as IUPAC ambiguity codes in phylogenetic models biases
the results toward older divergence time estimates.
Instead, (Lischer et al. 2014) introduced a method of
repeated random haplotype sampling (RRHS) in which
allele sequences are repeatedly concatenated across
many loci, using a random haplotype for any given locus
in each replicate. In their approach, they then analyzed
thousands of concatenation replicates separately for
phylogenetic tree estimation and summarized the
results between replicates, thereby integrating the
allelic information in the form of uncertainty intervals.
However, there are two important shortcomings of
this approach: 1. concatenating unlinked loci (and

in particular allele sequences from unlinked loci) in
a random manner is known to produce incorrect
topologies (Degnan and Rosenberg 2009) often with false
confidence (Kolaczkowski and Thornton 2004; Mossel
and Vigoda 2005; Edwards et al. 2007; Kubatko and
Degnan 2007), which is not accounted for when doing so
repeatedly and summarizing the resulting trees, and 2)
running thousands of tree estimation replicates based on
extensive amounts of sequence data results in unfeasibly
long computation times, particularly for Markov-Chain
Monte Carlo (MCMC) based softwares such as MrBayes
or BEAST. Hence, there is need to find proper solutions
to include heterozygous information in phylogenetic
analyses, as concluded by (Lischer et al. 2014).

Here, we introduce the bioinformatic assembly of
allele sequences from UCE data (Fig. 1) and demonstrate
a full integration of allele sequences to species tree
estimation under the multispecies coalescent (MSC)
model. In our approach, we treat each allelic sequence
of an individual at a given locus as an independent
sample from the population, and we analyze these
sequences using the species tree and delimitation
software STACEY (Jones et al. 2014; Jones 2017), which
allows for this approach by not requiring a priori
clade- or species-assignments. We first demonstrate
the empirical utility of this approach by resolving the
shallow genetic structure (<1 Ma) within two recognized
morphospecies of the South American hummingbird
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TABLE 1.  Sequenced specimens and coordinates of their sampling locations, subspecies identifications based on morphological characters
1D Taxon Subspecies Voucher number Latitude Longitude
1 Topaza pyra amaruni INPA A1106 —0.044167 —66.94944
2 T. pyra pyra MPEG 62475 —1.559444 —65.88006
3 T. pyra pyra MPEG 62474 —4.083889 —60.66050
4 T. pyra pyra MPEG 52721 —7.350000 —73.66667
5 Topaza pella NA USNM 586322 7.220000 —60.29000
6 T. pella pella INPA A3319 —1.927900 —59.41600
7 T. pella smaragdula MPEG 61688 —1.950000 —51.60000
8 T. pella microrhyncha MPEG 65603 —5.352417 —57.47500
9 T. pella NA INPA A6233 —9.028550 —64.24231
10 Florisuga fusca NA MPEG 70697 —15.15972 —39.04500

INPA = Instituto Nacional de Pesquisas da Amazonia; MPEG = Museum Paraense Emilio Goeldi; USNM = NMNH, Smithsonian Institution,

Washington DC, USA.

genus Topaza, with a data set of 2386 ultraconserved
elements (UCEs, see Faircloth et al. 2012). We then
validate this approach, using simulated data, and
we find evidence that allele sequences yield more
accurate results in terms of species tree estimation and
species delimitation than the contig sequence approach
that ignores heterozygous information. Further, our
simulation results provide evidence that compiling
phased allele sequences and treating these as individual
samples outperforms alternative approaches of coding
heterozygous information, such as analyzing sequences
containing IUPAC ambiguity codes or analyzing
isolated SNPs. We conclude that allele phasing for
sequence capture data can be critical for correct species
delimitation and phylogeny estimation, particularly in
recently diverged groups, and that analyses using
phased allele sequences should be considered as one,
potential “best practice” for analyzing sequence capture
data sets in a phylogenetic context.

MATERIALS AND METHODS

Study System

The genus Topaza and its sister genus Florisuga
form the Topazes group, which together with the
Hermits represent the most ancient branch within
the hummingbird family (Trochilidae) (McGuire et al.
2014). Topazes are estimated to have diverged as a
separate lineage from all other hummingbirds around
21.5 Ma, whereas the most recent common ancestor
(MRCA) of Topaza and Florisuga lived approximately
19 Ma (McGuire et al. 2014). At present, there are two
morphospecies recognized within Topaza, namely the
Fiery Topaz, T. pyra (Gould, 1846), and the Crimson
Topaz, T. pella (Linnaeus, 1758). However, the species
status of T. pyra has been challenged by some authors
(Schuchmann 1999; Ornés-Schmitz and Schuchmann
2011), who consider this genus to be monotypic. Topaz
hummingbirds are endemic to the Amazonian rainforest
and are some of the most spectacular and largest
hummingbirds worldwide, measuring up to 23 cm (adult
males, including tail feathers) and weighing up to 12 g
(Schuchmann et al. 2016; del Hoyo et al. 2016a). These
birds are usually found in the forest canopy along forest

edges and clearings, and are often seen close to river
banks (Ornés-Schmitz and Schuchmann 2011). There is
morphological evidence for several subspecies within
both currently recognized Topaza species (Peters 1945;
Schuchmann 1999; Hu et al. 2000; Ornés-Schmitz and
Schuchmann 2011) that we investigate using genetic data.

Sequence Data Generation

We extracted DNA from the muscle tissue of
10 vouchered hummingbirds (9 Topaza, 1 Florisuga,
see Table 1) using the Qiagen DNeasy Blood and
Tissue Kit according to the manufacturer’s instructions
(Qiagen GmbH, Hilden, Germany). These samples cover
most of the genus’ total geographic range (Fig. 2)
and all morphologically recognized intraspecific taxa
(Schuchmann et al. 2016; del Hoyo et al. 2016a). All
samples were sonicated with a Covaris 5220 to a
fragment length of 800 base pairs (bp). Paired-end,
size-selected (range 600-800 bp) DNA libraries were
prepared for sequencing, using the magnetic-bead
based NEXTflexTM Rapid DNA-Seq Kit (Bioo Scientific
Corporation, Austin, TX, USA), following the user’s
manual (v14.02).

We used the “Tetrapods-UCE-2.5Kv1” bait set
(uce-2.5k-probes. fasta), consisting of 2560 baits
(each 120 bp), targeting 2386 UCEs, as described
by (Faircloth et al. 2012). The bait sequences were
downloaded from http://ultraconserved.org and
synthesized by MYcroarray (Biodiscovery LLC, Ann
Arbor, MI, USA). Sequence enrichment was performed
using a MYbaits kit according to the enclosed user
manual (v1.3.8). The enriched libraries were then
sequenced using 250 bp, paired-end sequencing on
an Illumina MiSeq machine (Illumina Inc., San Diego,
CA, USA). Library preparation, sequence enrichment
and sequencing were performed by the Sahlgrenska
Genomics Core Facility in Gothenburg, Sweden.

Mitochondrial Genome

To infer a dated mitochondrial phylogeny for the
genus Topaza to compare with the nuclear phylogeny,
we used off-target mitochondrial reads to assemble
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FIGURE 2.  Distribution ranges and mitochondrial phylogeny of the South American hummingbird genus Topaza. Tip labels of phylogeny

and numbers on map represent sample IDs (Table 1) of sequenced Topaza specimens. Node labels in phylogeny show mean divergence time
estimates for mitochondrial lineages in million years (Ma), with node bars representing the surrounding uncertainty [95% highest posterior
density (HPD)]. All nodes are supported with 100% PP, as indicated by asterisks. Polygons on map represent distribution ranges of the two
morphospecies (Topaza pyra and Topaza pella) as estimated by BirdLife International (http://www.birdlife.org). Transparent symbols (triangles
and circles) represent Topaza sightings, which were downloaded from the eBird database (Sullivan et al. 2009). The major river systems in the
Amazon drainage basin are labeled and emphasized in size for better visibility. Topaza illustrations were provided by (del Hoyo et al. 2016b).

the complete mitochondrial genome for all samples.
We found that as many as 4.5% of all sequence
reads were of mitochondrial origin, even though no
baits targeting mitochondrial loci were used during
sequence capture. An alignment of the assembled
mitochondrial genomes for all samples was analyzed
in BEAST (Drummond et al. 2012). Dating priors
included clock-rate priors for three mitochondrial genes,
estimated for honeycreepers by (Lerner et al. 2011)
and node-age priors within the genus Topaza that
were estimated by (McGuire et al. 2014). The resulting
phylogeny and estimated divergence times are shown
in Figure 2. A detailed description of the assembly
and phylogenetic analysis of the mitochondrial genome
data can be found in Supplementary Appendix S1
available on Dryad at http:/ /dx.doi.org/10.5061/dryad.

hq3vq).

UCE Data Processing

For this study we generated five types of data sets,
which we analyzed under the MSC. These five data
sets represent different coding schemes for heterozygous
information and are listed and described in the following
sections.

UCE contig alignments.—Because contig sequences are
commonly used in phylogenetic analyses of MPS data
sets (e.g., Faircloth et al. 2012; Smith et al. 2014; Faircloth
2015), we generated multiple sequence alignments

(MSAs) of contigs for all UCE loci to test the accuracy
of the phylogenetic estimation of this approach.

To create MSAs from UCE contig data, we followed the
suggested workflow from the PHYLUCE documentation
(http:/ /phyluce.readthedocs.io/en/latest/tutorial-one.
html). We applied the PHYLUCE default settings unless
otherwise stated. First we quality-filtered and cleaned
raw Illumina reads of adapter contamination with
Trimmomatic (Bolger et al. 2014), which is implemented
in the PHYLUCE function illumiprocessor. The
reads were then assembled into contigs using the
software ABYSS (Simpson et al. 2009) as implemented in
the PHYLUCE pipeline. To identify contigs representing
UCE loci, all assembled contigs were mapped against
the UCE reference sequences from the bait sequence
file (uce-2.5k-probes. fasta), using the PHYLUCE
function match contigs to probes.py. We
extracted only those sequences that matched UCE loci
and that were present in all samples (1=820). These
UCE sequences were then aligned for each locus (Fig. 1)
using MAFFT (Katoh et al. 2009).

UCE allele alignments—We altered the typical UCE
workflow to retrieve the allelic information that is lost
when collapsing multiple reads into a single contig
sequence (Fig. 1). To create this new workflow, we
extracted all UCE contigs for each sample separately
and treated each resulting contig set as a sample-
specific reference library for read mapping (reference-
based assembly). We then mapped the cleaned reads
against each reference library on a per sample basis,
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using CLC-mapper from the CLC Workbench software.
The mapped reads were sorted and then phased
with SAMtools v0.1.19 (Li et al. 2009), using the
commands samtools sort and samtools phase,
respectively. This phasing function is based on a dynamic
programming algorithm that uses read connectivity
across multiple variable sites to determine the two
phases of any given diploid locus (He et al. 2010). Further,
this algorithm uses paired-end read information to reach
connectivity over longer distances and it minimizes the
problem of accidentally phasing a sequencing error,
by applying the minimum error correction function
(He et al. 2010).

UCE data provide an excellent data set for allele
phasing based on read connectivity, because the read
coverage across any given UCE locus typically is highest
in the center and decreases toward the ends. This makes
it possible to phase throughout the complete locus
without any breaks in the sequence. Even in cases where
the only variable sites are found on opposite ends of the
locus, the insert size we targeted in this study (800 bp),
in combination with paired-end sequencing, enabled the
phasing process to bridge the complete locus (average
length of compiled UCE sequences in our study was
870 bp).

The two phased output files (BAM format) were
inspected for proper variant separation for all loci using
Tablet (Milne et al. 2013). We then collapsed each allele
BAM file into a single consensus sequence per haplotype
and exported the two resulting allele sequences for
each sample in FASTA format. To separate true
heterozygous sites from occasional variants introduced
by sequencing errors, we only made a nucleotide call
if the respective nucleotide was supported by at least
three reads. Ambiguous positions were coded with the
IUPAC code ‘N’ in the allele consensus sequences. We
explored the difference in the treatment of heterozygous
positions between the contigs produced by the de novo
assembler ABYSS and our phased allele sequences in
detail (exemplary for one sample) in Supplementary
Appendix S2 available on Dryad.

In the next, step we aligned the allele sequences
between all samples, separately for each UCE locus,
using MAFFT (Fig. 1). We integrated this complete
workflow into the UCE processing software PHYLUCE
(Faircloth 2015) with slight alterations, one of which is
the use of the open-source mapping program bwa (Li
and Durbin 2010) in place of CLC-mapper.

UCE [IUPAC consensus sequence alignments.—We
generated an additional set of alignments by merging
the two allele sequences for each individual into
one consensus sequence with heterozygous sites
coded as IUPAC ambiguity codes (merge allele
sequences_ambiguity codes.py, available from:
github.com / tobiashofmann88 / UCE - data - manage
ment/). We used this data set to test whether our allele
phasing approach improved phylogenetic inference
when compared to the IUPAC consensus approach

applied in other studies, where heterozygous positions
are coded as IUPAC ambiguity codes in a consensus
sequence for each locus and individual (Potts et al. 2014;
Schrempf et al. 2016).

UCE chimeric allele alignments.—To investigate whether
correct phasing of heterozygous sites is essential or
if similar results are achieved by randomly placing
variants in either allele sequence, we generated a data
set with chimeric allele sequence alignments. We created
these alignments by applying a custom python script
(shuffle snps in allele alignments.py,
available from: github.com/tobiashofmann88/UCE-
data-management/) to the phased allele sequence
alignments and randomly shuffling the two variants
at each polymorphic position between the two allele
sequences for each individual. This process leads, in
many cases, to an incorrect combination of variants
on each allele sequence, thereby creating chimeric
allele sequences. The resulting alignments contain
the same number of sequences as the phased allele
alignments (two sequences per individual), whereas the
contig alignments and the IUPAC consensus alignments
contain only half as many sequences (one sequence per
individual).

UCE SNP alignment.—A common approach to analyzing
heterozygous information is to reduce the sequence
information to only a single variant SNP per locus.
This data-reduction approach is often chosen because
multilocus data sets of the size generated in this
study can be incompatible with Bayesian MSC methods
applied to the full sequence data, due to extremely long
computational times and convergence issues. Instead,
alignments of unlinked SNPs can be used to infer
species trees and species demographics under the MSC
model with the BEAST2 package SNAPP (Bryant et al.
2012), a program specifically designed for such data.
However, extracting and filtering SNPs from BAM files
with existing software (such as the Genome Analysis
Toolkit, McKenna et al. 2010) and converting these into a
SNAPP compatible format can be cumbersome, because
SNAPP requires positions with exactly two states, coded
in the following manner: individual homozygous for
the original state = “0,” heterozygous = “1,” and
homozygous for the derived state = “2.”

To alleviate this problem, we developed a python
function that extracts biallelic SNPs directly from allele
sequence MSAs (snps_from uce alignments.py,
available from: github.com/tobiashofmann88/snp_
extraction_from_alignments/). Extracting SNPs from
MSAs in this manner is a straightforward and simple
way to generate a SNP data set compatible with SNAPP,
and does not require revisiting the BAM files. A similar
program is also available in the R-package phrynomics
(Leaché et al. 2015). We used this approach to extract
one variable position per alignment (to ensure unlinked
SNPs) that had exactly two states among all Topaza
samples, not allowing for positions with missing data
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FIGURE3. Multispecies coalescent (MSC) species trees for the empirical Topaza data, based on four data types used in this study: contig sequence
MSAs, phased allele sequence MSAs, IUPAC consensus sequence MSAs and SNP data. a) STACEY species tree from UCE contig alignments
(n=150), b) STACEY species tree from UCE allele alignments (1 =150), c) STACEY species tree from UCE IUPAC consensus alignments (1n=150),
and d) SNAPP species tree from UCE SNP data (1 SNP per locus if present, n="598). Shown are the maximum clade credibility trees (node values
= PP, error-bars = 95% HPD of divergence times) and a plot of the complete posterior species tree distribution (excluding burn-in).

or ambiguities. This produced a SNP data set of 598
unlinked SNPs.

Generation of Simulated UCE Data

To assess the accuracy of the phylogenetic inferences
resulting from different data processing approaches, we
simulated UCE data similar to those discussed in the
five processing schemes we applied to the empirical
Topaza data. However, because this approach required
us to simulate allele alignments before generating contig
alignments, steps one and two, below, are reversed from
their order, above. We repeated all steps involving the
generation and analyses of simulated data to produce 10
independent simulation replicates.

Simulated  allele  alignments.—To  simulate allele
alignments similar to our empirical data we first
estimated species divergence times and population
sizes from the empirical UCE allele MSAs under the
MSC model (Rannala and Yang 2003) using the Bayesian
MCMC program BPP v3.1 (Yang 2015). We applied
the A00 model, which estimates divergence times and
population sizes from MSAs for a given species tree
topology. As input topology we used the species tree

topology resulting from the analysis of the empirical
allele MSAs in STACEY, assigning the Topaza samples
to five separate taxa (corresponding to colored clades
in Fig. 3b). An initial BPP analysis did not converge
in reasonable computational time, a problem that has
previously been reported for UCE data sets containing
several hundred loci (Giarla and Esselstyn 2015). To
avoid this issue, we split the 820 UCE alignments
randomly into 10 subsets of equal size (#=82) and
analyzed these separately with identical settings in BPP.
The MCMC was set for 150,000 generations (burn-in
50,000), sampling every 10 generations. We summarized
the estimates for population sizes and divergence times
across all 10 individual runs. We then applied the mean
values of these estimates to the species tree topology,
by using the estimated divergence times as branch
lengths and estimated population sizes as node values,
resulting in the species tree in Fig. 4g. This tree was
used to simulate sequence alignments with the MCcoal
simulator, which is integrated into BPP. Equivalent to
the empirical data, we simulated sequence data for
five taxa (D, E, X, Y, and Z) and one outgroup taxon
(F, not shown in Fig. 4g). In the simulations, these taxa
were simulated as true species under the MSC model.
To mimic the empirical allele data, we simulated four
individuals for species “D” (equivalent to two allele
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whereas light panels depict low similarity scores (see legend). e) and f) The maximum clade credibility trees resulting from SNAPP for our two
SNP data sets (reduced and complete). g) The species tree under which the sequence data were simulated in this study. Node support values in

PP, blue bars representing 95% HPD confidence intervals.

sequences for two samples), four for species “E,” four for
species “X,” two for species “Y” (two allele sequences
for one sample), four for species “Z,” and two for the
outgroup species “E” In this manner we simulated
820 UCE allele MSAs of 848 bp length (a value equal
to the average alignment length of the empirical allele
alignments). The resulting simulated allele MSAs are
equivalent to our empirical allele MSAs, containing
two phased allele sequences for every individual that
differ only in true heterozygous sites and which are not
expected to contain read-errors.

Simulated contig alignments.—To simulate UCE contig
MSAs that contain sequences similar to contigs
generated by assemblers like ABYSS, Velvet or Trinity,
which pick only one of the two variants at a heterozygous
site, we merged the sequences within each coalescent
species in pairs of two (equivalent to pairs of allele
sequences). Each pair of allele sequences was joined into
one contig sequence by randomly picking one of the two
variants at each heterozygous site across all loci. As in
the empirical contig assembly approach, our simulation
approach may generate chimeric contig sequences.
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Simulated IUPAC consensus alignments.—Next, we
generated IUPAC consensus MSAs in the same manner
as we generated the simulated contig MSAs in the
previous step, with the exception that all heterozygous
sites were coded with IUPAC ambiguity codes instead
of randomly picking one of the two variants.

Simulated chimeric allele alignments.—We generated
chimeric allele sequence MSAs from the simulated allele
MSAs by randomly shuffling the heterozygous sites
between each pair of sequences using the same pairs as
in the previous two steps.

Simulated SNP alignment.—Finally, we extracted two SNP
data sets from the simulated phased allele MSAs. The
first SNP data set (SNPs complete) was extracted in
the same manner as described for the empirical data
(one SNP per locus for all loci) which resulted in a
total alignment length of 820 SNPs for the simulated
data. We extracted an additional SNP data set (SNPs
reduced) from only the subset of the 150 simulated allele
alignments that were used for the sequence-based MSC
analyses (see next section below). The resulting data
set of 150 SNPs was used to compare the phylogenetic
inference based on SNP data versus that based on
full sequence data, if the same number of loci is
being analyzed. This enabled us to evaluate the direct
effect of reducing the full sequence information in the
MSAs to one single SNP for each of the selected 150
loci.

MSC Analyses of Empirical and Simulated UCE Data

Sequence-based tree estimation.—To jointly infer gene trees
and species trees, we analyzed each of the generated
sets of MSAs (processing schemes 1—4 for empirical and
simulated) under the MSC model, using the DISSECT
method (Jones et al. 2014) implemented in STACEY
(Jones 2017), which is available as a BEAST2 (Bouckaert
et al. 2014) package. STACEY allows *BEAST analyses
without prior taxonomic assignments, searching the
tree space while simultaneously collapsing very shallow
clades in the species tree (controlled by the parameter
collapseHeight). This collapsing avoids a common
violation of the MSC model that occurs when samples
belonging to the same coalescent species are assigned to
separate taxa in *BEAST. This feature makes STACEY
suitable for analyzing allele sequences, because they
do not have to be constrained to belong to the same
taxon and can be treated as independent samples
from a population. STACEY runs with the usual
*BEAST operators, but integrates out the population size
parameter and has new MCMC proposal distributions
to more efficiently sample the species tree, which
decreases the time until convergence. To reach even faster
convergence, we reduced the number of loci for this
analysis by selecting the 150 allele MSAs with the most
parsimony-informative sites. This selection was made
for both the empirical and the simulated allele MSAs.

The same 150 loci were selected for all other processing
schemes.

Prior to analysis, we estimated the most appropriate
substitution model for each of the 150 loci with
jModeltest (Supplementary Table S1 available on Dryad)
using BIC. We used BEAUTI v2.4.4 to create an input file
for STACEY in which we unlinked substitution models,
clock models and gene trees for all loci. We did not
apply any taxon assignments, thereby treating every
sequence as a separate taxon. We chose a strict clock
for all loci and fixed the average clock rate for one
random locus to 1.0, while estimating all other clock
rates in relation to this locus. To ensure that all resulting
species trees were scaled to an average clock rate of
1.0, we rescaled every species tree from the posterior
distribution (post analysis) using the average clock rate
of the respective MCMC step. We applied the STACEY-
specific BirthDeathCollapse model as a species tree
prior, choosing a value of 1le—5 for the collapseHeight
parameter. Other settings were: bdcGrowthRate = log
normal (M = 4.6, S = 1.5); collapseWeight = beta (alpha
=2, beta = 2); popPriorScale = log normal M = -7, S =
2); relativeDeathRate = beta (alpha = 1.0, beta = 1.0). For
the IUPAC consensus data, we enabled the processing of
ambiguous sites by adding useAmbiguities="true"
to the gene tree likelihood priors for all loci in the
STACEY XML file. All analyses were run for 1,000,000,000
MCMC generations or until convergence (ESS values
>200), logging every 20,000 generations. Convergence
was assessed using Tracer v1.6 (Rambaut et al. 2018). We
then summarized the posterior tree distribution into one
maximum clade credibility tree (i.e., tree in the posterior
sample that has the maximum product of posterior clade
probabilities) with TreeAnnotator v2.4.4, discarding the
first 10% of trees as burn-in.

For the simulated data, we analyzed the posterior
species tree distributions of each analysis with the
program SpeciesDelimitationAnalyser (part of the
STACEY distribution). This program produces a
similarity matrix that contains the posterior probabilities
of belonging to the same cluster for each pair of
sequences. This analysis was run with a collapseHeight
value of 1le—5 (identical to the collapseHeight used in
the STACEY analysis), while discarding the first 10% of
trees as burn-in.

SNP-based tree estimation.—To estimate the species tree
phylogeny from the extracted SNP data, we analyzed
the empirical and simulated SNP data in SNAPP. We
did not apply prior clade assignments to the samples in
the SNP alignment (each sample was assigned as its own
taxon). We set coalescent rate and mutation rates to be
estimated based on the input data, and we chose a Yule
species tree model with default settings (A = 0.00765).
We ran the analysis for 10,000,000 generations, sampling
trees and other parameters from the posterior every 1000
generations. Unlike STACEY, SNAPP assumes correct
assignments of all sequences to coalescent species. Using
the simulated SNP data, we therefore tested how our
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approach of assigning every individual as its own
coalescent species affects the resulting phylogenetic
inference. We did so by running a separate analysis for
both simulated SNP data sets (complete and reduced)
with correct species assignments (assignments as in

Fig. 4g).

Additional Analyses

We ran additional analyses of the contig and
the phased allele MSAs for both the empirical and
simulated data using a summary coalescent approach
as implemented in MP-EST (Yu et al. 2007), which can be
found in Supplementary Appendix S2 and Figures S1-S3
available on Dryad.

REsuLTS

UCE Summary Statistics

Alignment statistics.—In the following we use the term
“polymorphic sites” for those positions within a MSA
alignment of a given locus where we find at least two
states at a particular position among the sequences for
all samples. This does not require a particular individual
being heterozygous for the given position, since we
do not search for SNPs on a per sample basis but
rather for SNPs within the genus Topaza. In this manner,
we found that the empirical UCE contig sequence
alignments had an average of 2.8 polymorphic sites per
locus and an average alignment length of 870 bp. In
contrast, phasing the empirical UCE data to create allele
alignments led to 4.5 polymorphic sites per locus and an
average alignment length of 848 bp, representing a 60%
increase in polymorphic sites per locus. This increase
of polymorphic sites was attributable to the fact that
many variants get lost during contig assembly, because
ABYSS and other tested contig assemblers, namely
(Grabherr et al. 2011) and (Zerbino and Birney 2008),
often eliminate one of the two variants at heterozygous
positions (see below). The reduced length of the allele
alignments in comparison to the contig alignments
was due to conservative alignment clipping thresholds
implemented in PHYLUCE, which clips alignment ends
if less than 50% of sequences are present. Because the
allele phasing algorithm divides the FASTQ reads into
two allele bins and because a nucleotide is only called
if it is supported by at least three high-quality FASTQ
reads, we lost some of the nucleotide calls at areas of
low read coverage (mostly at the ends of a locus) when
comparing the allele sequences to the contig sequences.
More information about the distribution of lengths and
variable sites within the empirical UCE data can be
found in the Supplementary Figures 54 and S5 available
on Dryad. The simulated contig MSAs had an average
of 3.2 polymorphic sites per locus, after excluding the
outgroup (average calculated across all 10 simulation
replicates). The simulated allele MSAs, on the other
hand, contained an average of 5.4 polymorphicsites (69%
increase) across 10 independent simulation replicates.

An overview of parsimony-informative sites, variable
sites, and length of each alignment (simulated and
empirical data) can be found in Supplementary Table S2
available on Dryad.

MSC Results of Empirical UCE Data

The MSC species tree results for all tested processing
schemes of the empirical UCE data (contig sequences,
allele sequences, IUPAC consensus sequences, chimeric
allele sequences, and SNPs) support the monophyly of
both T. pyra and T. pella with 100% Bayesian posterior
probability (PP) (Fig. 3 and Supplementary Fig. S6
available on Dryad). In all MSC analyses, we also find
support for genetic structure within T. pella (>97% PP),
separating the northern samples (5 and 6, sampled north
of the Amazon River) from the southern ones (7, 8, and
9, sampled south of the Amazon River). Additionally,
within the shallow southern T. pella clade, all data sets,
with exception of the IUPAC consensus data (Fig. 3c),
support a genetic distinction (>99% PP) between sample
7 from the Amazon River delta and the other southern
T. pella samples (8 and 9). Further, the analysis of
the phased allele MSAs returns a phylogenetic signal,
possibly also tracking a genetic divergence between
a northern and a southern clade within T. pyra, but
their monophyly is not strongly supported (Fig. 3b).
This pattern is further supported by the mitochondrial
phylogeny, which shows the same divergence within
T. pyra, dated at 0.68 Ma (Fig. 2 and Supplementary
Appendix S1 available on Dryad).

MSC Results of Simulated Data

Species tree topology—We analyzed six data sets under
the MSC model for each of the 10 simulation
replicates: contig sequence MSAs (n=150, STACEY),
allele sequence MSAs (n=150, STACEY), IUPAC
consensus MSAs (n=150, STACEY), chimeric allele
MSAs (n=150, STACEY), reduced SNP data (n=150,
SNAPP), and the complete SNP data set (n=820,
SNAPP). All resulting species trees (Fig. 4a—f) correctly
return the topology of the species tree that was used
to simulate the data (Fig. 4g) across all 10 simulation
replicates (Supplementary Fig. S7 available on Dryad).
All central nodes in the species trees are supported by
>90% PP in all analyses, with the exception of the species
tree resulting from the reduced SNP data set, which
shows very weak support for two nodes and has a large
uncertainty interval around the root-height (Fig. 4e).
However, these shortcomings disappeared when we
added more (unlinked) SNPs to the data set (Fig. 4f). The
full SNP data set (1 =820) produced the correct species
tree topology with high node support consistently
throughout all 10 independently simulated data sets
(Supplementary Fig. S8 available on Dryad). The SNAPP
species tree topology appeared to be unaffected by
the chosen clade assignment model; while we allowed
every sequence to be its own taxon in Figure 4e, f,
we also applied the correct species assignment (as
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in Fig. 4g) in two additional analyses for one of the
simulation replicates (reduced and complete SNP data)
that returned the same tree topology (Supplementary
Figs. S9 and S10 available on Dryad).

Species delimitation.—Although the inferred species tree
topology was consistent among all four sequence-based
MSC analyses (Fig. 4a-d), the inferred node heights
varied considerably between the species trees resulting
from the different data processing schemes. For the
contig sequence data (Fig. 4a) and the chimeric allele
data (Fig. 4d), the node heights within the five simulated
species (D,E,X,Y,Z) were too high, which led to an
overestimation of the number of coalescent species in the
data set (see similarity matrices). Conversely, the phased
allele data (Fig. 4b) and the IUPAC consensus data
(Fig. 4c) correctly delimited the five coalescent species
from the simulation input tree (Fig. 4g). The STACEY
results showed the same pattern in all 10 simulation
replicates (Supplementary Fig. S7 available on Dryad).

Accuracy of divergence time estimation—For all four
sequence-based analyses (Fig. 4a-d) the average
substitution rate across all loci was set to “1.” Under
these settings, we expected the absolute values of the
sequence-based analyses to return the node height
values of the simulation input tree, which used
substitution rates scaled in the same manner. The phased
allele MSAs produced the most accurate estimation of
divergence times out of all tested data sets (see proximity
of estimates to simulation input value, represented by
green line in Fig. 5). This was the case for all nodes
in the species tree, namely (D,E), (Y,Z), (X,(Y,Z)), and
((D,E)(X,(Y,Z))). The divergence time estimates resulting
from the phased allele data accurately recovered the
true values and did not show any bias throughout 10
simulation replicates (Supplementary Fig. S11 available
on Dryad). This contrasts with the contig MSAs and
the chimeric allele MSAs that consistently overestimated
the height of all nodes and the IUPAC consensus MSAs
which consistently underestimated the height of all
nodes (Fig. 5 and Supplementary Fig. S11 available on
Dryad).

DISCUSSION

Phased Allele Sequences Return the Most Accurate
Phylogeny

We tested whether phylogenetic inference improves
by phasing sequence capture data into allele sequences,
in comparison to the standard workflow of analyzing
contig sequences (Faircloth et al. 2012; McCormack et al.
2012; Smith et al. 2014; Faircloth 2015). The answer
is yes. We find that phased allele data outperform
contig sequences in terms of species delimitation
(Fig. 4) and divergence time estimation (Fig. 5). Contig
sequence MSAs on the other hand lead to a consistent
overestimation of divergence times (Fig. 5), which

in turn lead to an overestimation of the number of
coalescent species in our simulated data (Fig. 4a). These
results support earlier work by (Lischer et al. 2014),
who concluded that consensus sequences introduce a
bias towards older node heights. Because both our
empirical and simulated data represent rather shallow
phylogenetic relationships, future research is required
to determine if these findings also apply to data sets
representing divergence events occurring in deeper time.

Besides these practical advantages of using phased
allele sequences for phylogenetic analyses, there are
further theoretical arguments for compiling and
analyzing allele sequence MSAs from sequence capture
data sets.

First, allele sequences represent the smallest
evolutionary unit on which selection and other
evolutionary processes act. Therefore, the coalescent
models that underlie our phylogenetic methods,
including the MSC model (Degnan and Rosenberg
2009), have been developed for allele sequences. Contig
sequences, on the other hand, represent an artificial
and possibly chimeric sequence construct that arises
from merging all read variation at a given locus into
a single sequence. This process masks information by
eliminating one of the two variants at a heterozygous
site (Supplementary Appendix S2 available on Dryad).
This shortcoming of the most common assemblers
(e.g., ABYSS, Trinity, and Velvet) is due to the fact that
they were designed to assemble sequences of haploid
genomes and they are not optimized for heterozygous
sequences or genomes (Bodily et al. 2015).

Second, not only are allele sequences the more
appropriate data type, but phasing sequence capture
data also leads to a doubling of the effective sample
size, since two sequences are compiled for a diploid
individual, in contrast to the single sequence per
individual that is recovered when taking the contig
approach. Here, we demonstrate how these sequences
can be properly applied as independent samples
from a population by using the assignment-free
BirthDeathCollapse model as implemented in STACEY.
Because STACEY requires no a priori assignment of
sequences to taxa, it avoids a violation of the MSC
that would occur when analyzing allele sequences as
separate taxa in *BEAST, since *BEAST assumes each
taxon constitutes a separate coalescent species.

Third, sequence capture data sets such as UCEs are
optimal for allele phasing because they contain high read
coverage collected across short genomic intervals that
are optimal for read-connectivity based phasing. The
workflow developed in this study is now fully integrated
into the PHYLUCE pipeline, making allele phasing for
sequence capture data easily available to a broad user

group.

Phasing of Heterozygous Sites Matters

Several studies have accounted for heterozygosity by
inserting IUPAC ambiguity codes into their sequences
at variable positions (Potts et al. 2014; Schrempf et al.
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Posterior distributions of divergence times, estimated with STACEY. Each panel represents a node in the STACEY species tree (see
panel titles) and shows density plots of the posterior node-height distribution (excl. 10% burnin) for each of the four sequence-based processing
schemes: contig sequences, phased allele sequences, IUPAC consensus sequences and chimeric allele sequences (see legend for color-codes). The

dotted vertical lines show the means of these posterior distributions. The solid vertical line shows the true node height value, which is the node
height for the respective clade in the input species tree, under which the sequence alignments were simulated.

2016), rather than phasing SNPs to produce separate
allele sequences. Here, we directly compared these
two approaches, and found that the IUPAC consensus
sequences performed equally well to the phased allele
sequences for estimating the species tree topology
(Fig. 4). However, IUPAC consensus sequence data
led to a consistent underestimation of the divergence
times of all nodes in the species tree (Fig. 5). Our
results contrast with those of (Lischer et al. 2014),
who reported an overestimation of divergence times

for alignments containing IUPAC ambiguity codes.
The differences between our results may simply be

caused by the different tree inference programs used.
(Lischer et al. 2014) applied a Neighbor Joining tree
algorithm as implemented in the software PHYLIP
(Felsenstein 2005) that treats two sequences containing
the same ambiguity codes as identical. In effect,
the approach used by (Lischer et al. 2014) did not
directly investigate the effect of IUPAC ambiguity
codes on phylogenetic estimates but rather the effect
of removing heterozygous sites. Our approach of
analyzing IUPAC consensus sequences under the MSC
in STACEY, on the other hand, properly integrates these
IUPAC ambiguity codes into the calculation of the
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gene tree likelihoods. Thus, we conclude that IUPAC
ambiguity codes introduce a bias towards younger
divergence times, even when properly integrated into
the phylogenetic model. The underlying cause of this
discrepancy should be further investigated in future
studies.

We also tested whether the improved performance
of phased allele sequences in comparison to contig or
IUPAC consensus sequence data may merely be an effect
of doubling the number of sequences in the MSAs,
by analyzing a data set of chimeric allele sequences
with randomly shuffled SNPs. As with the contig
data, the chimeric allele data led to an overestimation
of the number of coalescent species (Fig. 4d) and to
a biased estimation towards older divergence times
(Fig.5). The fact that contig sequences and chimeric allele
sequences produce very similar results in our analyses
is not surprising, because contigs, themselves, represent
chimeric consensus sequences of the variation found at
alocus within an individual. The similarity of the results
between contig MSAs and chimeric allele MSAs also
shows that the number of sequences being analyzed does
not affect the estimated topology, species delimitation or
divergence time estimates (Figs. 4 and 5).

Based on the findings discussed above, we conclude
that proper phasing of heterozygous positions is
preferable to the alternative of coding heterozygous
sites as IUPAC ambiguity codes, particularly when the
estimation of divergence times is of interest. Further,
allele sequences are theoretically more appropriate input
for coalescent models and should be the preferred
data type input to these models. The scalability of this
approach to larger sample sizes and the applicability of
our results to studies of older divergences are questions
that should be investigated in future studies.

One additional issue that we do not address in
this study are the effects of sequencing errors. While
sequencing errors can potentially be a serious issue
particularly for data sets affected by low read coverage,
we do not expect sequencing errors to be assembled
into our final allele sequences, due to our relatively high
read coverage per exported variant (>3 reads each). The
effects of sequencing errors and incorrectly inferred read
variability on downstream analyses are subjects that
need to be explored in future studies.

Practicality of Using Phased Allele Data in Multilocus
Phylogenetics

In this study, we analyze MSAs resulting from
different processing schemes in a MSC framework using
the STACEY BirthDeathCollapse tree model. However,
due to the size (number of samples and loci) of many
sequence capture data sets, it is often unfeasible to
analyze all MSAs jointly in one MSC analysis because
of computational limitations (Smith et al. 2014; Manthey
et al. 2016). This problem is exacerbated when working
with allele MSAs compared to the contig or IUPAC
consensus approach, because each alignment contains

twice the number of sequences, leading to a doubling
of tips in all estimated gene trees. Here we outline three
strategies of addressing this problem:

1. One reasonable approach to data reduction is
to use a subset of the allele MSAs for phylogeny
estimation. We chose this approach here and reduced
the UCE data set from 820 MSAs to 150 MSAs to reach
convergence of the MCMC (BirthDeathCollapse without
taxon-assignments) within a reasonable time frame
(34 days, single core on a Mac Pro, Late 2013, 3.5
GHz 6-Core Intel Xeon E5 processor). This approach
has the advantage that we can fully integrate the allelic
sequence information and avoid a priori assignments of
allele sequences to taxa. However, this approach discards
the majority of the multilocus information by excluding
most MSAs from the analysis.

2. An alternative approach to data reduction, while
keeping the multilocus information of all loci, is to
analyze only a single polymorphic position (SNP) per
MSA using SNAPP (Bryant et al. 2012). We find that
phased allele MSAs provide an excellent template for
SNP extraction; since all polymorphisms present in the
allele sequences have already undergone quality and
coverage filters, it is very straightforward to extract SNPs
directly from the allele MSAs. We provide an open-
source script for this purpose which also converts the
extracted SNPs into a SNAPP compatible format. In
our study, this approach produced the correct species
tree topology and also estimated the relative node
heights correctly (Fig. 4f). However, SNAPP can only
estimate relative and not absolute values for divergence
times (Bryant et al. 2012), in contrast to sequence-based
analyses (Fig. 4a—d) that deliver absolute divergence time
estimates. A more thorough discussion about extracting
SNPs from sequence capture data can be found in
Supplementary Appendix S4 available on Dryad.

3. Another common approach is to circumvent
the more appropriate but computationally heavy
coestimation of gene trees and species trees of the
MCMC-based MSC methods and chose species tree
methods that separate gene tree and species tree
estimation into two consecutive steps. This family of
methods is often referred to as summary coalescent
methods. In this approach gene trees are estimated
separately for each MSA. In a subsequent step, the
estimated gene trees are used to infer the most likely
species tree. The advantage of this approach is that the
number of independent loci being analyzed does not
constitute a serious computational limitation, because
every gene tree is estimated independently, which allows
for efficient computational parallelization. On the other
hand, summary coalescent methods are sensitive to the
number of informative sites per individual locus (Gatesy
and Springer 2014; Springer and Gatesy 2014). Given that
our phased allele MSAs contained on average 60% more
polymorphic sites than the contig MSAs (69% for the
simulated data), we argue that phased allele MSAs may
lead to more precise phylogenetic estimates under the
summary coalescent approach in comparison to contig
MSAs. In our case, the summary coalescent approach
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was not suitable, due to rather conserved alignments
with limited number of informative sites for individual
gene tree inference, which obscured the inference of
branch lengths in the species tree (Supplementary
Appendix S3 available on Dryad). However, in the case of
our simulated data, we observed a more precise estimate
of the species tree topology based on phased allele
MSAs when compared to those based on contig MSAs
(Supplementary Appendix S3 available on Dryad). In
conclusion, the summary coalescent approach can be
suitable if the individual alignments contain a sufficient
number of parsimony-informative sites for gene tree
inference, and for this reason it is likely that phased allele
MSAs might return more precise phylogenetic estimates
than contig MSAs. However, further simulation studies
are required to properly test this hypothesis.

Phylogenetic Relationships in Topaza

One or two species?—Our results show a separation of
two lineages within the genus Topaza that is dated
at ca. 2.4 Ma in the mitochondrial tree (Fig. 2 and
Supplementary Appendix S1 available on Dryad). These
lineages are consistent with the previously described
morphospecies Topaza pyra (Gould, 1846) and Topaza
pella (Linnaeus, 1758) that are generally accepted in the
ornithological community (Hu et al. 2000; del Hoyo
et al. 2016a). However, the species status of T. pyra has
been challenged by some authors (Schuchmann 1999;
Ornés-Schmitz and Schuchmann 2011). These authors
concluded that Topaza is a monotypic genus with T. pyra
being a subspecies of T. pella, which they refer to as T.
pella pyra. Our results consistently support T. pyra as a
separate lineage across all analyses, lending no support
for the conspecificity of these two taxa (Fig. 3).

Genetic divergence within morphospecies.—One aim of
this study was to evaluate the genetic structure
within the two morphospecies, T. pyra and T. pella.
The mitochondrial tree shows two divergent clades
within T. pyra (Fig. 2 and Supplementary Appendix S1
available on Dryad), but these clades are not strongly
supported by the UCE data (Fig. 3), even though
the allele sequence data are picking up a signal
that possibly indicates two clades are in the process
of diversifying (Fig. 3b). For T. pella, on the other
hand, we consistently find the same clades throughout
all multilocus MSC analyses (Fig. 3), leading us to
distinguish between the following populations that
are congruent with previous morphological subspecies
descriptions: a northern T. pella population (T. pella pella),
a southern T. pella population (T. pella microrhyncha)
and a separate population occupying the estuary
region of Amazon River (T. pella smaragdula). We
discuss these phylogenetic conclusions in more detail in
Supplementary Appendix S5 available on Dryad.

Summarizing  biogeographic  remarks—The presence
of genetically similar individuals sampled at great

geographic distances (e.g., samples 5 and 6) suggests
that Topaza hummingbirds maintain high levels of
gene flow across vast distances of rainforest habitat.
At the same time, we find indicators of phylogenetic
structure within species, distinguishing samples that
are separated by only a small geographic distance (see
e.g.,, samples 6 and 8). These samples are however
separated by the Amazon River, which has been found
to constitute a dispersal barrier for various species of
birds and many other animals (Remsen and Parker
1983; Clair 2003; Hayes and Sewlal 2004; Moore et al.
2008; Fernandes et al. 2012; Ribas et al. 2012; Thom and
Aleixo 2015). Even though some hummingbird species
are known to disperse across large distances (Russell
et al. 1994; Wyman et al. 2004), the Amazon River and its
associated habitats (such as seasonally flooded forests)
may be part of a complex network of factors that inhibit
gene flow among populations of Topaza hummingbirds.

CONCLUSIONS

This study provides evidence that the assembly of
phased allele sequence MSAs improves phylogenetic
inference under the MSC model. We find that contig
sequences, on the other hand, which are commonly
used for phylogenetic inference, lead to biases in the
estimation of divergence times. Additionally, phased
allele sequence MSAs provide a useful template for the
extraction of SNP data, and SNP data can be applied
as an alternative data set for phylogenetic inference,
circumventing some computational limitations when
analyzing multilocus full-sequence data with MCMC-
based MSC methods. Our empirical results suggest the
separation of two species within the genus Topaza, and
we further find genetic structure within one of these
species, justifying the definition of separate subspecies.
Based on our empirical and simulated results, we
conclude that allele phasing should be considered as
one “best practice” for processing sequence capture
data, although the sample size, phylogenetic scale, and
analytical limitations of this approach have not yet been
well-established.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http:/ /dx.doi.org/10.5061/dryad.hq3vq.

AVAILABILITY

The documentation for the allele phasing workflow,
which we included into the PHYLUCE pipeline, can
be found here: http://phyluce.readthedocs.io/en/
latest/tutorial-two.html. The script for extracting SNPs
from MSAs is available here: https://github.com/
tobiashofmann88/snp_extraction_from_alignments. All
processing and analyses steps executed on the data are
stored in bash-scripts on our project GitHub page at
https:/ / github.com/tobiashofmann88/topaza_uce. The
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raw sequencing reads are stored in the NCBI Short Read
Archive (SRA) at https://www.ncbi.nlm.nih.gov/sra/
SRP135707.
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