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Abstract. Colchicine- and vinblastine-induced depoly- 
merization of microtubules (MTs) in the intestinal epi- 
thelium of rats and mice resulted in significant deliv- 
ery of three apical membrane proteins (alkaline 
phosphatase, sucrase-isomaltase, and aminopeptidase 
N) to the basolateral membrane domain. In addition, 
typical brush borders (BBs) occurred at the basolateral 
cell surface, consisting of numerous microvilli that 
contained the four major components of the cytoskele- 
ton of apical microvilli (actin, villin, fimbrin, and the 
ll0-kD protein). Formation of basolateral microvilli 
required polymerization of actin and proceeded at 
glycocalyx-studded plaques that resembled the dense 
plaques located at the tips of apical microvilli. BBs 
from the basolateral membrane became internalized 
into BB-containing vacuoles which served as recipient 
organelles for newly synthesized apical membrane pro- 

teins. The BB vacuoles fused with each other and 
finally were inserted into the apical BB. Polarized dis- 
tribution of Na÷,K+-ATPase, a basolateral membrane 
protein, was not affected by drug-induced depolymer- 
ization of MTs. These observations indicate that Golgi- 
derived carrier vesicles (CVs) containing apical mem- 
brane proteins are vectorially guided to the apical cell 
surface by a retrograde transport along MTs, MTs are 
uniformly oriented towards a narrow space underneath 
the apical terminal web (termed subterminal space) 
that contains MT-organizing properties and controls 
polarized alignment of MTs. In contrast to apical CVs, 
targeting of basolateral CVs appears to be independent 
of MTs but demands a barrier at the apical membrane 
domain that prevents basolateral CVs from apical fu- 
sion (transport barrier hypothesis). 

T rIE absorptive intestinal epithelium provides a typical 
example of a polarized cell layer. Its surface can be 
divided into two domains, the apical and the baso- 

lateral membrane domain which differ in structure and func- 
tion (21, 32, 40). The surface area of the apical domain of 
the plasma membrane is increased severalfold by numerous 
microvilli which form the brush border (BB) ~ (5, 52). Each 
microvillus is supported by an axial core bundle of actin fila- 
ments that are extensively cross-linked by two proteins, villin 
(95,000 Mr) and fimbrin (68,000 M~) (7, 13, 38). The core 
bundle end is inserted into electron dense material at the 
microvillus tip, which is studded with a conspicuous fuzzy 
glycocalyx (5, 40). Laterally, the actin filament bundle is 
connected to the microvillus membrane by rod-shaped bridg- 
ing filaments that consist of a complex of the myosin-related 
110-kD protein and calmodulin (7-9, 34, 38). The lateral ep- 
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ithelial cell surface is moderately increased by folds (40) that 
do not contain any significant amounts of the microvillar 
actin-binding proteins, villin, fimbrin, and the ll0-kD pro- 
tein (13, 14). Moreover, the apical and basolateral plasma 
membrane differ from each other by the presence of several 
specialized integral membrane proteins that are either re- 
stricted to the apical membrane (e.g., alkaline phosphatase, 
aminopeptidases, or disaccharidases) or to the basolateral 
membrane (e.g., Na÷,K+-ATPase) (21, 26, 28, 32). 

Thus far, there is still little information on how the polar- 
ized distribution of membrane proteins and the polarized cel- 
lular morphology is generated and how it is maintained. Sev- 
eral lines of evidence suggest that the Golgi apparatus (GA) 
and its associated trans-network plays an important role in 
the process of sorting the membrane proteins into different 
populations of vesicles that will be transported and inserted 
into either the apical or basolateral plasma membrane domain 
(11, 23, 33, 37, 46, 51). From experiments with microtubule 
(MT)-disrupting agents, it has been concluded that MTs are 
probably important for the vectorial transport of several api- 
cally destined membrane proteins from the GA towards the 
apical plasma membrane (3, 4, 12, 19, 27, 47). 

To obtain further insight into the role of MTs in cellular 
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polarity, we have studied targeting of three apical and one 
basolateral membrane protein in the intestinal epithelium of 
rats and mice treated with the MT-depolymerizing drugs col- 
chicine and vinblastine. These drugs have been recently 
shown to interfere with the polarized delivery of various ec- 
toenzymes to the intestinal BB and to induce the formation 
of numerous finger-like projections at the basolateral plasma 
membrane, which eventually aggregate to form BB-iike 
structures (3, 4, 12, 19, 27, 42, 43). It is currently unknown 
how these microvillus-like structures are formed and 
whether they contain the main molecular constituents which 
are normally restricted to the apical microvilli. Finally, by 
using the experimental approach of perturbing cellular 
polarity we hoped to find mechanisms that allow the cells to 
regain polarity. 

Although the molecular nature of these polypeptides still remains to be 
shown, this antibody was a useful tool to trace the localization of the GA 
at the light microscopic level. 

lmmunofluorescence was pertormed using 0.5-1-p.m sections of unfixed 
tissue that were quick frozen, freeze dried, and plastic embedded as de- 
scribed elsewhere (14). Primary antibodies were used at IgG concentrations 
of 10-50 ~g/ml. Rhodamine (TRITC)- or fluorescein (FITC)-Iabeled sec- 
ond antibodies were purchased from Bayer Diagnostic (Miinchen, FRG) 
and Sigma Chemical Co., and were used at dilutions of 1:50 in PBS (pH 
7.4). Visualization of two antigens in identical cells was performed by (a) 
immunostaining of adjacent 0.5-t~m tissue sections with different antibod- 
ies; or (b) by simultaneous incubation of the same tissue section with a mix- 
ture of two different antibodies raised in two different animal species (e.g., 
rabbit antivillin and mouse anti-Na+,K+-ATPase). The bound primary an- 
tibodies were visualized using a mixture of the corresponding secondary an- 
tibodies (e.g., swine anti-rabbit IgG, swine anti-mouse IgG) tagged with 
TRITC and FITC, respectively. The sections were examined with an 

Materials and Methods 

Drug Treatment 

Young adult rats (Hanover-Wistar strain) and mice (BALB/C) of both sexes 
were maintained on a ground chow (AItromin, Lage, FRG). All drugs were 
dissolved in 1 ml of the solutions indicated and administered by stomach 
tube (garage). After overnight fasting (with free access to water), animals 
were treated with colchicine (52 rats, 13 mice) (Serva Feinbiochemica 
GmbH, Heidelberg, FRG) (10 mg/kg body weight) or vinblastine sulfate 
(five rats, three mice) (Lilly, Giessen, FRG) (15 mg/kg body weight) freshly 
dissolved in 1 ml of phosphate-buffered (20 mM) saline (125 mM) (PBS, 
pH 7.4). At various time intervals after application of the drugs, animals 
were anesthetized with ether and killed by cervical dislocation. Six rats re- 
ceived a second dose of colchicine at 6 or 12 h and were killed 1-6 h later. 
Control animals received either lumicotchicine (10 mg/kg) or PBS. Lu- 
micolchicine was purchased from Sigma Chemical Co. (St. Louis, MO) or 
prepared by UV irradiation of colchicine. In a further series of experiments, 
10 colchicine-treated rats received at 0 or 6 h a single dose of cycloheximide 
(14 mg/kg body weight, dissolved in PBS) (six rats) or cytochalasin D (2.5 
p.g/kg body weight, dissolved in DMSO) (four rats). The animals were 
killed 6 h later. Both drugs were from Sigma Chemical Co. Control animals 
received 1 ml PBS or DMSO, respectively, not containing drugs. 

Electron Microscopy 
Small pieces of duodenal mucosa were fixed for at least 2 h with 2% 
glutaraldehyde in PBS (pH 7.4). After several washes with PBS, tissue 
pieces were fixed afterward with 1% OsO4 in PBS (1 h, 4°C), dehydrated 
in graded ethanol series, immersed with propylene oxide, and embedded 
in Epon 812. Ultrathin sections were counterstained with lead citrate and 
uranyl acetate, and examined with a Zeiss EM 10 electron microscope 
(Oberkochen, FRG) (14). Freeze fracture replicas were obtained from 
pieces of fixed duodenal mucosa immersed for 25 min in 5% glycerol, quick 
frozen in melting Freon 22 (113 K), cooled with liquid nitrogen, and frac- 
tured, etched, and shadowed with carbon and platinum as described else- 
where (6). 

Antibodies and Immunocytochemistry 
Preparation and specificity of afffinity-purified rabbit antibodies against ac- 
tin, villin, fimbrin, the ll0-kD protein, and tubulin have been described in 
detail in previous studies (13, 15). Antibodies specific for rabbit intestinal 
sucrase-isomaltase (22) and aminopeptidase N (20) were the kind gifts of 
Dr. Semenza and Dr. Wacker (Dept. Biochemistry, Eidgen6ssische Tech- 
nische Hochschule, Ziirich, Switzerland), and Dr. Maroux (Dept. Biochem- 
istry, CBM-CNRS, Marseille, France). Mouse antibodies against calf intes- 
tinal alkaline phosphatase were obtained from Dianova GmbH (Hamburg, 
FRG). Antibodies cross-reacting with antigens of the GA were obtained by 
immunizing mice (BALB/c) with various protein bands excised from SDS- 
PAGE of microsomes that were prepared from rat kidney outer medulla. One 
mouse which had been immunized with a 55-kD polypeptide band developed 
an antibody strongly reactive with the GA of various epithelial cells includ- 
ing rat intestinal epithelium. As determined by immunoblotting, the antibody 
cross-reacted with two polypeptide bands at 55 and 90-100 kD (not shown). 

Figure 1. Intestinal epi thel ium of  the mouse  6 h after application 
of  colchicine by stomach tube. (a) Electron micrograph showing a 
basolaterai BB located in an invagination of  the basal cell surface 
(arrow). Profiles of  the dispersed and swollen GA are also seen 
(asterisks). (b) Fluorescence micrograph of  a corresponding 1-#m- 
thick section of  the epithelium stained with an antibody to villin. 
Note the numerous  basolateral BBs, one of  which is indicated by 
an arrowhead.  (Vii) Immunostain  specific for villin; (h6) 6 h after 
application o f  colchicine. Bars: (a) 1 t~m; (b) 10 ~m.  
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in detail in a recent study (13, 16). Ultrathin tissue sections were retrieved 
on gold grids and incubated with primary antibodies and colloidal gold-cou- 
pled second antibodies (10 nm), exactly as described elsewhere (13, 16). 

Primary antibodies absorbed with their respective antigens served as 
controls for both immunofluorescence and immunogold labeling. 

Resul t s  

Formation of  Basolateral BBs and BB Vacuoles 

As early as 1 h after application of colchicine, individual 
microviUus-like extensions were observed to emanate from 
various places along the lateral plasma membrane. At 6 h, 
the majority of lateral microvilli were locally aggregated at 
either the basal or lateral membrane surface to form typical 
BB-like structures (Figs. 1 and 2). Fig. 1 b gives an impres- 
sion of the overall abundance of basolateral BBs. At 12 h, 
most basolateral BBs had disappeared. Instead, BB-contain- 
ing vacuoles were observed in the cytoplasm with a preferen- 
tial occurrence in the infranuclear portion of the cells (Fig. 
3). However, BB vacuoles with supranuclear location were 
also observed at 12 h. As shown by serial sectioning, the BB 
vacuoles were not continuous with the apical or basolateral 
cell surface (Fig. 4). The lumens of the BB vacuoles con- 
rained numerous free vesicles with a lucent content. These 
vesicles were probably derived from the shedding of the 
microvillus membrane as indicated by the presence of a gly- 
cocalyx that resembled the glycocalyx of the surrounding 
microvilli. At 24 and 35 h, the average diameter of the vacu- 
oles had significantly increased in size (from 2-5 #m at 6 h 
up to 15/zm at 24 h) and the vacuoles were mostly seen in 
a supranuclear location. BB vacuoles were often seen to fuse 
with each other and with the apical cell surface (Fig. 4, d 
and e). 

Figure 2. Ultrastructural steps in the formation of basolateral BBs 
in the rat intestinal epithelium 3 h after application of colchicine. 
(a) Apical BB; note structure of the glycocalyx at the microvillus 
tip. (b and c) Area of the basolateral cell surface showing numerous 
glycocalyx-studded plaques and developing microvilli. Arrowheads 
point to a microfilament bundle emanating from the cytoplasmic 
side of a glycocalyx plaque. (d) Basolateral BB at 6 h. D, desmo- 
some. Bars, 0.5/zm. 

Olympus Corp. (New Hyde Park, NY) BH-2 fluorescence microscope 
equipped with Zeiss objectives and with appropriate filters for TRITC and 
FITC. 

For immunoelectron microscopy, tissue samples were fixed with a mix- 
ture of 0.1% glutaraldehyde and 2 % paraformaldehyde in PBS (pH 7.4) and 
embedded in LR White (London Resin Co., Woking, England) as described 

Figure 3. Electron micrograph of a BB vacuole located in the in- 
franuclear cytoplasm of the rat intestinal epithelium 12 h after 
gavage of colchiciue. N, nucleus; 7~, terminal web surrounding the 
vacuole. Bar, 1 /zm. 
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As shown in Fig. 2 b, the initial step of microvillus forma- 
tion at the basolateral membrane surface was characterized 
by the occurrence of glycocalyx-studded plaques at the later- 
al cell surface. These plaques resembled the structure of the 
glycocalyx associated with the tips of apical microvilli (Fig. 
2 a). As the microvilli grew, the dense plaques became dis- 
placed to the tips of the forming microvilli (Fig. 2, b and c). 
The elongation of microvilli was accompanied by the forma- 
tion of axial core bundles of actin filaments (Fig. 2 c). Inhibi- 
tion of protein synthesis by application of a single dose of cy- 
cloheximide at 0 h inhibited the colchicine-induced occur- 
rence of these plaques at the basolateral membrane and the 
formation of basolateral microvilli. Inhibition of actin poly- 
merization by cytochalasin D (given at 0 and 3 h) did not in- 
terfere with the colchicine-induced delivery of glycocalyx- 
studded plaques to the basolateral surface but inhibited the 
formation of basolateral microvilli (not shown). 

Figure 5. Immunoelectron microscopic localization of fimbrin (a), 
ll0-kD protein (b), and villin (c) in basolateral BBs (a and b) or 
a BB vacuole 6 (a and b) or 12 h (c) after application of colchicine. 
Bars, 0.5 t~m. 

Figure 4. Visualization of BB vacuoles at 12 (a-d) and 24 h (e and 
f )  by antibodies to villin (Vii). a-d are taken from a series of ten 
1-#m-thick sections to show that the BB vacuoles (arrowheads) do 
not represent profiles of invaginations of the apical cell surface, e 
andfshow fusion of BB vacuoles with each other and with the api- 
cal BB (arrowheads). Bars, 10 #m. 

As described recently, treatment with colchicine (42) and 
vinblastine (this study) caused considerable reduction in the 
length of apical microvilli. 

The Cytoskeleton of  Drug-induced MicroviUi 

Drug-induced microvilli contained axial core bundles of ac- 
tin filaments that extended proximally to form a cytoplasmic 
rootlet (Fig. 2 d). The structure of the rootlet area under- 
neath the induced BBs and vacuoles resembled the structure 
of the terminal web area of the apical BB (Fig. 3). Immuno- 
labeling at the light and electron microscope level demon- 
strated actin, villin, fimbrin, and the l l0-kD protein as regu- 
lar constituents of the core bundles and rootlets of the induced 
basolateral microvilli and BB vacuoles (Figs. 1, 4, and 5). 
The antibody to chicken BB l l0-kD protein only cross- 
reacted with mice but not with rat microvilli. 
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Figure 6. Freeze-fracture image of the rat intestinal epithelium 6 h 
after gavage of colchicine. In a, the apical BB, tight junction, and 
lateral cell surface is seen. b shows part of a basolateral BB. Note 
differences in the pattern of intramembrane particles between apical 
and basolateral microvilli as well as between basolateral microvilli 
and the remaining lateral cell surface. Bars, 0.5 #m. 

Freeze-Fracture Studies 
Treatment with colchicine did not cause any obvious changes 
in the structure of the tight junctions examined at 1, 6, and 
12 h (Fig. 6 a). The density of intramembrane particles as- 
sociated with both apical and basolateral microvilli was con- 
siderably higher than the density of particles present in the 
remaining (basolateral) cell surface (based on fracture im- 
ages of 14 basolateral BBs). The P-face of the membrane of 
the basolateral microvilli (examined at 6 h) differed from that 
of the apical microvilli, mainly in that the particles were not 
uniformly distributed within the membrane of the basolateral 
microvilli but, instead, had a tendency to form clusters (Fig. 
6 b). These observations indicate differences in the molecu- 
lar composition between apical and basolateral microvilli. 
No obvious differences were seen between the E-face of 
basolateral and apical microvilli. In BB vacuoles (examined 
at 12 h), the pattern and density of intramembrane particles 
mostly resembled apical microvilli but BB vacuoles with fea- 
tures of basolateral microvilli were also observed (based on 
micrographs of nine BB vacuoles). 

Microtubules (MTs) 
In the intestinal epithelium of untreated mice and rats, anti- 
bodies to tubulin revealed a preferential orientation of MTs 
parallel to the long axis of these columnar epithelial cells 
(Fig. 7, a and b). At 30 rain, no changes in the MT pattern 
were seen. At 1 h, MTs had more or less disappeared from 
the infranuclear portion of the epithelium, whereas MTs 
were still present in the supranuclear portion (Figs. 7 c and 
11 b). At 6 h, MTs had disappeared from the entire intestinal 
epithelium except for a narrow zone below the BB (Figs. 7 
d and 12 a). This apical zone (further termed subterminal 
space) was still brightly labeled with tubulin antibodies but 
showed a patchy and streaky appearance. At 12 h, numerous 
MTs had reappeared throughout the cytoplasm (Fig. 7 e). 

The reappearing MTs were less densely packed and less ob- 
viously oriented in the cellular long axis. Typically, basket- 
like formations of MTs were observed around the BB vacu- 
oles (Fig. 7 e). At 24 h, the pattern of MTs had reestablished 
its normal appearance, but basket-like arrays of MTs around 
the BB vacuoles were still present and persisted over the 
whole period of observation (up to 35 h), When the reform- 
ing MTs were again destroyed by injection of colchicine at 
12 h, a patchy and streaky fluorescent band of the antitubulin 
stain was not only observed underneath the apical BB but 
also around BB vacuoles (Fig. 8). The same result was ob- 
tained when regrowth of MTs was inhibited by a second 
injection of colchicine at 6 h. 3-6 h later numerous BB vac- 
uoles became visible which were associated with a tubulin- 
containing rim. Cytoplasmic MTs were largely absent under 
these conditions. 

Golgi Apparatus (GA ) 
In addition to the induction of basolateral microvilli, treat- 
ment with colchicine had a striking effect on the ultrastruc- 
ture and location of the GA. At 30 min and 1 h, the GA ap- 
peared ultrastructurally unchanged (not shown). At 6 h, the 
GA had disappeared from its normal supranuclear position. 
Instead, numerous GA-like clusters of smooth vesicles and 
tubules were observed that were found scattered over the en- 
tire sectional profile of the cells (Fig. 1, asterisks). These 
clusters probably represent fragments of the disintegrated 
GA, as was shown at the light microscope level by im- 
munofluorescence using an antibody reacting with a 55/90- 
kD GA-associated antigen (Fig. 9). To a certain degree, anti- 
bodies to alkaline phosphatase also allowed one to trace the 
GA by immunofluorescence (Figs. 10 and 11). At 1 h, the 
supranuclear location and shape of the GA appeared un- 
changed (Fig. 11 a). At 6 and 12 h the GA was completely 
disrupted, and dotlike fragments of GA-like material were 
randomly scattered throughout the whole sectional profile of 
the cell (confirming the electron microscopic observations; 
Fig. 9, b and c). At 24 and 35 h, the GA had largely regained 
its normal shape and supranuclear location (Fig. 9 d). 

Alkaline Phosphatase 
In control animals, antibodies to alkaline phosphatase la- 
beled the BB, the GA in the supranuclear area, as well as 
numerous cytoplasmic granules located between the GA and 
the BB (Fig. 10 b). At 30 min this pattern appeared un- 
changed. At 1 h, the immunolabeling also became visible 
along the basolateral membrane surface, whereas the GA- 
like immunofluorescence still appeared normal (Fig. 11 a). 
At 6 h, the intensity of the immunofluorescence associated 
with the basolateral cell surface had further increased (Fig. 
10 d). The intensity of immunofluorescence overlying the 
colchicine-induced basolateral BBs did not significantly 
differ from the staining intensity of the remaining basolateral 
cell surface. The GA was no longer visible. Instead, numer- 
ous fluorescent dots crowded the cytoplasm from the base 
toward the apex (Fig. 10 d). At 12 h, the immunolabeling 
associated with the basolateral cell surface had largely disap- 
peared. Strong immunolabeling was then observed overlying 
the microvilli of virtually all BB vacuoles (Fig. 10f).  The 
contents of the BB vacuoles were also brightly labeled. De- 
livery of alkaline phosphatase to the BB vacuoles did not de- 
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mg/kg vinhlastine largely inhibited reassembly of MTs 
within a period of 12 h, but did not interfere with the forma- 
tion of BB vacuoles (Fig. 14). At 24 and 35 h, the pattern 
of immunofluorescence resembled controls except for the 
presence of strongly labeled BB vacuoles that were still pres- 
ent in large numbers at 35 h (not shown). Application of 
cycloheximide completely inhibited the colchicine-induced 
delivery of alkaline phosphatase to the GA and the baso- 
lateral cell surface (Fig. 12 b). Gavage of cycloheximide at 
6 and 9 h did not inhibit formation of BB vacuoles and assem- 
bly of their cytoskeleton, but inhibited delivery of alkaline 
phosphatase to the BB vacuoles that were examined by im- 
munofluorescence 3-6 h later (at 12 h) (Fig. 12 d). 

Sucrase-lsomaltase and Aminopeptidase N 

Antibodies to sucrase-isomaltase and aminopeptidase N 
gave basically the same results as were described in detail for 
antibodies against alkaline phosphatase. Both antibodies 
reacted strongly with intestinal epithelium of mice but rather 
weakly with that of rats. The GA was only faintly labeled 
with these antibodies. After treatment with colchicine, there 
was a slight increase in the immunostain along the lateral 
plasma membrane. At 12 h all BB vacuoles including their 
vesicular contents were brightly labeled with both antibodies 
(Fig. 13). 

Na+,K+-ATPase 

Antibodies to kidney Na+,K+-ATPase reacted selectively 
with the lateral cell surface of the intestinal epithelium. No 
changes of the staining pattern were seen after treatment with 
colchicine or vinblastine (Fig. 14 a). Simultaneous visual- 
ization of basolateral BBs, BB vacuoles (by antibodies to vil- 
lin), and Na+,K+-ATPase revealed that the Na+,K+-ATPase 
was absent from those sites of the basolateral plasma mem- 
brane that were occupied by BBs. There was also no im- 
munolabeling for Na+,K+-ATPase in association with the 
BB vacuoles (Fig. 14 a). Experiments with rats treated with 
cycloheximide showed considerable reduction and local dis- 
appearance of the immunolabeling within a period of 12 h 
after gavage of a single dose (14 mg/kg body weight). This 
indicates a rather high turnover of the Na+,K+-ATPase un- 
der these conditions. 

Figure 7. Immunofluorescence pattern of MTs (Tub) in me intestinal 
epithelium of control rats (a and b) and rats treated with colchicine 
and killed at 1 (c), 6 (d), and 12 h (e) after drug application by 
stomach tube. b is a high magnification view of a cross-section of 
the epithelium at the nuclear (N) and supranuclear level, e and f 
are adjacent 0.5-#m sections stained with antitubulin (Tub) (e) and 
antivillin (Vii) (f). Note preferential association of MTs around BB 
vacuoles (V). Bars, 10 ~m. 

pend on tlae presence of MTs because immunostaining of the 
BB vacuoles was not significantly reduced in rats that had re- 
ceived a second dose of colchicine at 6 h or were treated with 
a single dose of vinblastine at 0 h. Administration of 15 

Figure 8. Depolymerization of MTs by a second application of col- 
chicine at 12 h. The rats were killed 3 h later (h 12 +3). Serial sec- 
tions of the epithelium were processed for immunostaining with an- 
titubulin (Tub) (a) and antivillin (Vii) (b). Note concentration of 
MTs underneath the apical BB (arrows) and around BB vacuoles 
(arrowhead). Bar, 10 ttm. 
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completely the occurrence of apical enzymes and BBs at the 
basolateral domain of colchicine-treated animals. The latter 
experiment shows that changes in cell polarity were not 
caused by redistribution (displacement) of preexisting apical 
membrane proteins to the basolateral domain but, rather, 
resulted from delivery of significant amounts of newly syn- 
thesized proteins to the wrong (basolateral) membrane do- 
main. Mistargeting of apical membrane proteins is probably 

Figure 9. Localization of the GA by immunofluorescence (using a 
55-kD Golgi-specific antibody) in the intestinal epithelium of rats 
treated with colchicine and killed immediately (hO) (a), or 6 (b), 
12 (c), or 24 h (d) after application of the drug. Positions of cell 
nuclei (n) are indicated. Bar, 10 #m. 

Discuss ion  

Role of  MTs in Polarized Delivery of  Apical 
Membrane Proteins 

In the present study on the rat and mouse intestinal epithe- 
lium, we have used an immunocytochemical approach to 
study the role of MTs in generation and maintenance of cell 
polarity. In confirmation and extension of previously pub- 
lished studies (see Introduction), we show that depolymer- 
ization of MTs by colchicine and vinblastine selectively in- 
terferes with the polarized delivery of membrane proteins 
destined for the apical plasma membrane; whereas correct 
targeting of Na+,K+-ATPase, a basolaterally located mem- 
brane protein, appeared unaffected. 

The occurrence of apical membrane proteins at the baso- 
lateral cell surface was not caused by a possible disturbance 
of the structure of tight junctions. Our freeze-fracture studies 
and recent peroxidase tracer studies (18) did not reveal any 
detectable effect of colchicine on the structure and tightness 
of tight junctions in the rat intestinal epithelium. These find- 
ings are consistent with a study reporting that nocodazole 
and colchicine have no significant effect on transepithelial re- 
sistance in Madin-Darby canine kidney (MDCK) cells (35). 
Inhibition of protein synthesis by cycioheximide suppressed 

Figure I0. Simultaneous localization of villin (V/l) (a, c, and e) and 
alkaline phosphatase (aP) (b, d, and f )  in the intestinal epithelium 
of control rats (hO) (a and b) and rats treated with colchicine and 
killed 6 (c and d) and 12 h (e and f )  later. Note alkaline phosphatase 
stain along the entire basolateral cell surface at 6 h (d) and within 
BB vacuoles (V) at 12 h (f). Arrowheads in c point to basolateral 
BBs. In controls (b) the GA (arrow) is also seen. Fluorescent parti- 
cles located between the GA and the BB probably represent apical 
CVs. Bar, 10 #m. 
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Figure 11. Occurrence of alkaline phosphatase (aP) at the baso- 
lateral cell surface (arrowhead) 1 h after application of colchicine 
(a). The location of the GA (G) appears normal (compare with 
Figs. 9 a and 10 b), whereas the pattern of MTs (Tub) stained in 
b has already considerably changed (compare with Fig. 7 a). Bar, 
10 #m. 

also not a result of fragmentation and dispersal of the GA that 
has been shown in this and a previous study (41) to accom- 
pany depolymerization of MTs. Delivery of apical enzymes 
to the basolateral cell surface and formation of basolateral 
microviUi became already visible at 1 h after gavage of col- 
chicine, when MTs were partially or completely destroyed 
but the GA was still located in its normal supranuclear posi- 
tion (Fig. 11). On the other hand, the disappearance of apical 
enzymes from the basolateral cell surface between 6 and 
12 h (Fig. 10f)  correlated precisely with the reappearance 
of MTs (Fig. 7 e). At this stage, the GA was still heavily frag- 
mented and dispersed throughout the cell (Fig. 9 c). Thus, 
polarized targeting of apical membrane proteins was closely 
related to the integrity of the MT system and did not depend 
on the supranuclear position and morphological integrity of 
the GA. 

These findings largely support observations on the effect 
of depolymerization of MTs on the apical budding of influ- 
enza virus in MDCK cells (47). Disruption of MTs by colchi- 
cine and nocodazole caused random budding of influenza 
virus (for contradictory results see reference 49), whereas 
basolateral budding of stomatitis virus appeared unaffected 
by these drugs. The most likely explanation for these obser- 
vations is that apicaUy destined "carrier vesicles" (CVs) (36) 
contain a receptor for MTs or MT-associated proteins that are 
responsible for MT-dependent transport to the apical plasma 
membrane. The transport mechanism for apical CVs may be 
similar to the mechanism underlying the fast axonal transport 
which is mediated by MTs and MT-associated proteins (54). 
As shown by fluorescence microscopy in this study and by a 
previously published immunoelectron microscope study (13), 
MTs of the intestinal epithelium are preferentially aligned in 
an apicobasal orientation (Fig. 7, a and b). This particular 
alignment of MTs may guarantee that apical CVs leaving the 
GA will be vectoriaUy guided to the apical surface. As soon 
as MTs become depolymerized by colchicine or vinblastine, 
the apical CVs lose their "tracks" and thus diffuse randomly 
throughout the cell. A fraction of the vesicles (40-60% ac- 

cording to [3H]fucose autoradiography quantified in refer- 
ences 3, 4, and 19) may still happen to reach the apical mem- 
brane whereas others fuse with the basolateral membrane 
and thus deliver apically destined proteins (such as the BB 
enzymes or the glycocalyx-studded plaque proteins of the 
microvillus tip) to the basolateral cell surface (•50% ac- 
cording to [3H]fucose autoradiography, reference 19). 

This model demands that basolateral CVs do not contain 
any signal for transport along MTs and therefore follow the 
bulk flow of membranes that appears to be directed to the 
basolateral membrane domain in the intestinal epithelium 
(48). However, as will be discussed later, there must be an 
additional mechanism that prevents basolateral CVs from 
fusing with the apical membrane. 

Role of the Apical Subterminal Space 
in M T  Organization 

The cytoplasmic space located adjacent to the apical terminal 
web of the intestinal epithelium has been shown to contain 
the centrosome, which is absent from the area of the GA (13, 
50). As demonstrated in this study, the subterminal space ap- 
pears to be the major site for organization of MT growth. Af- 
ter application of colchicine, depolymerization of microtu- 
bules proceeded continuously in a basal to apical direction. 

Figure 12. Intestinal epithelium of rats treated either simultaneously 
with colchicine and cycloheximide (hO colch + cHex) (a and b) or 
first with colchicine and 6 h later with cycloheximide (hO colch + 
h6 cHex) (c and d). Animals were killed 6 (a and b) and 12 h (c 
and d) after garage of colchicine, respectively, and processed for 
immunostaining with antibodies to alkaline phosphatase (aP) (b 
and d), tubulin (Tub) (a), or villin (V/l) (c). Cycloheximide in- 
hibited occurrence of alkaline phosphatase in the GA and at both the 
basolateral surface and the BB vacuoles (arrows, V). Cyclohexi- 
mide did not interfere with colchicine-induced depolymerization of 
MTs and delivery of cytoskeletal proteins to the BB vacuoles (c). 
Bars, 10 #m. 
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Figure 13. Association of sucrase-isomaltase (SIM) (a) and amino- 
peptidase N (APN) (c) with colchicine-induced BB vacuoles in the 
intestinal epithelium of mice killed at 12 h. Simultaneous localiza- 
tion of BB vacuoles by villin (Vii) is shown in b and d. Bars, l0 #m. 

Typically, at 1 h MTs had disappeared from the infranuclear 
space but were still present in the apical half or third of the 
epithelial cells (Figs. 7 c and 11 b). At 3 h all MTs were 
depolymerized except for a few microtubules confined to the 
subterminal space. This space is also the preferential site for 
vinblastine-induced paracrystals of tubulin (not shown). Re- 
growth of MTs always proceeded from the subterminal space 
in a basal direction. The MT-stabilizing and -organizing prop- 
erty of the subterminal space appears not to be associated 
with the centrosome because MT-organizing properties were 
also located in the periphery of the BB vacuoles, where no 
centrosomes were detected. The MT-organizing activity of 
the subterminal space may be important for the polarized or- 
ganization of the MT system and thus for the polarized trans- 
port of apical membrane proteins. Since the slowly growing 
end of MTs must be located in the subterminal space, we sug- 
gest that apical CVs are targeted to the BB by a retrograde 
transport mechanism. Recently, the microtubule-associated 
protein MAP IC has been identified as a potential candidate 
for such a retrograde motor of cytoplasmic MTs (55). 

In hepatocytes, which are multipolarized epithelial cells, 
MTs are not aligned to the rather small apical-like domain 
of the bile canaliculi (unpublished observations). Thus, it is 
not surprising that in hepatocytes the bulk of membrane pro- 
teins is delivered to the predominating membrane surface of 
the cells, which is the sinusoidal and lateral domain. By a 
still unknown secondary mechanism, the apical proteins be- 
come subsequently redistributed to the canalicular (apical) 
membrane whereas the basolateral proteins remain in the 
lateral and sinusoidal membrane (2). Whether a similar two- 

step mechanism may also operate in the apical delivery of 
certain membrane proteins in the intestinal epithelium is still 
a matter of dispute (1, 25, 43). 

Reconstitution of  CeU Polarity and the 
Role o f  BB  Vacuoles 

Reconstitution of cell polarity occurred in three steps: (a) 
displacement of basolateral BBs into invaginations, (b) inter- 
nalization of the BBs to form BB vacuoles, and (c) fusion of 
BB vacuoles with the apical BB. Apical fusion was often 
preceded by fusion of BB vacuoles with each other. Since 
fusion of BB vacuoles with the apical cell surface has not 
been observed at the ultrastructural level, we cannot exclude 
the possibility that the primary site of fusion is located at the 
lateral cell surface close to the tight junctions as described 
recently for the fusion of microvillus-studded vacuoles in 
MDCK cells at low Ca 2÷ (57). By subsequent opening of 
the tight junctions, the vacuolar membrane could be incorpo- 
rated into the apical membrane domain (57). 

BB vacuoles resembled the apical BB with respect to ul- 
trastructure, composition of the cytoskeleton, presence of 
high concentration of BB enzymes and MT-organizing prop- 
erties (see above). As shown by the experiments performed 
with cycloheximide, only newly synthesized BB enzymes 
were delivered to the BB vacuoles. This suggests that CVs 
containing apical membrane proteins are released from the 
dispersed GA at any place within the cell. MTs probably 
serve as guidelines that target the apical CVs to either the BB 
vacuoles or the apical BB. In the absence of MTs, the apical 
CVs will randomly diffuse within the cell and by chance fuse 
with the BB vacuoles, the apical, or basolateral membranes. 
This interpretation is based on the observation that in the 
presence of MTs (which regrow between 6 and 12 h) the api- 
cal enzymes were concentrated within the BB vacuoles and 
the apical BB but were largely absent from the basolateral 
membrane. In the absence of MTs (reinjection of colchicine, 
single dose of vinblastine), the BB enzymes were also pres- 
ent at the basolateral cell surface (not shown). 

Microvillus-studded vacuoles have also been observed in 
tumors and tumor cell lines derived from various kinds of 
polarized epithelial cells (31, 44, 53). In certain cases of pan- 

Figure 14. Simultaneous visualization of Na÷,K+-ATPase (a) and 
villin (b) in the intestinal epithelium of rats treated with vinblastine 
and killed 12 h later. Note absence of Na+,K+-ATPase stain from 
the apical BB, BB vacuoles (arrowheads), and basolateral BBs (ar- 
row). Bar, 10 #m. 
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creatic carcinoma both BB vacuoles and basolateral micro- 
villi have been observed in the same cell (29). BB vacuoles 
also occur in the fetal intestine (I0) and in thyroid cells (45) 
where these vacuoles appear to play a key role in lumen for- 
mation and morphogenesis. In the light of the present experi- 
ments and in view of recently published experiments ob- 
tained with MDCK cells (56, 57), formation of BB vacuoles 
may be considered as a part of the mechanism by which epi- 
thelial cells regain polarity. 

Exclusion of Na+,K÷-ATPase from Basolateral BBs 
and BB Vacuoles 
Our experiments with cycloheximide indicate a rather high 
turnover of the Na+,K+-ATPase. Immunostain specific for 
Na*,K+-ATPase was confined to the basolateral cell surface 
but was clearly excluded from those sites of the basolateral 
domain that were occupied by the drug-induced basolateral 
BBs (Fig. 14). On the other hand, the mistargeted apical en- 
zymes were evenly distributed along the entire basolateral 
cell surface including the basolateral BBs. Since the freeze- 
fracture studies showed that the basolateral BBs were not 
sealed from the remaining basolateral cell surface by tight 
junctions, we suggest that the Na+,K+-ATPase cannot freely 
diffuse within the plane of the lipid bilayer. This view is fur- 
ther supported by recent studies showing that Na+,K+-ATPase 
has a binding site for ankyrin which may function to tether 
the Na+,K+-ATPase to the spectrin-based membrane cyto- 
skeleton (30, 39). A similar mechanism is probably involved 
in placing the kidney band 3-like anion exchanger at special- 
ized microdomains of the basolateral membrane surface of 
the collecting duct epithelium (17). 

Na+,K÷-ATPase was not delivered to the BB vacuoles. 
This is surprising since the probability of Na+,K+-ATPase - 
containing CVs to fuse with BB vacuoles should be as high 
as the probability of apical CVs to fuse with BB vacuoles in 
the absence of MTs. These observations indicate that baso- 
lateral CVs might not be able to fuse with the membrane of 
BB vacuoles. In support of these observations, recent experi- 
ments with MDCK cells have shown that influenza virus 
hemagglutinin, an apically targeted glycoprotein, is concen- 
trated within microvillus-studded vacuoles, whereas the baso- 
lateral glycoprotein G of vesicular stomatitis virus is excluded 
from these vacuoles (56). 

A Hypothesis for Polarized Targeting of Membrane 
Proteins (Transport Barrier Hypothesis) 
A central conclusion drawn from the present experiments 
and experiments with virus-infected MDCK cells (47) is that 
apical CVs can fuse with both the apical and basolateral 
plasma membrane, whereas basolateral CVs seem to be only 
able to fuse with the basolateral and not the apical membrane 
domain. Most likely, apical CVs are largely prevented from 
fusion with the basolateral domain by selective transport 
along MTs to the apical cell pole. Delivery ofbasolateral CVs 
to the basolateral cell surface probably does not depend on 
MTs, but rather appears to follow the bulk flow of mem- 
branes which is directed to the basolateral surface in the in- 
testinal epithelium (48). At present it is not known why 
basolateral CVs do not fuse with the apical cell surface or 
with BB vacuoles. One major structural difference between 
the apical and basolateral membrane domain is the elaborate 

cytoskeleton of the terminal web that underlies the plasma 
membrane of the BB and the BB vacuoles (7, 13, 38). Such 
an elaborate web is absent from the basolateral membrane. 
Since MTs only rarely project into the terminal web (14, 24, 
50), the bulk of apical CVs must be able to move through this 
filamentous meshwork by a mechanism that is independent 
of MTs. Recent immunoelectron microscopic observations 
indicate association of vesicles in the terminal web with the 
ll0-kD protein (13). The ll0-kD protein is a myosin-related 
mechanoprotein (8, 9) which is probably able to cause move- 
ments of vesicles along actin filaments (8). It is tempting to 
speculate that the ll0-kD protein or some other component 
of the terminal web binds only to the apical CVs and thus 
might facilitate selective access of apical CVs to the apical 
lipid bilayer, whereas basolateral CVs might be excluded by 
such a mechanism. 
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