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Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in
immune surveillance. The development, maturation and effector functions of NK cells are
orchestrated by the T-box transcription factor T-bet, whose expression is induced by
cytokines such as IFN-g, IL-12, IL-15 and IL-21 through the respective cytokine receptors
and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review,
we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in
mouse NK cell development, maturation, and function, as well as the role of T-bet in acute,
chronic infection, inflammation, autoimmune diseases and tumors.
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INTRODUCTION

The transcription factor T-bet (also known as Tbx21) is an important transcription factor for the
immune system, orchestrating multiple types and aspects of immune responses. T-bet belongs to the
T-box subfamily, Tbr1, which possesses a 180-200-amino-acid-residue conserved sequence coding for
a T box domain for binding of the DNA consensus sequence AATTTCACACCTAGGTGTGAAATT
(1). T box domain of T box proteins might bind the target sequence as a dimer, interacting with both
the major and the minor grooves of the DNA (2). In addition to the DNA –binding domain (T-box), T
box proteins have transcription activation or inhibition domains (3, 4). T-bet is mainly expressed in
the lung, thymus, and spleen as determined by Northern blot analysis of multiple organs (5). T-bet is
not expressed in resting splenocytes, but is specifically expressed in immune cells such as Th1, NK, B
and DC cells after stimulation (5, 6). Tbx21, the gene encoding T-bet, was discovered in an attempt to
isolate transcription factors that can direct the tissue-specific expression of Th1 cytokines. The
transcription factor was therefore named T-bet, for T box expressed in T cells (5, 7). Later, T-bet
expression and function were further revealed in other lymphocyte populations (8).

NK cells are cytotoxic innate lymphocytes, which mainly develop and start the process of
maturation from the bone marrow (9), and play an important role in the early defense of
intracellular pathogens and immune surveillance of tumors, by rapid production of IFN-g, as
well as other important cytokines and chemokines, and by cytotoxicity against infected or
transformed cells (10, 11). Unlike T cells, NK cells do not require priming before displaying
cytolytic activity against target cells. Due to the anti-tumor potential of NK cells, NK-based tumor
immunotherapy has been an important arm of current immunotherapy research. However,
improved efficacy of NK-based immunotherapy requires a better understanding of NK cell biology.
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T-bet is a central transcription factor for NK cells, governing
multiple processes including the development, maturation and
function of NK cells. The expression of T-bet is dynamically and
finely regulated in various disease conditions, as well as in
different development stages or functional status of NK cells,
which should impact its role in regulating NK cell activity. In this
review, we’ll discuss the expression regulation and functions of
T-bet, with an emphasis on NK cells. Based on the knowledge of
the expression regulation and function of T-bet in NK cells, we
also discuss potential immunotherapy strategies that could
exploit the anti-tumor capacity of NK cells in future.
AN OVERVIEW OF T-BET IN THE
IMMUNE SYSTEM

T-Bet in NK Cells
T-bet is a key transcription factor for natural killer cell
maturation (12). T-bet expression correlates with NK cell
matura t ion dur ing the process f rom less mature
CD11bposCD27pos stage to the more mature CD11bposCD27neg

stage. Deficiency of T-bet leads to significantly reduced NK cell
numbers, as well as the lack of TRAIL+DX5- NK cells. In
addition, Eomes–deficient NK precursors could not develop
into NK cells if T-bet is also deficient, as NK cells could not be
detected in any organs in Tbx21−/−EomesFlox/Flox; Vav-Cre+ mice
(13). Therefore, T-bet coordinates with Eomes for the
development of NK cells, and T-bet is required for NK cell
maturation (14–16). T-bet is also important for NK cell effector
functions. Although T-bet-/- NK cells can also rapidly secrete
IFN-g compared with wild-type NK cells, the maintenance of
IFN-g production is impaired in the absence of T-bet. Besides,
the cytolytic activity of T-bet−/− NK cells against target cells was
significantly reduced (14). The above aspects will be discussed in
detail in the later sections of this review.

T-Bet in T Cells
T cell differentiation is essential for the outcome of immune
responses in diseases (17). T-bet plays an important role in the
regulation of differentiation of T cell subsets, which is orchestrated
by the activity of a series of transcription factors (18). T-bet
promotes Th1 differentiation, but inhibits Th2, Th17 and Tfh cell
lineage commitment (6, 19). T-bet regulates Treg cell homeostasis
and promoted T-bet+ Treg cells to accumulate at sites of Th1-
mediated inflammation by inducing expression of the chemokine
receptor CXCR3 on Treg cells (20). CD8+T cells that have high T-
bet levels tend to become terminally differentiated effector cells,
whereas the cells that have low T-bet levels have a higher memory
cell developmental potential (21).

T-Bet in Other Immune Cells
In addition to NK cells and T cells, T-bet also regulates other
lymphocyte populations. T-bet acts as a selective inducer for the
expression of Ig2a transcription, and promotes IFN-g-mediated
IgG2a class-switching in B cells (22). IFN-g/T-bet–dependent
pathway regulates CXCR3 expression in B cells to drive the
Frontiers in Immunology | www.frontiersin.org 2
migration of memory B cells to inflammatory foci (23). On the
otherhand,T-bet is expressed inDCsat levels comparablewithTh1
cells and is necessary for the production of IFN-g and activation of
antigen-specific Th1 cells (24). Moreover, T-bet suppresses
intestine IL-17A –producing ILCs, which are potent promoters of
ulcerative colitis, by decreasing the expression of IL-7 receptor in
these cells (25). IL-2 and IL-15 are structurally related cytokines that
share common receptor subunit-CD122 (IL-2 receptor b chain)
(26). T-bet is required for optimal CD122 expression on thymic
intraepithelial lymphocyte precursors (12), as well as on Va14i
NKT cells (14) for their development or maturation.
REGULATION OF T-BET EXPRESSION

T-Bet Expression Is Induced by IFN-gR/
STAT1 Pathway
IFN-gplays a critical role in regulationofTh1cell development (27).
After 6 or 24h of anti-CD3 stimulation, IFN-g -producingTh1 cells,
but not Th2 cells, increased T-bet expression. After infection of a
prototypical Th1-inducing pathogen, Toxoplasma gondii, splenic
Tbx21mRNA levels increased 4-fold in wild type mice, but not in
Ifng−/−mice, indicating that IFN-g is essential in inducing T-bet
expression (28). Naive CD4+ T cells from lymph nodes of 5C.C7 T
cell receptor transgenic/Rag2-deficient mice incubated with APCs
increased expression of T-bet in T cells in the presence, but not in
the absence, of TCR –specific peptide and IFN-g, indicating that T-
bet could be induced in response to TCR stimulation in an IFN-g–
dependent manner (28). Furthermore, IFN-g stimulation failed to
induce T-bet in Stat1-deficient mice (29). The above evidence
suggests that T-bet is induced in T cells by TCR through the IFN-
gR/STAT1 signaling pathway.

Moreover, three potential T-box binding sites were detected
in Ifng gene, two of which were located in the proximal promoter
region and one in the third intron (5), showing that T-bet is a
transactivator of the Ifng gene and mediates positive feed-
forward regulation of endogenous IFN-g production.

T-Bet Expression Is Induced by IL-12R/
STAT4 Pathway
Besides IFN-g, IL-12 is also involved in the differentiation of
naive T lymphocytes into Th1 cells (30, 31), and could also
induce the expression of T-bet. Although IL-12 could be an
inducer of IFN-g, Ifngr−/− T cells increased T-bet expression after
stimulation with IL-12 (32), indicating that IL-12 induces T-bet
expression independent of IFN-g. In support of this, chromatin
immunoprecipitation showed that the conserved T-bet enhancer
element 13 kilobases upstream of the transcriptional start site can
interact with IL-12–activatedSTAT4 to induce T-bet expression
(33). Purified splenic NK cells from wild-type, Ifng−/−, and
Stat4−/− mice stimulated with IL-12/IL-18 for 12h showed that
IL-12 induced the expression of T-bet through STAT4
independently of IFN-g (14). Therefore, early after TCR
stimulation, T-bet expression is mainly induced through the
TCR/IFN-g signaling pathway, when the expression of IL-12
receptor b2 subunit is repressed by TCR signaling, whereas in the
October 2021 | Volume 12 | Article 761920
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later phase, this repression is removed upon termination of TCR
stimulation, allowing T-bet induction through STAT4
downstream of IL-12R signaling pathway (Figure 1).

T-Bet Expression Is Induced by TLR/
MyD88 Pathway
MyD88 is a TIR-domain-containing adaptor protein in response to
Toll-like receptors inTLR signalingpathway (34).MyD88 is located
downstream of the TLR (except TLR3) and IL-1 receptor family,
and transmits signals to activate NF-kB and MAP kinases and to
induce inflammatory cytokines (35). 3 weeks after naïve CD4+ T
cells from WT donors were transferred into congenic WT or
MyD88 deficient recipient mice, the differentiation of T-bethigh

memory-phenotype (MP) cells was significantly fewer in MyD88
deficient recipient mice than in WT mice, which indicates that
extrinsic TLR-MyD88 signaling plays a key role in drivingMP cells
to differentiate into T-bethigh subpopulations (36). B cell TLR
signaling has been reported to induce T-bet expression to
produce IgG2A/cAb in response to viral infection (37, 38).
Immunization with Qb-VLP of irradiated chimeric mice of mixed
bonemarrow cells fromWT(CD45.1+) andMyD88KO (CD45.2+)
showed that T-bet expression in MyD88 KO derived Qb+ B cells
from chimeric mice wasmuch lower than that inWT-derived cells,
which suggests that B cell-intrinsic MyD88 signaling was required
for T-bet expression (39). On the other hand, IL-21 can induce
Frontiers in Immunology | www.frontiersin.org 3
STAT3tobind toMyD88activated sequence (GAS) andSIE (awell-
characterized element binding activated STAT3), leading to up-
regulation of T-bet expression in NK cells (40). This indicates that
IL-21 may regulate T-bet expression in NK cells through the JAK-
STAT3-MyD88 axis.

T-Bet Expression Is Promoted by mTOR
Signaling Pathway
mTOR binds to Raptor and Rictor to form two complexes,
mTORC1 and mTORC2, respectively (41). The activity
of mTOR could be stimulated via IL-15 signaling in NK cells
(42), which plays an important role in NK cell effector functions
(43). The absence of either mTORC1 or mTORC2 led to
decreased expression of T-bet by NK cells (44, 45). Tsc1 (a
repressor of mTOR) negatively regulated IL-15-triggered
mTORC1 activation in NK cells. TSC1 deficiency resulted in
higher activity of mTORC1 in Tsc1−/− NK cells than in WT NK
cells. Meanwhile, T-bet was expressed at a higher level in Tsc1−/−

NK cells compared with WT NK cells (46). Six phosphorylation
sites of T-bet were identified to be targets of mTORC1, among
which at least three sites were required for recruitment of
chromatin remodeling complexes to the Ifng gene promoter by
T-bet for a normal level of IFN-g production (47). These studies
indicate that T-bet expression is promoted by mTOR signaling
pathway (Figure 2).
FIGURE 1 | The regulation of T-bet expression in NK cells. IFN-g binds to IFN-gR and regulates the expression of T-bet through JAK-STAT1 pathway. IL-12 induces
T-bet expression independent of IFN-g through JAK-STAT4 pathway. IL15 activates PI3K-AKT-mTORC1signaling axis to promote the expression of T-bet, whereas
Foxo1 downstream of mTORC2 can inhibit the expression of T-bet in NK cells. IL-21 can activate the JAK-STAT3 pathway, and the activated STAT3 combines with
MyD88 to activate the downstream NK-kB pathway to up-regulate the expression of T-bet.
October 2021 | Volume 12 | Article 761920
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Posttranslational Protein Modification
of T-Bet
The applications of T-bet reporter mice have facilitated the
determination of T-bet expression level (6), which, together with
intracellular staining forflowcytometry, have enabled the detection
of T-bet expression level even in small lymphocyte populations that
are difficult for western blot or Q-PCR. However, the activity of T-
bet is regulated by posttranslational protein modifications (48),
which couldhavemade itmore complex to assess T-bet activity. For
example, IL-2 –inducible tyrosine kinase (ITK) phosphorylates the
tyrosine residue Y525 of T-bet in Th cells after stimulation with
TCR and IL-12, which is important for interaction with GATA-3
and for suppression of Th2 cell differentiation (49). In addition to
phosphorylation by ITK, tyrosine residues Y219, Y265 and Y304 of
T-bet are also phosphorylated by c-Abl, which is essential for IFN-g
production and suppression of Th2 cytokine production, and for
control of allergic lung inflammation (50).Moreover, serine residue
S508 phosphorylation is important for T-bet to interact with and
prevent NF-kB p65 from binding to the Il2 promoter and for T-bet
mediated suppression of IL-2 production in T cells (51). While the
phosphorylation of tyrosine or serine residues inT-bet regulates the
activity of T-bet, ubiquitination of lysine residues in T-bet affects
both the activity and half-life of T-bet. Among 16 lysine residues of
T-bet, although ubiquitination of the lysine residue K313 leads to
Frontiers in Immunology | www.frontiersin.org 4
proteasomal degradation of T-bet, such modification is important
for T-bet’s DNA binding activity and T-bet –mediated suppression
of IL-2 and Th2 cytokines (52). Future studies are required to
determine the impact of posttranslational protein modifications of
T-bet on NK cell biology.
THE ROLE OF T-BET IN NK CELL
IMMUNITY

T-Bet Maintains the Stability of Tissue-
Resident NK Cells
T-bet was proposed tomaintain the stability of immature NK cells,
since TRAIL+DX5- NK cells were dramatically reduced in Tbx21
−/−mice. Deletion of T-bet by treating Tbx21 flox/floxNK cells with
TAT-Cre ex vivo resulted in the reduction of this population after
transferred into Il2rg−/−Rag2−/− mice, confirming that T-bet
stabilizes this NK cell subset (13). However, lack of T-bet was
later shown to significantly reduce TRAIL+CD49a+CD49b- tissue-
resident NK cells (trNK cells), which, though showing an
immature phenotype, represents a lineage distinct from
circulating conventional CD49a-CD49b+TRAIL- NK cells
(53, 54). Therefore, the developmental stability of trNK cells is
dependent on T-bet.
FIGURE 2 | The functions of T-bet in NK cells. T-bet promotes the transcription of genes including Prf1, Gzmb and Runx1 to mediate NK cell cytotoxicity. T-bet
positively regulates the secretion of IFN-g to regulate immune responses. Through inducing the expression of Zeb2, T-bet promoted the differentiation from immature
NK cells to mature NK cells. T-bet induces Zeb2, and Zeb2 binds to the S1pr5 promoter which promotes mature NK cells egress from lymph nodes and bone
marrow to peripheral organs.
October 2021 | Volume 12 | Article 761920
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T-Bet Is Required for NK Cell Maturation
scRNA-seq revealed that more than 65% of T-bet-deficient NK
cells were classified as the least mature iNK cluster, and the
expression of immature NK signature genes was highly
upregulated in T-bet-deficient NK cells (55). This shows that
in the absence of T-bet the overall NK cell population displayed a
more immature phenotype, indicating that T-bet is required for
NK cell maturation. Mechanistically, T-bet induces and
cooperates with Zeb2 to promote the transcription program for
NK cell maturation, and induces S1P5 for mature NK cell egress
from the bone marrow.

T-Bet Induces and Cooperates With Zeb2 to
Promote NK Cell Maturation
The transcription factor Zeb2 (zinc finger E-box–binding
homeobox 2) was among the most highly induced transcription
factor during NK cell maturation. The mRNA expression level of
Zeb2 inmorematureCD27-NKcells is significantlyhigher than that
in less mature CD11b-and DP NK cells. The number of mature
CD27-NK cells in the spleen and bonemarrow ofNK-Zeb2Tg/+ and
NK-Zeb2Tg/Tg mice is higher than that in wild-type mice, while the
number of immature CD11b- and DP NK cells in these mice is
lower. Therefore, Zeb2 expression promotes the maturation of NK
cells. From percentage and absolute numbers of NK cells in the
spleen and their maturation status as assessed by CD11b/CD27
staining, the phenotypes of mature NK cells from Tbx21-/- and
Zeb2-/-micewere similar. TheNKcells fromTbx21-/-,Tbx21+/-,WT
andTbx21 transgenicmice showedgraded expression levels ofZeb2
mRNA in NK cells correlating with graded doses of T-bet (56).
These findings indicate that Zeb2 acted downstream of T-bet, and
that T-bet is necessary to induce Zeb2 expression. Hence, T-bet
promotes terminal NK cell maturation by cooperating with
Zeb2 (Figure 2).

T-Bet–Dependent S1P5 Promotes Egress of
Mature NK Cells
Sphingosine-1-phosphate receptor 5 (S1P5), encoded by the gene
S1pr5, is required for mature NK cell egress from the bone
marrow to the peripheral (Figure 2). Chimeric mice with S1P5
deficient and wild-type bone marrow cells demonstrated a
significant accumulation of S1P5-deficient NK cells in the BM
and the lymph nodes (LNs). The ratio of S1P5deficient NK cells
to wild-type NK cells in the lymphocytes was lower in the
peripheral than in the LN (57–59). The expression level of
S1pr5mRNA in T-bet deficient NK cells was significantly lower
than that in wild-type NK cells (57). The expression of S1pr5 is
induced by the positive feedback loop of T-bet and Zeb2, in
which T-bet induces Zeb2, and Zeb2 binds to the S1pr5 promoter
to initiate transcription (56, 60).

T-Bet Is Required for NK Cell
Effector Functions
T-Bet Is Required for Sustained IFN-g Production
by NK Cells
IFN-g is a critical effector cytokine produced by NK cells, playing
important role in anti-tumor andanti-viral immune responses (61).
Frontiers in Immunology | www.frontiersin.org 5
In the absence of T-bet, early IFN-g production by NK cells is not
affected. However, after 24 hours of stimulation, the level of IFN-g
produced by T-bet-/-NK cells was significantly lower than that of
WTmice. These findings indicate that the early and rapid secretion
of IFN-g is independent of T-bet, but T-bet expression is required
for the maintenance of IFN-g production by NK cells (14).

T-Bet Is Required for NK Cell Cytolytic Activity
In addition to the production of IFN-g, the major effector
function of NK cells also includes rapid production of perforin
and granzymes for cytolysis of virally-infected or malignant cells
(62–64). ChIP analysis of IL-12/IL-18-activated murine LAK
cells showed that T-bet could bind to the promoter of Gzmb, Prf1
and Runx1. Both in resting NK cells and in IL-12 & IL-18 –
stimulated NK cells, deficiency of T-bet led to decrease mRNA
levels of these three genes (14). Therefore, T-bet promotes the
transcription of genes including Prf1, Gzmb and Runx1to
mediate NK cell cytolytic activity (Figure 2).
THE ROLE OF T-BET IN DISEASES

T-Bet in Acute Infections
T-bet plays an important role in immune response against acute
infections. In the process of infectionwith the intracellular bacterial
pathogen Listeria monocytogenes (LM), T-bet enhances its own
expression and IFN-g production through the STAT1 signaling
pathway,while the absence ofT-betmay impair sustained secretion
of IFN-g by NK cells and T cells (65–67). In acute infection with
LCMVArmstrong, loss of T-bet expression in Tfh cells suppressed
Tfh expansion, and reduced the levels of germinal center B cells and
plasmacells, aswell as lower LCMV-specific IgGand subtype IgG2c
titers in serum, indicating that T-bet is essential for Tfh response
and antibody IgG2 class switching in acute LCMV infection (68). In
addition, T-bet-/-mice displayed a compromised resistance to
Mycobacterium tuberculosis infection, mainly due to impaired
IFN-g production from the CD4+Th1 T cell subset to form an
effective type 1 immune response (69, 70). During the infection of
intracellular parasite Toxoplasma gondii, dendritic cells and
macrophages produce IL-12 to promote the activation and
expansion of NK cells and T cells populations expressing high
levels of T-bet and IFN-g (71–75).

T-Bet in Inflammatory and
Autoimmune Diseases
T-bet is critical for the development of immunopathology in the
experimental autoimmune encephalomyelitis (EAE) model of
inflammatory demyelination (76, 77). Importantly, T-bet–
dependent NKp46+ ILCs are required for the initiation of CD4+

Th17 –mediated neuroinflammation (78). In Crohn’s disease, a
chronic inflammatory disease of the gastrointestinal tract, T-bet
protein expressed higher in lamina propria CD4+ T cells from
patients than from healthy controls. The high expression of T-bet
accelerates the development of Th1-mediated colitis, whereas mice
lacking T-bet are more likely to develop Th2-mediated colitis (79,
80). In heart failure(HF), TCR –activated PKC-q induces T-bet,
October 2021 | Volume 12 | Article 761920
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which ultimately leads to the stimulation of immune response and
the occurrence of cardiac hypertrophy and fibrosis (81). However,
T-bet could act as a double-edged sword in response to
inflammatory and autoimmune diseases as well. In cardiovascular
disease (CVD), on the one hand, T-bet stimulates and activates the
functions of immune cells such as NK and DC to increase
inflammation and cardiac injury. On the other hand, T-bet
activates regulatory T cells and stimulates angiogenesis to inhibit
inflammation and replaces damaged vessels with new vessels (82).
Besides, T-bet in B cells can regulate immunoglobulin (IgG) class
switching. Increased T-bet expression in B cells inhibits IgE
production and alleviates IgE-mediated allergic reactions and
asthma (22, 83).

T-Bet in Tumors and Chronic Infections
T-bet-deficient mice generated in a transgenic adenocarcinoma
mouse prostate model (TRAMP) indicated that lack of T-bet has
little effect on the development of primary tumors, but that T-bet is
needed to suppress metastasis (84). In addition, T-bet-deficient
mice were extremely sensitive to the metastasis and spread of
B16F10 melanoma cells (85). On the other hand, T-bet was
down-regulated in adoptively transferred NK cells upon exposure
to tumors and proliferation, which was associated with down-
regulation of activating receptors and IFN-g (86). T-bet mRNA
level expressed by the exhausted NK cells of HBV individuals is
lower than that of the NK cells of healthy donors (87). T-bet
expression in virus-specific CD8+ T cells is also reduced during
chronic infections, which negatively correlated with the expression
of exhaustion marker PD-1 (88). Therefore, T-bet is critical for the
control of tumors and chronic infections, but its expression might
be downregulated in effector cells in these contexts.
PERSPECTIVES

T-Bet in NK–Based Immunotherapy
In NK-based tumor immunotherapy, the following strategies are
currently under investigations to promote the anti-tumor effects of
NK cells: 1.Blockade of the cell surface or intracellular inhibitory
checkpoint molecules of NK cells (89–92); 2. Arming with
chimeric antigen receptor (CAR) to improve tumor recognition
specificity of NK cells (93, 94); 3. Bispecific antibody to connect
NK cell activating receptor to target cells (95). Based on these
technologies, as well as the knowledge on T-bet regulation and
functions in NK cells, we can design strategies to promote the anti-
tumor efficacy of NK –based immunotherapy.

Previous studies have shown that adoptive NK cell
immunotherapy failed to effectively control tumors, which was
associated with down-regulation of T-bet. Accordingly, we can
further dissect the factors (inhibitory receptor-ligand
interactions/soluble factors) responsible for the down-
regulation of T-bet in tumor-associated NK cells, and design
strategies to recover T-bet expression for maintaining the anti-
tumor functions in NK cells. In line with this, small molecules
potentially enhancing T-bet expression have been reported (96).
Alternatively, ectopic expression of specific transcription factors
in immune cells for tumor immunotherapy has also been
Frontiers in Immunology | www.frontiersin.org 6
reported (97, 98), T-bet –overexpressing CAR-T cells exhibited
a Th1 phenotype with more effective anti-tumor activity, leading
to improved survival of tumor-bearing mice (99). These studies
suggest that the ectopic expression of T-bet in NK cells could be
tested for tumor immunotherapy in future. In addition, based on
knowledge on the cytokine receptors and signaling pathways
responsible for inducing T-bet, we can rationally design the
signaling domain of CAR-NK to trigger the T-bet –inducing
pathways to promote the expression of T-bet for enhancing NK
cell effector functions. Alternatively, we can design multi-specific
antibody to trigger T-bet –inducing cytokine receptors to
promote the expression of T-bet.

Open Questions/Future Studies on T-Bet
in NK Cell Biology
T-bet and Eomes are highly homologous transcription factors,
which play redundant or non-redundant roles as key checkpoints
in the regulation of NK maturation (13). The synergistic
cooperation between the two can better exert the effector
function of NK cells for the control of tumors and infections.
The balance between T-bet and Eomes in NK cell maturation,
differentiation and effector function still requires further in-depth
studies for the spatiotemporal effects of these transcription factors,
the transcription elements that regulate the transcription of T-bet
and Eomes, and the molecular chaperones that help them fold and
assemble at the protein level. On the other hand, the regulation of
T-bet expression in NK cells is closely related to the pathogenesis
of various diseases. Further studies on the expression of T-bet in
NK cells in disease models will better demonstrate the role of T-bet
in NK cell biology. T-bet downregulation was shown to be one of
the hallmarks of NK cell exhaustion in tumors, whose details still
lack further elaboration, and might benefit future design of
NK-based immunotherapy. Moreover, the human TBX21 gene
has 40 known polymorphisms, of which one has been shown to be
related to the susceptibility to type 1 diabetes (100), and the other
is related to the incidence of herpes simplex virus 2 (101).
However, the effect of T-bet polymorphisms on NK–dependent
immune responses in human diseases is largely unknown.
Therefore, from the angle of T-bet, our knowledge on NK cell
biology is still limited. Further research on T-bet is essential, not
only to expand our understanding of NK cells, but also to assist the
design of future strategies of immunotherapy.
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