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Abstract: Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized
by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes.
In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative
activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in
cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term
and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage
response, cell cycle progression and apoptosis was investigated as possible mechanisms of action.
β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells,
while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure
of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in
G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX
and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in
Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3
activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes.
These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering
in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a
complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity
of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes,
thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and
chemopreventive agent.
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1. Introduction

Cholangiocarcinoma (CCA) represents a large group of epithelial cancers originated from
cholangiocytes, the epithelial cells lining the biliary tree and classified as intrahepatic, perihilar
and distal types based on their anatomic location [1,2]. Owing to its asymptomatic growth, CCA
is often diagnosed at advanced stages, when chemotherapy remains the unique curative approach,
although with a lower than 10% survival rate [3]. At the moment, gemcitabine plus cisplatin is
the reference chemotherapy regimen for CCA, but other drugs, such as doxorubicin, sorafenib and
regorafenib, are commonly used, although with low success due to the severe toxicity and multidrug
resistance (MDR) development [4–6]. The intrinsic resistance of normal cholangiocytes to drug
cytotoxicity is considered a key feature of CCA cells responsible for the chemotherapy resistance [7].
This evidence highlights the imperative need to develop more sophisticated therapeutic tools to
improve survival rates of CCA patients, by increasing chemotherapy efficacy while limiting side effects
and chemoresistance development.

Among alternative chemotherapies, doxorubicin is considered a valuable strategy for liver cancer,
especially when administered as advanced pharmaceutical forms or in polytherapy regimens [8],
because of its powerful cancer-killing activity, based on multiple cytotoxic mechanisms (i.e.,
DNA-damage, block of cancer cell cycle progression and increase of intracellular oxidative stress) [9,10].
Nevertheless, its low oral bioavailability requires the drug is administered by a single intravenous
injection of high doses, leading to severe side effects on normal tissues, that often hinder the
continuation of chemotherapy [11,12]. In the attempt to overcome these drawbacks, alternative
strategies for doxorubicin administration have been approached, achieving a similar efficacy and
increased tolerability [13–15]. Recently, alternative pharmacological regimens, such as a metronomic
chemotherapy (i.e., drug administration at low doses and more frequent intervals) and a combination
therapy (co-administration of different drugs with various mechanisms and targets) have been proposed
as innovative strategies to retain chemotherapy efficacy but limiting the occurrence of side effects and
complications [16,17].

Combining an anticancer drug with a chemosensitizer has been found able to induce synergistic
or additive interactions and to reduce the likelihood of drug resistance and systemic toxicity [18].
Drug combination is already applied successfully in the treatment of cancer and other diseases [19]
and has been suggested to be a suitable strategy for poor prognosis cancers, including liver cancer [17].
A number of natural substances have been found able to synergize in vitro chemotherapeutic drugs
and to resensitize resistant tumor cells by reversing MDR (e.g., curcumin, flavonoids) [20–23].
Our previous studies have highlighted a potential interest for the natural caryophyllane sesquiterpenes
as chemosensitizing agents in different cancer cell lines [24–26].

Caryophyllane sesquiterpenes are natural phytochemicals characterized by a unique bicyclic
structure with a rare dimethylcyclobutane ring fused in a trans configuration to a nine-carbon ring
containing a 1,5-diene [27]. They are known to possess a safe toxicity profile [28–30] and to be devoid of
genotoxic effects [30–33]. Particularly, β-caryophyllene is widely approved as a food additive and as a
cosmetic ingredient [28], due to its very low toxicity as shown in in vivo studies [34–36]. β-Caryophyllene
also exhibited pleiotropic pharmacological activities in preclinical studies [37]. It acts as an agonist of
cannabinoid CB2 and PPAR (peroxisome proliferator activated receptor) receptors, thus leading to
beneficial effects on several diseases, such as neuroinflammation, neurodegenerative pathologies and
some types of cancer [37]. Furthermore, it produces cytoprotective effects by modulating oxidative
stress, apoptosis and inflammation [38–41], through the interference with different inflammatory
pathways, such as the inducible nitric oxide synthase (iNOS), tumor necrosis factor-alfa (TNF-α) and
nuclear factor-κB (NF-κB) [37]. Also, it exhibited chemopreventive properties, such as genoprotective
and antiproliferative ones, by inhibiting DNA damage and STAT3 (signal transducer and activator of
transcription 3) activation induced by environmental pollutants [31,32,42,43] and through affecting
multiple cascades involved in cancer growth [37,44–47]. Similar properties have been also reported
for the metabolite β-caryophyllene oxide [48,49]. Recently, we demonstrated that caryophyllane
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sesquiterpenes are able to synergistically potentiate the antiproliferative effects of doxorubicin in
human hepatoblastoma HepG2 cells both in standard long-term and metronomic treatments [26]: this
suggests that combining the chemosensitization by caryophyllane sesquiterpenes and a metronomic
schedule can be a smart strategy to overcome the drawbacks of doxorubicin chemotherapy while
exploiting its powerful activity to conquer liver cancer [26].

In line with previous evidence about the chemosensitizing properties of caryophyllane
sesquiterpenes [24–26,50], in the present study we evaluated the ability of β-caryophyllene to synergize
doxorubicin (Figure 1) in Mz-ChA-1 cholangiocarcinoma cells under both long-term and metronomic
exposure schedules. Furthermore, being β-caryophyllene known to be protective in normal tissue
against several toxicants [31,32,38–43], its ability to reduce doxorubicin toxicity in H69 noncancerous
cholangiocytes, under the same exposure schedules applied for the doxorubicin chemosensitization,
was assessed too. This could represent an important goal to overcome the toxicity drawback of
doxorubicin chemotherapy while maintaining its anticancer efficacy.
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Figure 1. Molecular structure of the natural sesquiterpene β-caryophyllene (A) and the anticancer drug
doxorubicin (B).

In order to characterize the possible mechanisms accounting for the chemopreventive and
chemosensitizing effects of β-caryophyllene towards doxorubicin in normal and cancer cells, different
cellular parameters, including genotoxic damage, cell cycle progression, intracellular oxidative stress
and apoptosis extent, that mediate doxorubicin cytotoxicity [10], were measured. Particularly, the
level of genotoxic damage was determined in term of phosphorylation of histone 2AX at the serine
139 (Ser139) residue, namely γH2AX, which is known to occur in response to DNA double-strand
break [51], thus being a suitable marker of DNA damage. Oxidative stress was characterized by
measuring the increased intracellular ROS levels and glutathione defenses. Furthermore, being the
dysregulation of cell division a hallmark of cancer cell growth and survival [52], the ability of the test
substances to target the cell cycle machinery was measured too. In support, modulators of cell cycle
checkpoints, alone or in combination with standard anticancer drugs, have been proposed as possible
new strategies against cancer [53].

Oxidative stress, DNA damage and apoptosis are closely regulated by STAT3 [54], a cytoplasmic
transcription factors directly implicated in CCA carcinogenesis and also considered as a marker
of CCA poor prognosis [55–57]. A feedback activation of STAT3 has been also found engaged by
anticancer drugs, like doxorubicin, leading to drug-resistance [58]. In this context, we also evaluated if
a modulation of STAT3 activation could mediate the chemosensitizing and chemopreventive effects of
β-caryophyllene in normal and cancer cholangiocytes.
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2. Materials and Methods

2.1. Chemical and Reagents

All the substances, if not otherwise specified, were purchased from Sigma Aldrich Co (St. Louis,
MO, USA). β-caryophyllene (Figure 1A), doxorubicin hydrochloride (Figure 1B) and ethanol (EtOH)
were ≥ 98.0% purity. CMRL 1066 medium and Dulbecco’s Modified Eagle’s Medium Ham’s F12
(DMEM- F12) were provided by Aurogene (Rome, Italy). The sources of antibodies and materials for
molecular biology analysis were specified in the relative paragraphs. To perform the experiments, all
the solutions were prepared in the suitable solvent and sterilized by filtration using 0.2 µm pore-size
cellulose acetate filters. β-caryophyllene and doxorubicin were dissolved in EtOH 100% v/v and
deionized water, respectively, hence diluted in the complete medium. EtOH was used at a maximum
1% v/v nontoxic concentration in the medium.

2.2. Cell Cultures

An extrahepatic cholangiocarcinoma Mz-ChA-1 cell line, along with the nonmalignant H69
cholangiocytes, were used. Mz-ChA-1 cells from human gallbladder were a gift of Prof. G. Alpini
(Indiana University School of Medicine, Indianapolis, IN). The cells were maintained at 37 ◦C in a 5%
CO2 incubator in a culture medium composed of CMRL 1066 medium supplemented with 10% fetal
bovine serum (FBS), 1% penicillin, gentamycin and streptomycin and 2 mM glutamine. The typical
medium for the nonmalignant cholangiocytes (another gift of Prof. G. Alpini) consists of Dulbecco’s
modified Eagle’s medium/Nutrient Mixture F-12 Ham (3:1) supplemented with 1% penicillin and
streptomycin, plus the following: 1.8 × 10−4 M adenine, 5 µg/mL insulin, 5 µg/mL transferrin, 2 × 10−9

M triiodothyronine, 1.1 × 10−6 M hydrocortisone, 5.5 × 10−6 M epinephrine, 1.64 × 10−6 M epidermal
growth factor and 10% FBS. Following culture in the appropriate medium, the cells were deprived of
serum for 24 h, then subjected to the treatments.

2.3. Cytotoxicity Assay

To perform the assay, the cells were grown for 24 h into 96-well microplates (2× 104 cells/well), then
treated with the test substances and incubated according to the applied protocol schedule [26]. At the
end of incubation, the cytotoxicity was measured by the 3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyl
tetrazolium bromide (MTT) assay, using an Epoch Microplate Spectrophotometer (BioTek, AHSI, Milan
Italy). At least three biologic replicates, in which each concentration was tested in triplicate, were
made. Comparing the number of viable cells in each treatment respect to the vehicle control allows to
measure a cell viability reduction. The effect of the treatment was considered as cytotoxic when at least
a 30% lowering of cell viability occurred [59].

2.4. Schedule of Single and Metronomic Treatments

In the single long-term schedule, confluence cells were exposed to the test substances for 24 h
and 72 h (Figure S1), then the cytotoxicity was measured by the MTT assay. Under the metronomic
treatment, the cells were subjected to a short and/or repeated exposure of 2 h to the test substances
(Figure S2), as follow: 1) single treatment, the cells were treated for 2 h, then washed and incubated for
72 h; 2) two-repeated treatments, the cells were exposed to the test substances for 2 h, then washed and
incubated for functional recovery for further 2 h. After recovering, the cells were further treated with
the test substances for 2 h, washed and incubated for 72 h. Finally, the cytotoxicity was measured by
the MTT assay as described above.
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2.5. Combination Assay and Analysis of Sesquiterpene-Drug Interactions

For evaluating the chemosensitizing properties, the combination of doxorubicin and a nontoxic
concentration (about the IC10 concentrations, at which about a 10% lowering of cell viability occurred)
of β-caryophyllene was administered to cells.

The type of interaction between β-caryophyllene and doxorubicin, i.e., synergy, additivity or
antagonism, was evaluated by measuring three parameters: reversal ratio value (RR), combination
index (CI) and isobolographic analysis (IB) [24].

RR represents the cytotoxicity enhancement ratio and allows to quantify the efficacy increase of a
drug (A) in the presence of a chemosensitizing agent (B), by relating the IC50 of A alone (CA) and that
of IC50 of its combination with B (CA+B).

CI gives a quantitative measure of the interaction and is calculated as follow: (CA,X/ICX,A) +

(CB, X/ICX,B), in which CA,X and CB,X are the concentrations of A and B at the IC50 value of their
combination, whereas ICX,A and ICX,B are the IC50 values of the substances alone. When the CI value
was equal to, less or higher than 1, the interaction between test substances was evaluated as additivity,
synergism and antagonism, respectively.

The isobolographic analysis, displaying the extent of the interaction between drug A and the
potential chemosensitizer B, was obtained by a two-coordinate plot, wherein the IC50 concentrations
of A and B were plotted on the x and y axes, corresponding to (CA, 0) and (C0, B), respectively. The
substance concentrations used in the combination (CA+B) were placed in the same plot. A nonlinear
regression analysis was carried out by GraphPad Prism™ 6.00 software, in order to connect the
IC50 value of each drug alone and that of the combination, whereas the line connecting CA and CB

represented an additive interaction. A synergism between A and B occurred when CA+B were located
below the line, while the interaction was antagonistic when the values were above the line [60].

2.6. Intracellular Reactive Oxygen Species (ROS) Determination

To perform the assay, the cells, seeded in 6-well plates (1 × 106 cells/well), were treated with the
tested substances (β-caryophyllene, 50 µM; doxorubicin, 20 µM) for the required time exposure, then
the ROS levels were measured in the pellets by the 2,7-dichlorofluorescein diacetate assay (DCFH-DA),
as previously reported [61]. Intracellular ROS proportionally reduced DCFH-DA to the fluorophore
DCF, whose fluorescence was measured at an excitation wavelength of 485 nm and emission wavelength
of 528 nm by a BD Accuri™ C6 flow cytometer (BD Biosciences, Milan, Italy). In each experiment, a
vehicle control, corresponding to a basal ROS level, were included too. For all the treatments, the mean
DCF fluorescence of 50,000 cells was determined by a BD AccuriTM C6 Software version 1.0.264.21
(BD Biosciences, Milan, Italy).

2.7. Chromatographic Determination of Intracellular Glutathione Levels

Intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were measured by
HPLC-UV, as previously described [62]. Briefly, after treatments with β-caryophyllene (50 µM) and
doxorubicin (20 µM), the harvested cells (1 × 106 cells) were suspended in 10% ice-cold TCA and
centrifuged for 15 min at 9000× g, then supernatant was collected and GSH and GSSG measured by
HPLC with UV detection at 215 nm. The separation was achieved using a InfinityLab poroshell 120
EC-C18 column (3 × 150 mm, 2.7 µm) at a flow rate of 0.8 mL/min, using the following elution gradient:
0–3 min 100% A + 0% B, 3–10 min from 100% A to 100% B. The mobile phase A contained 0.1%
trifluoroacetic acid in water, whereas mobile phase B was 0.1% trifluoroacetic acid in water/acetonitrile
(93:7). Under our chromatographic conditions, retention times of GSH and GSSG were 2.58 min and
7.01 min, respectively.
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2.8. Cell Cycle Analysis

Analysis of cell cycle progression was performed by applying a one parameter flow cytometric
method, in which cell cycle distribution was evaluated on the basis of DNA content. Briefly, after
treatments, the harvested cells (about 1 × 106 cells) were fixed in ice cold 70% ethanol and stored for at
least 2 h at 4 ◦C. Thereafter, the ethanol-suspended cells were separated by centrifugation, rinsed in
PBS, then resuspended in a propidium iodide (PI) staining solution, containing 0.1% v/v Triton X-100,
10 µg/mL PI and 100 µg/mL DNase-free RNase A in PBS and stored at 4 ◦C in the dark for at least 30
min. For each sample, the mean fluorescence of PI (maximum excitation of PI bound to DNA at 536
nm; emission at 617 nm) in 50,000 cells was measured using a BD AccuriTM C6 flow cytometer FL2
channel (BD Biosciences, Milan, Italy) and deconvolution of the DNA content frequency histograms, to
estimate the proportions of cells in the respective phases of the cycle, was made by Modfit 4.1 software
(Verity Software House, Topsham, ME, USA).

2.9. Detection of Phosphorylated Histone H2AX and STAT3 by Western Blotting Analysis

To perform the analysis, the cells were seeded in 6-well plates, then subjected to the treatment
with β-caryophyllene (50 µM) and doxorubicin (20 µM), alone and in combination, for the required
time exposure, then harvested by centrifugation and washed in PBS. A lysis buffer, containing SDS
(2% w/w), Tris-hydrochloride (20 mM; pH 7.4), urea (2 M), glycerol (10% w/w), sodium orthovanadate
(2 mM), DTT (10 mM) and a protease inhibitors cocktail (1:100 dilution) was used to achieve the
cell protein separation. The separated proteins were resolved by SDS-PAGE 10% TGX FastCast™
Acrylamide gel (BioRad, Segrate, Italy) and transferred on PVDF membranes (BioRad, Segrate, Italy)
by using a Trans-Blot® Turbo™ Transfer System (BioRad, Segrate, Italy). The membranes were blocked
with a 0.2% w/v I-block (Thermo Fisher Scientific, Rodano, Italy) in Tris-buffered saline containing
0.05% Tween-20 (TBS-T), then stained with the desired primary antibodies. Particularly, to detect
the phosphorylated histone H2A variant H2AX at serine 139, the cells were incubated overnight
with the anti-phospho-histone H2AX (Ser 139) antibody (rabbit antibody; SC-101696 from Santa Cruz
Biotechnology), while phosphorylation of STAT3 on tyrosine 705 residue was highlighted after 1 h
incubation with the anti-phospho-STAT3 (Tyr705) antibody (rabbit antibody; 9145S from Cell Signaling
Technology, EuroClone, Pero, Italy). After rinsing three times in TBS-T to remove unbound primary
antibody, the membranes were incubated for an additional hour with the appropriate horseradish
peroxidase- or alkaline phosphatase-conjugated secondary antibody (Jackson ImmunoResearch, Pero,
Italy). The peroxidase signal was detected using a ECL Fast Femto reagent (Immunological Science,
Roma, Italy) and acquired by a Molecular Imager® ChemiDoc™MP System (Bio-Rad, Segrate, Italy),
while the intensity of protein bands was quantified by the ImageJ software (ImageJ 1.52n, National
Institutes of Health, Bethesda, MD, USA). The alkaline phosphatase signal was detected with BCIP/NBT
reagents (Carl Roth, Milano, Italy, CAS No. 298-83-9 and 6578-06-9). β-actin (total extracts) was used
as normalization protein for phospho(Ser 139)-histone H2AX, whereas phospho(Tyr705)-STAT3 was
normalized against total STAT3 levels (anti-STAT3 total mouse antibody; 9139S from Cell Signaling
Technology, EuroClone, Pero, Italy). Each experiment was performed at least in three replicates.

2.10. Immunofluorescence

Immunofluorescence analysis of phosphorylated STAT3 on tyrosine 705 residue was performed
according to previous published method [63]. Briefly, the cells were seeded on coverslip in a six-well
plate and allowed to adhere overnight, then were subjected to the treatments for the required time
exposure. After treatment, the cells were fixed in 4% paraformaldehyde, washed in PBS-T and
incubated in 4% bovine serum albumin (BSA) and PBS + Tween 20 (PBS-T), then further incubated
with the phospho(Tyr705)-STAT3 primary antibody (9132S from Cell Signaling Technology, EuroClone,
Pero, Italy) for 1 h at room temperature (RT). After washing in PBS-T, the cells were placed in the
specific Alexa Fluor 488 secondary antibody (Invitrogen, Thermo Fisher Scientific, Milan, Italy) for
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45 min in a dark room at RT and rinsed with PBS-T, then a coverslip was put onto slide with a drop
of DAPI. Slides were examined to analyze the expression and the possible translocation of STAT3
in a coded fashion by Leica Microsystems DM 4500 B light and fluorescence microscopy (Weltzlar,
Germany) equipped with a JenoptikProg-Res-C10 Plus Videocam (Jena, Germany).

A semiquantitative analysis of the phospho(Tyr705)-STAT3 rate was made (four fields for each
treatment) according to a previous published grading system [64], as follow: negative, < 5%; +/−,
6–10%; +, 11–30%; ++, 31–60%; +++, > 61%.

2.11. Apoptosis Detection

Apoptosis extent was evaluated by Annexin-V staining (Annexin V Apoptosis detection kit, Santa
Cruz Biotechnology, DBA, Milan, Italy), which is known to specifically binds phosphatidylserine,
a membrane protein which is normally embedded in the inner leaflet of plasma membrane and
externalized during apoptosis, as a result of the membrane changes. Therefore, apoptotic cells can be
directly detected through their staining with the fluorochrome-conjugated Annexin V. The analysis
was performed by both fluorescence microscopy and flow cytometry in order to both visualize the
event and to achieve a quick and accurate quantification of apoptotic cells.

For flow cytometry analysis, the cells (1 × 106 cells) were grown in 6-well plates, treated with
β-caryophyllene (50 µM) and doxorubicin (20 µM), alone and in combination for the required time
exposure, then collected by trypsinization and resuspended in PBS in the presence of the fluorochrome
Annexin-V-Cy3 (4 µg/mL in cell suspension). In order to detect viable cells, the nonfluorescent
probe carboxyfluorescein diacetate (CFDA; 2 µg/mL in cell suspension), hydrolyzed in living cells by
esterases to its fluorescent carboxyfluorescein metabolite (CF), was included too. For each sample,
the mean fluorescence of Annexin-V-Cy3 (excitation/emission at 543/570 nm, respectively) and CF
(excitation/emission at 492/514 nm, respectively) in 50,000 cells was measured using a BD AccuriTM

C6 flow cytometer, FL-2 and FL-1 channels respectively (BD Biosciences, Milan, Italy). Although
standard flow cytometry apoptosis assays use Annexin V-FITC, we chosen the conjugate with Cy3 in
order to avoid the overlapping in the excitation wavelength of annexin V-FITC and CF, which could
interfere with the analysis. Cells undergoing apoptosis were also sorted by their typical forward-
and side scatter (FSC-SSC) pattern, i.e., increased SSC and decreased FSC, respect to the viable cells.
Multiparameter analysis and gating of forward and side scatter as well as fluorescence detection were
performed using a BD AccuriTM C6 Software version 1.0.264.21 (BD Biosciences, Milan, Italy).

For the fluorescence microscopy analysis, 1 × 105 cells were grown on coverslip in 6-well plates,
treated with the test substances, then gently washed with the assay buffer, incubated for 15 min
with Annexin-V-FITC working solution at RT in the dark. Thereafter, cells were rinsed in PBS,
then covered with a glass coverslip with a drop of DAPI. In the end, slides were visualized under
a Fluorescence Microscope (Leica Microsystems DM 4500 B Weltzlar, Germany), equipped with a
JenoptikProg-Res-C10 Plus Videocam (Jena, Germany). To distinguish apoptosis from necrosis and to
show membrane integrity after Annexin-V binding to cells, trypan blue exclusion test was employed
in parallel. The apoptosis was semiquantitatively rated (four fields for each treatment) by applying a
previous published grading system [64], as follow: negative, < 5%; +/−, 6–10%; +, 11–30%; ++, 31–60%;
+++, > 61%.

2.12. Statistical Analysis

GraphPad Prism TM (Version 6.00) software (GraphPad Software, San Diego, CA, USA) was
used for data analysis. Data were displayed as the mean ± SE (standard error) of at least two
biologic replicates in which each treatment was tested in duplicate. The level of significance of the
response with respect to control was evaluated by one-way analysis of variance (one-way ANOVA),
followed by Dunnett’s Multiple Comparison Post Test: a p < 0.05 were considered as significant. The
concentration–response curves were obtained by nonlinear regression, using the “Hill equation”: E =

Emax/ [1 + (10LogEC50/A)HillSlope], where E is the effect at a given concentration of the substance, Emax is
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the maximum activity, IC50 is the concentration that produces a 50% of the inhibitory response, A is
the substance concentration, HillSlope is the curve slope.

3. Results

3.1. Cytotoxicity of β-Caryophyllene in Combination with Doxorubicin in Mz-ChA-1 Cholangiocarcinoma Cells
and H69 Cholangiocytes

Cytotoxicity of the tested compounds, alone and in combination, was evaluated applying
both long-term protocols of 24 h and 72 h (Figure S1) and an in vitro metronomic schedule,
characterized by a single and repeated exposure of 2 h (Figure S2), as previously reported by
Di Sotto et al. [26]. Preliminarily, the cytotoxicity of the natural sesquiterpene β-caryophyllene was
assessed under the scheduled exposures, in order to find the suitable concentration to be used in the
combination experiments.

In the range of the tested concentrations (i.e., 5–500 µM corresponding to 1–100 µg/mL),
β-caryophyllene produced slight cytotoxic effects in all the experimental schedules and in both
cell lines (Figure 2). The cytotoxicity power of β-caryophyllene under the metronomic treatments
resulted lower than that found after the long-term exposures in both cell lines. Indeed, the sesquiterpene
produced early toxicity signs (about 20% inhibition of cell viability vs. control) in Mz-ChA-1 cells at
concentrations higher than 50 µM after the long-term exposures of 24 h and 72 h, whereas it resulted
nontoxic up to 125 µM under the metronomic schedule (Figure 2A).
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Figure 2. Cytotoxicity of β-caryophyllene in Mz-ChA-1 cholangiocarcinoma cells (A) and H69
cholangiocytes (B) under both the single long-term exposures of 24 h and 72 h and the metronomic
schedule. In the last protocol, the cells were subjected to a single and/or double repeated short exposure
of 2 h followed by a recovery time of 72 h. Data are expressed as mean ± SE (standard error) of at least
two experiments in which each treatment was tested at least in triplicate (n = 6).
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In noncancerous H69 cholangiocytes, a 125 µM concentration of β-caryophyllene produced
significant cytotoxic effects (about 40% inhibition of cell viability vs. control) after 24 h and 72 h,
without affecting cell proliferation under the metronomic schedules (Figure 2B). Comparing the IC50

values, β-caryophyllene was 1.4- to 2-fold more toxic in Mz-ChA-1 cells after 72 h exposure with respect
to the other schedules. Conversely, the long-term exposure treatment slightly increased its cytotoxicity
in H69 cholangiocytes (maximum increase of about 1.2-fold) compared the metronomic treatments
(Table 1). On the basis of these data, the concentration of 50 µM of β-caryophyllene, producing a slight
or null lowering (lower than 20% reduction) of cell viability in Mz-ChA-1 and H69 cells, was chosen
for the combination experiments with doxorubicin.

Table 1. IC50 values of β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and noncancerous H69
cholangiocytes under both long-term and metronomic schedules. In the last protocol, the cells were
subjected to a short and/or double repeated exposure of 2 h to the test substance followed by a recovery
time of 72 h. Data represent the mean ± SE (standard error) of at least two experiments in which each
treatment was tested in triplicate (n = 6).

Time Exposure β-Caryophyllene IC50 [µM] (CL)

Mz-ChA-1 H69

24 h 124.0 (105.0–176.2) * 147.6 (124.5–175.7)
72 h 90.0 (73.1–111.5) §* 146.0 (98.7–211.5)
2 h 171.5 (80.5–213.5) 176.6 (153.7–202.9)
2 h double 139.5 (90.0–173.0) * 161.2 (131.4–197.6)

CL, confidential limits. § p < 0.01 (ANOVA + Multiple Dunnett’s comparison post-test), significantly lower than the
IC50 value obtained after 24 h exposure. * p < 0.05 (ANOVA + Multiple Dunnett’s comparison post-test), significantly
lower than the IC50 value after the single short treatment of 2 h.

Under our experimental conditions, doxorubicin (concentration range of 0.2–200µM corresponding
to 0.1–100 µg/mL) exerted early signs of toxicity (about 20% inhibition of cell viability) at 10 µM after
the long-term exposure of 24 h, achieving the maximum inhibition of about 80% at the highest tested
concentration of 200 µM (Figure 3A). Cytotoxicity of doxorubicin was significantly increased by time
exposure, particularly at low concentrations. Indeed, after 72 h, about a 20% inhibition of cell viability
occurred already at the concentration of 1 µM, which was nontoxic under the 24 h exposure protocol
(Figure 3A). The anticancer drug produced a progressive increase in the cytotoxic effect, achieving
about an 80% inhibition at the concentration of 10 µM. Comparing the IC50 values, the long-term
exposure of 72 h increased the doxorubicin potency by at least 7-fold with respect to 24 h (Table 2).

Applying the metronomic schedule, wherein the anticancer drug was administered as a short
and/or double repeated treatment of 2 h followed by an extended cell recovery time, doxorubicin
showed a cytotoxic profile in Mz-ChA-1 cells similar to that found after 24 h exposure (Figure 3B).
Indeed, at least a 35% inhibition of cell viability was achieved at 10 µM doxorubicin after 2 h exposure
protocol, with early toxicity signs (< 20% cell viability reduction vs. control) at lower concentrations,
despite a 10% cytotoxicity increase produced by the double repeated exposure; a maximum 80%
inhibition was achieved under both the metronomic schedules at 100 µM doxorubicin (Figure 3B).

Accordingly, the IC50 values of doxorubicin resulted lowered by about 1.4- and 2.4-fold when
administered under the metronomic single and double repeated exposures compared the 24 h protocol,
respectively (Table 2). Doxorubicin cytotoxicity was also increased after a double short exposure with
respect to a single 2 h treatment, as highlighted by a 1.7-fold reduction of the IC50 value (Table 2).
However, the anticancer power of doxorubicin under metronomic conditions was 3- to 5-fold lower
than that achieved after a long-term exposure of 72 h (Table 2).

When doxorubicin was tested in combination with the chemosensitizing concentration (50 µM)
of β-caryophyllene, its cytotoxicity power resulted enhanced in all the exposure schedule, except for
the long-term exposure of 72 h, wherein a slight cytotoxicity increase was found only at the lower
concentrations of 0.2 and 1 µM, without affecting significantly the IC50 value (Table 2).
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Particularly, the IC50 value of doxorubicin in combination with β-caryophyllene was found
reduced by 2- to 2.5-fold after a single long-term exposure of 24 h and under the metronomic conditions
compared the anticancer drug alone (Table 2). On the basis of the obtained results, β-caryophyllene
displayed chemosensitizing effects in combination with doxorubicin especially after a single treatment
of 24 h and a single or double short metronomic exposure.Cells 2019, 8, x FOR PEER REVIEW 10 of 34 
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Figure 3. Cytotoxicity of doxorubicin and its combination with β-caryophyllene in Mz-ChA-1
cholangiocarcinoma cells. (A) Single long-term exposures of 24 h and 72 h. (B) Metronomic schedule:
the cells were subjected to a single and/or double repeated short exposure of 2 h followed by a recovery
time of 72 h. Data are expressed as mean ± SE (standard error) of at least two experiments in which
each treatment was tested at least in triplicate (n = 6).

According to Di Giacomo et al. [60], the interaction nature between doxorubicin and
β-caryophyllene was also evaluated by means of the combination index (CI) and the isobolographic
analysis (Figure 4). A lower than 1 value of CI highlights a synergistic interaction, while additivity
occurs when this value is equal to 1; conversely, a higher than 1 CI denotes an antagonism. Under our
experimental conditions, the combination of doxorubicin plus β-caryophyllene determined CI values
of 0.82 and 1.44 after the long-term exposures of 24 h and 72 h, while CI values of 0.73 and 0.81 after a
single and double repeated short metronomic exposures, respectively.

The obtained results highlighted that the chemosensitizing effects of β-caryophyllene in
combination with doxorubicin were mainly ascribable to synergistic mechanisms of interaction.
Accordingly, the isobologram analysis displayed a prevailing synergism between the test substances,
being the point corresponding to the IC50 of β-caryophyllene and doxorubicin combination located
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below the line connecting the IC50 concentrations of the test substances alone (Figure 4A,B). Under a
long-term exposure of 72 h, wherein the chemosensitization was lacking, both CI and isobolographic
analysis displayed an antagonistic interaction between the sesquiterpene and anticancer drug
(Figure 4A).

Table 2. IC50 values of β-caryophyllene under both long-term and metronomic schedules in Mz-ChA-1
and H69 cells. In the last protocol, the cells were subjected to a short and/or repeated exposure of 2 h to
the test substances followed by a recovery time of 72 h. Data represent the mean ± SE (standard error)
of at least two experiments in which each treatment was tested in triplicate (n = 6).

Time Exposure

IC50 [µM] (CL a)RR b

Mz-ChA-1 H69

Doxorubicin Doxorubicin +
β-Caryophyllene Doxorubicin Doxorubicin +

β-Caryophyllene

24 h 27.8 (18.0–42.4) 11.2 (7.4–16.6) ◦◦ 13.6 (5.8–31.2) 25.5 (12.0–45.0)
2.5 0.5

72 h 3.8 (2.2–6.4) §** 3.2 (1.2–8.6) §** 4.0 (3.4–4.6) § 3.6 (3.2–4.0)
1.2 1.1

2 h 19.8 (8.2–45.4) § 8.8 (2.6–18.2) §◦◦ 81.8 (69.8–126.2) 122.6 (50.0–301.0)
2.3 0.7

2 h - double 11.6 (4.0–33.2) § * 5.8 (0.4–25.0) §**◦◦ 54.4 (39.4–75.0) 59.2 (46.2–76.0)
2 0.9

a CL, Confidential limits. b RR or reversal ratio: ratio between IC50 values of doxorubicin and its combination with
β-caryophyllene. § p < 0.01 (ANOVA + Multiple Dunnett’s comparison post-test), significantly lower than the IC50
value after 24 h. *p < 0.05 and **p < 0.01 (ANOVA + Multiple Dunnett’s comparison post-test), significantly lower
than the IC50 value after a single short treatment of 2 h.

◦◦

p < 0.01 (ANOVA + Multiple Dunnett’s comparison
post-test), significantly lower than the IC50 value of doxorubicin in the same schedule.
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Figure 4. Isobolographic analysis of the cytotoxicity produced by doxorubicin in combination with
β-caryophyllene at the chemosensitizing concentrations of 50 µM in Mz-ChA-1 cholangiocarcinoma
cells. (A) Long-term exposure of 24 h and 72 h. (B) Single and double repeated metronomic exposure
of 2 h.
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The cytotoxic effects produced by the combination of doxorubicin and β-caryophyllene was
also evaluated in noncancerous H69 cholangiocytes, applying both the long-term and metronomic
schedules. After a long-term exposure of 24 h, doxorubicin exhibited early toxicity signs (about 40%
inhibition of cell viability) at 10 µM, reaching the maximum inhibition of cell viability (about 80%
reduction) at the highest tested concentration of 200 µM (Figure 5A). Administering the anticancer
drug for a prolonged exposure of 72 h, 10 µM doxorubicin produced a maximal cytotoxicity of about
80%, resulting 2-fold more toxic than the 24 h protocol. Conversely, the low drug concentrations only
slightly reduced the viability of H69 cholangiocytes, with respect to the vehicle, after both 24 and 72 h
long-term exposures (Figure 5A). Comparing the IC50 values, doxorubicin resulted about 3-fold more
toxic after 72 h with respect to 24 h (Table 2).
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Figure 5. Cytotoxicity of doxorubicin and its combination with β-caryophyllene in H69 noncancerous
cholangiocytes. (A) Single long-term exposures of 24 h and 72 h. (B) Metronomic schedule: the cells
were subjected to a single and/or double repeated short exposure of 2 h followed by a recovery time
of 72 h. Data are expressed as mean ± SE (standard error) of at least two experiments in which each
treatment was tested at least in triplicate (n = 6).

Under the metronomic schedules, doxorubicin was found nontoxic up to 20 µM in H69 cells,
being about 100-fold safer than the long-term exposures of 72 h (Figure 5B). Conversely, a progressive
reduction of cholangiocyte viability was found at concentrations higher than 20 µM, achieving a
cytotoxicity of about 60% and 70% at 100 µM after a single and double repeated 2 h exposure,
respectively (Figure 5B). Comparing the IC50 values, under the single and double repeated metronomic
treatments, doxorubicin cytotoxicity was lowered by almost 7- and 3-fold with respect to the 24
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h exposure (Table 2). Conversely, a double short exposure significantly increased the doxorubicin
cytotoxicity compared the single one, being the IC50 value reduced by 1.5-fold (Table 2).

The combination of the anticancer drug with the chemosensitizing concentration (50 µM) of
β-caryophyllene further reduced the cytotoxicity of doxorubicin in H69 cholangiocytes in all the
experimental schedules, except for the 72 h long-term and the double repeated metronomic exposures,
wherein the effects of the combined treatment did not differ from the drug alone (Figure 5A,B).
Accordingly, the IC50 value of doxorubicin in combination with β-caryophyllene was found increased
by about 1.5- and 2-fold after the single 24 h long-term and 2 h metronomic treatments (Table 2). On
the basis of the obtained results, the single exposures of 2 h and 24 h, wherein β-caryophyllene in
combination with doxorubicin produced both chemosensitization in Mz-ChA-1 cells and protective
effects in H69 noncancerous cholangiocytes, were chosen to study the possible involved mechanisms.

The safety of the combined treatment between the sesquiterpene and the anticancer drug was
also confirmed in vivo after a single administration of β-caryophyllene (50 and 100 mg/kg b.wt./i.p.
in olive oil; single dose), doxorubicin (3 mg/kg b.wt./i.p. in physiological solution; single dose) and
their combination in rats (Figure S3). All the procedures were performed in accordance with the
International Animal Welfare Legislation (Directive 2010/63/EU, 2010).

Doses of β-caryophyllene were selected to be about 1000- and 2000-fold higher than that used in
the combination experiments in liver cancer cells, while dose of doxorubicin was in agreement with
literature data [65]. The dose of 50 mg/kg b.wt./i.p. was previously used for the analog β-caryophyllene
oxide [25]. Under our experimental conditions, the treatments did not induce animal death and no
toxicity signs were highlighted during the observation of one week after dosing and at the necroscopic
analysis (Figure S3).

3.2. Genoprotective Effects of β-Caryophyllene in Combination with Doxorubicin

In order to determine the possible mechanisms accounting for the chemosensitizing and protective
effects of β-caryophyllene towards doxorubicin, the effect of the test substances on the genotoxic
damage, in term of phosphorylation of the histone H2AX at Ser139 residue, was evaluated (γH2AX).
To this end, the doxorubicin concentration of 20 µM, which induced submaximal cytotoxic effects in
both Mz-ChA-1 cholangiocarcinoma cells and in H69 noncancerous cholangiocytes, was chosen to be
tested in combination with 50 µM β-caryophyllene under the single exposures of 2 h and 24 h, where
both synergistic and chemopreventive effects of the natural sesquiterpene were displayed.

The obtained results highlighted that in spite of null effects of β-caryophyllene alone, doxorubicin
markedly affected the levels of γH2AX in both Mz-ChA-1 and H69 cells after either a short exposure
of 2 h and a long-term treatment of 24 h (Figure 6A,B). Particularly, in Mz-ChA-1 cells, doxorubicin
produced an increase in the γH2AX levels by about 60- and 140-fold after 2 h and 24 h respectively,
compared the control (Figure 6A). Similarly, in noncancerous H69 cholangiocytes about a 40- and
200-fold increase of γH2AX with respect to control was achieved after 2 h and 24 h, respectively
(Figure 6B).

When doxorubicin was administered in combination with β-caryophyllene, a significant lowering
of theγH2AX expression was found in all the schedules in both cancer and noncancerous cholangiocytes,
although the effect resulted more pronounced in H69 cells. Indeed, despite a reduction by about 1.8-
and 5-fold in Mz-ChA-1 cells under 2 h and 24 h protocols (Figure 6B), β-caryophyllene inhibited the
doxorubicin-mediated γH2AX expression by at least 5- and 45-fold in H69 cells after 2 h and 24 h
exposures, respectively (Figure 6B).

These data highlighted that β-caryophyllene is able to counteract DNA damage induced by
doxorubicin in both cell lines, being markedly effective in noncancerous cholangiocytes.



Cells 2020, 9, 858 14 of 34Cells 2019, 8, x FOR PEER REVIEW 14 of 34 

 

 

Figure 6. Effect of the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and their 
combination compared the control on the levels of phosphorylated H2AX at Ser139 residue (γH2AX) 
in Mz-ChA-1 cholangiocarcinoma cells (A) and H69 noncancerous cholangiocytes (B). The cells were 
treated for 2 h and 24 h, then the pellets were harvested for the western blotting analysis. For each 
experimental condition, the densitometric bar graph (data expressed as mean ± standard error) 
obtained from at least two independent replicates and a representative western blotting image, 
showing the expression levels of γH2AX and β-actin used as protein loading control, were displayed. 
***p < 0.001 (one-way ANOVA followed by Dunnett’s multiple comparison post-test), significantly 
higher than the vehicle control (basal level). §p < 0.001 (t-Student test), significantly lower than 
doxorubicin. 

3.3. Effect of β-Caryophyllene in Combination with Doxorubicin on Cell Cycle Progression 

In the attempt to evaluate if an interference with the cell cycle progression could be involved in 
the chemopreventive and chemosensitizing effects of β-caryophyllene, a flow cytometric measure of 
cell cycle phases in all the experimental conditions was made. The obtained results highlighted that 
the treatment schedules did not affected significantly the cell cycle profiles, being the effects of the 

Figure 6. Effect of the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and their
combination compared the control on the levels of phosphorylated H2AX at Ser139 residue (γH2AX)
in Mz-ChA-1 cholangiocarcinoma cells (A) and H69 noncancerous cholangiocytes (B). The cells were
treated for 2 h and 24 h, then the pellets were harvested for the western blotting analysis. For each
experimental condition, the densitometric bar graph (data expressed as mean± standard error) obtained
from at least two independent replicates and a representative western blotting image, showing the
expression levels of γH2AX and β-actin used as protein loading control, were displayed. ***p < 0.001
(one-way ANOVA followed by Dunnett’s multiple comparison post-test), significantly higher than the
vehicle control (basal level). §p < 0.001 (t-Student test), significantly lower than doxorubicin.

3.3. Effect of β-Caryophyllene in Combination with Doxorubicin on Cell Cycle Progression

In the attempt to evaluate if an interference with the cell cycle progression could be involved in
the chemopreventive and chemosensitizing effects of β-caryophyllene, a flow cytometric measure of
cell cycle phases in all the experimental conditions was made. The obtained results highlighted that
the treatment schedules did not affected significantly the cell cycle profiles, being the effects of the
treatments similar after both a single short exposure of 2 h (data not shown) and a single long-term
one of 24 h (Figure 7).
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Figure 7. Effect of the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and their
combination compared the control on the cell cycle progression in Mz-ChA-1 cholangiocarcinoma
cells and H69 noncancerous cholangiocytes. The cells were treated for 24 h, then the pellets were
harvested, fixed with 70% ethanol and stained with propidium iodide for the cytofluorimetric analysis.
(A) Representative histograms showing the percentages of cells in different cell cycle phases after
treatments in Mz-ChA-1 and H69 cells. (B) Bar graph analysis obtained from at least two independent
replicates (data expressed as mean ± standard error). §§p < 0.01 and §§§p < 0.001 (one-way ANOVA
followed by Dunnett’s multiple comparison post-test) denote a significant difference of G0/G1 phase in
the treatments compared the control. ***p < 0.001 (one-way ANOVA followed by Dunnett’s multiple
comparison post-test) denotes a significant difference of S phase in the treatments compared the
control.).

◦

p < 0.05 and
◦◦◦

p < 0.001 (one-way ANOVA followed by Dunnett’s multiple comparison
post-test) denotes a significant difference of G2/M phase in the treatments compared the control. ⊥p <

0.001 (t-Student test) denotes a significant difference with respect to doxorubicin.
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Particularly, as displayed by both histograms and graph bars (Figure 7A,B), the natural
sesquiterpene β-caryophyllene produced a cell cycle profile similar to that of the control, with a
slight increase in the G0/G1 (about 1.2-fold vs. control) and in G2/M phases (about 1.5-fold vs.
control) in Mz-ChA-1 cells, despite a weak (about 1.4-fold vs. control) reduction of G2/M phase in
H69 cholangiocytes.

As expected, doxorubicin significantly enhanced the cell accumulation in S-phase in both the cell
lines (about a 1.6- and 1.8-fold increase in Mz-ChA-1 and H69 compared the control), with a lower
increase of G2/M phase in Mz-ChA-1 cells (about 1.4-fold vs. control); conversely, the anticancer drug
markedly lowered the G0/G1 phase, achieving a reduction by at least 4 and 30-fold in Mz-ChA-1 and
H69 cells, respectively (Figure 7).

Combining β-caryophyllene and doxorubicin retained the cell cycle profile of the anticancer drug,
except for a slight reduction (1.1-fold vs. doxorubicin) of S-phase in Mz-ChA-1 cells and a marked
increase of G2/M phase in both cell lines (Figure 7). Particularly, G2/M phase was enhanced by almost
3-fold with respect to doxorubicin alone in Mz-ChA-1 cells, being also 3-fold higher than the control.
In the H69 cells, a significant 4-fold enrichment of cells in G2/M phase compared doxorubicin also
occurred, restoring the same level in the control. The obtained results highlighted that β-caryophyllene
contributed to the S-phase cell cycle arrest induced by doxorubicin and also blocked cells in G2/M
phase. Comparing cholangiocarcinoma and noncancerous cholangiocytes, we also found that despite
similar levels of both G0/G1 and S phases, G2/M resulted lowered by at least 2-fold in Mz-ChA-1 cancer
cells with respect to the H69 cholangiocytes (Figure 7), thus suggesting that a lowered G2/M phase
arrest can support the progression of cholangiocarcinoma cells.

3.4. Effect of β-Caryophyllene on the Intracellular Oxidative Stress

The effect induced by the combination of doxorubicin and β-caryophyllene on the intracellular
oxidative stress was evaluated after both 2 h and 24 h exposures in both the cell lines, by measuring
the levels of reactive oxygen species (ROS) by flow cytometry and those of glutathione defenses by
chromatographic detection. In Mz-ChA-1 neoplastic cholangiocytes, the natural sesquiterpene induced
a slight but significant increase (about 1.6 and 1.2-fold after 2 h and 24 h treatment) of ROS levels
(Figure 8A). Also, the GSH levels resulted significantly (about 2.5-fold vs. control) increased after 24 h
exposure, without changes in GSSG (Figure 8B).

The anticancer drug markedly enhanced the ROS levels, achieving almost a 7- and 4-fold increase
with respect to the control after 2 h and 24 h of treatment, respectively (Figure 8A). GSH resulted not
significantly decreased by the drug after 2 h, whereas a reduction by at least 3-fold was found after 24
h exposure, without changes in the GSSG amount (Figure 8B).

When the sesquiterpene was assessed in combination with doxorubicin, ROS levels were found
reduced by almost 2-fold under both time schedules and a further lowering (about a 1.3- and 4-fold
reduction after 2 h and 24 h exposure vs. doxorubicin) of GSH amount with respect to doxorubicin
occurred (Figure 8A,B). Accordingly, GSH/GSSG ratio resulted lowered by 1.3- and 4 -fold in the
presence of doxorubicin or its combination with β-caryophyllene after 2 h and 24 treatments; conversely,
β-caryophyllene alone was able to increase this ratio by about 2-fold.

The ability of doxorubicin and β-caryophyllene to affect the redox homeostasis was also assessed
in noncancerous H69 cholangiocytes, under the same experimental conditions. After a short exposure
of 2 h, ROS levels resulted not significantly enhanced by treatments, except for a 1.5- and 1.3-fold
increase induced by the combination of the natural sesquiterpenes and doxorubicin compared to the
control and doxorubicin, respectively (Figure 9A). Accordingly, the treatments only slightly affected
GSH and GSSG levels (Figure 9B): a 1.2-fold increase in GSH/GSSG ratio was found in the presence of
the test substances alone, but not with their combination.
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Figure 8. Effect of the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and their
combination compared the control on the intracellular oxidative stress in Mz-ChA-1 cholangiocarcinoma
cells. The cells were treated for 2 h and 24 h, then the pellets were harvested for the subsequent
analysis. (A) Bar graphs representing the levels of reactive oxygen species (ROS) as detected by the
2,7-dichlorofluorescein diacetate (DCFH-DA) assay. Data are expressed as mean ± standard error of at
least two independent replicates. (B) Bar graphs representing the levels of GSH (reduced glutathione)
and GSSG (oxidized glutathione) as revealed by HPLC analysis. Data are expressed as mean ± standard
error of at least two independent replicates.

◦

p < 0.05,
◦◦

p < 0.01 and
◦◦◦

p < 0.001 (one-way ANOVA
followed by Dunnett’s multiple comparison post-test) denote a significant difference of the treatments
compared the control. *p < 0.05 and ***p < 0.001 (t-Student test) denote a significant difference with
respect to doxorubicin.

When assessed under a long-term exposure of 24 h, despite a weak 1.3-fold enhancement in ROS
amount induced by β-caryophyllene compared the control, doxorubicin and its combination with
β-caryophyllene markedly increased the ROS levels (at least 3-fold higher than the control) (Figure 9A).
As for the 2 h protocol, GSH resulted enhanced by almost 1.5-fold by β-caryophyllene after 24 h,
whereas depleted by almost 2-fold by doxorubicin and its combination withβ-caryophyllene (Figure 9B).
Accordingly, the amount of GSSG was slightly increased in the presence of the only β-caryophyllene,
while slightly but not significantly reduced by doxorubicin and its combination with the sesquiterpene
(Figure 9B). The basal GSH/GSSG ratio was retained in the presence of β-caryophyllene, while lowered
by almost 1.6-fold with doxorubicin and the combination, thus suggesting that an impairment of cell
defenses, likely due to the increased ROS levels, occurred (Figure 9A,B).

3.5. Effect of β-Caryophyllene in Combination with Doxorubicin on Cell Apoptosis

As for the other parameters, apoptosis was measured in both the cell lines after both 2 h
and 24 h exposure to doxorubicin, β-caryophyllene and their combination; also, viable cells were
detected in the same analysis by staining them with specific probe for apoptotic and viable cells.
Particularly, apoptosis was detected by using a fluorochrome-conjugated annexin V that specifically
binds to phosphatidylserine, a cell protein that is translocated from the cytoplasmic face of the plasma
membrane to the cell surface during early apoptosis, thus being a signal of a biomembrane phospholipid
asymmetry loss. Furthermore, the nonfluorescent carboxyfluorescein diacetate (CFDA) probe was
employed to distinguish viable cells, being it able to be taken up by cells, then hydrolyzed by esterases,
producing a fluorescent 6-carboxyfluorescein (6-CF) metabolite.
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Figure 9. Effect of the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and
their combination compared the control on the intracellular oxidative stress in H69 noncancerous
cholangiocytes. The cells were treated for 2 h and 24 h, then the pellets were harvested for the
subsequent analysis. (A) Bar graphs representing the levels of reactive oxygen species (ROS) as detected
by the 2,7-dichlorofluorescein diacetate (DCFH-DA) assay. Data are expressed as mean ± standard
error of at least two independent replicates. (B) Bar graphs representing the levels of GSH (reduced
glutathione) and GSSG (oxidized glutathione) as revealed by HPLC analysis. Data are expressed as
mean ± standard error of at least two independent replicates.

◦

p < 0.05,
◦◦

p < 0.01 and
◦◦◦

p < 0.001
(one-way ANOVA followed by Dunnett’s multiple comparison post-test) denote a significant difference
of the treatments compared the control. *p < 0.05 and ***p < 0.001 (t-Student test) denote a significant
difference with respect to doxorubicin.

Also, live and apoptotic cells were selected by their typical cell size and granularity, measured
through the forward light scatter (FSC) and side scatter (SSC). Particularly, increased SSC and decreased
FSC occurred during apoptosis, due to the cell shrinkage and mitochondrial swelling and to the nuclear
condensation and fragmentation, respectively. Conversely, excluding events with low FSC and high
SSC, viable cells were sorted.

Under our experimental condition, as displayed by the CF fluorescence intensity detected at FL-1
channel (excitation/emission at 492/514 nm, respectively), viable cells were found only slightly affected
by β-caryophyllene, achieving a maximum inhibition by about 1.2-fold in both Mz-ChA-1 and H69 cells
under both the short and long-term exposures of 2 h and 24 h, respectively (Figure 10A,B). Doxorubicin
lowered the viable cell rate up to 1.5 and 1.4-fold in Mz-ChA-1 and H69 cells, respectively, whereas its
combination with β-caryophyllene further reduced cell viability in Mz-ChA-1 cell especially after 2 h
exposure (almost a 2-fold reduction), despite a slight increase in H69 cell levels with respect to the
anticancer drug (Figure 10A,B).
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Figure 10. Bar graphs (data expressed as mean ± standard error at least two independent replicates) of
apoptosis induced by the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and their
combination compared the control in Mz-ChA-1 cholangiocarcinoma cells (A) and H69 noncancerous
cholangiocytes (B). The cells were treated for 2 h and 24 h, then the pellets were harvested and stained
with Annexin-V-Cy3 and carboxyfluorescein diacetate (CFDA) for the cytofluorimetric analysis of
apoptotic and viable cells (FL-2 for annexin and FL-1 for CF; BD AccuriTM C6 flow cytometer). Cells
undergoing apoptosis were sorted by their typical forward- and side scatter (FSC-SSC) pattern, i.e.,
increased SSC and decreased FSC, respect to the viable cells. §p < 0.05, §§p < 0.01 and §§§p < 0.001
(one-way ANOVA followed by Dunnett’s multiple comparison post-test) denote a significant difference
in the viable cells of the treatments compared the control. *p < 0.05, **p < 0.01 and ***p < 0.001 (one-way
ANOVA followed by Dunnett’s multiple comparison post-test) denote a significant difference in the
apoptotic cells of the treatments compared the control. ⊥p < 0.01 (t-Student test) denotes a significant
difference with respect to doxorubicin.

In regard to the apoptosis extent, measured by the fluorescence intensity of annexin-V-Cy3 at
FL-2 channel (excitation/emission at 543/570 nm, respectively), β-caryophyllene did not affected the
basal apoptosis in Mz-ChA-1, although a slight but significant 1.2-fold lowering in H69 cell under
both time exposures was registered (Figure 10A,B). As expected, apoptosis was significantly enhanced
by doxorubicin, especially after a long-term exposure of 24 h: the apoptotic rate was increased by
almost 1.5 and 3-fold in H69 and Mz-ChA-1 cells, respectively (Figure 10A,B). Surprisingly, the
apoptosis rate induced by doxorubicin significantly decreased in combination with β-caryophyllene in
H69 cholangiocytes, achieving similar levels in the control, whereas it resulted enhanced by about
1.7-fold (almost 5-fold higher than the basal rate in the control) in Mz-ChA-1 cholangiocarcinoma cells
(Figure 10A,B).
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These results were also confirmed by the immunofluorescence microscopy analysis (Figure 11),
made by staining cells with annexin-V-FITC and by comparison with the trypan blue exclusion test to
distinguish apoptosis from necrosis and to show membrane integrity. As shown in Figure 11, after
treatment with the β-caryophyllene alone, the fluorescence intensity was similar to that of the control in
both cell lines; particularly, a basal apoptosis was revealed only in cancer cholangiocytes. Doxorubicin
induced the annexin-V binding with PS, as evidenced by the fluorescent cells detected in both H69 and
Mz-ChA-1 cells, especially in the cancer cell line (Figure 11). The extent of fluorescent cells induced
by the anticancer drug resulted lowered by the natural sesquiterpene in H69 cholangiocytes, while
enhanced in cholangiocarcinoma cells (Figure 11).Cells 2019, 8, x FOR PEER REVIEW 21 of 34 
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noncancerous cholangiocytes. After treatments of 24 h, the cells were stained with Annexin-V-FITC 
to assess the apoptotic rate, as shown by the red arrows. The semiquantitative analysis has been 
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Figure 11. Representative immunofluorescence (IF) images and semiquantitative analysis of the
apoptosis induced by the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and
their combination compared the control in Mz-ChA-1 cholangiocarcinoma cells and H69 noncancerous
cholangiocytes. After treatments of 24 h, the cells were stained with Annexin-V-FITC to assess the
apoptotic rate, as shown by the red arrows. The semiquantitative analysis has been carried out (four
fields for each treatment) applying a previous published grading system [64]: 0%–5% = negative;
6%–10% = +/−; 11%–30% = +; 31%–60% = ++; > 61% = +++.
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The results were further confirmed by the scoring of the semiquantitative analysis, wherein
the apoptosis rate induced by the combination of β-caryophyllene and doxorubicin in Mz-ChA-1
cells resulted to be highly positive, corresponding to a 31%–60% (++ score) level, with respect to the
11%–30% (+ score ) of doxorubicin alone, whereas it was slight positive (+/− score; 6%–10%) for the
control and the only sesquiterpene (Figure 11).

3.6. Effect of β-Caryophyllene in Combination with Doxorubicin on the STAT3 Signaling

Taking into account the widespread recognized control of STAT3 signaling on both normal and
cancer cell proliferation, a possible modulation by treatments of this signaling in both Mz-ChA-1 cancer
and H69 noncancerous cholangiocytes was also assessed (Figure 12).Cells 2019, 8, x FOR PEER REVIEW 22 of 34 
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fluorescence was higher in doxorubicin-treated Mz-ChA-1 cells, compared the control cells (Figure 
13). By contrast, the doxorubicin-induced fluorescence was markedly downregulated in combination 
with β-caryophyllene, without notable effects of the sesquiterpene alone (Figure 13). Similarly, the 
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Figure 12. Effect of the natural sesquiterpene β-caryophyllene (50 µM), doxorubicin (20 µM) and their
combination compared the control on the expression levels of phosphorylated STAT3 on tyrosine 705
residue in Mz-ChA-1 cholangiocarcinoma cells (A) and H69 noncancerous cholangiocytes (B). The cells
were treated for 2 h and 24 h, then the pellets were harvested for the western blotting analysis. For each
experimental condition, a representative western blotting image, showing the expression levels of the
phospho(Tyr705) STAT3 and total STAT3 used as protein loading control and a densitometric bar graph
analysis (data expressed as mean ± standard error) obtained from at least two independent replicates,
were displayed. *** p < 0.001 (one-way ANOVA followed by Dunnett’s multiple comparison post-test)
denotes a significant increase compared the control. § p < 0.001 (t-Student test) denotes a significant
reduction with respect to doxorubicin.
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As found at the western blotting analysis, doxorubicin markedly enhanced the phosphorylation
of STAT3 at tyrosine 705 residue in Mz-ChA-1 cells, achieving almost a 100- and 20-fold increase after 2
h and 24 h treatments compared the control (Figure 12A). Likewise, the anticancer drug enhanced by
almost 6 and 10-fold the basal expression of phospho(Tyr705)-STAT3 in H69 cholangiocytes after 2 h
and 24 h, respectively (Figure 12B).

Interestingly, the natural sesquiterpene alone did not affected the protein expression in H69
cells, whereas it induced at least a 3-fold upregulation in neoplastic cholangiocytes under both time
schedules (Figure 12A,B). Combining the sesquiterpene and doxorubicin a significant downregulation
of phospho(Tyr705)-STAT3, compared the anticancer drug alone, occurred in both cell lines and in all
the experimental conditions. This inhibitory effect was highly marked in Mz-ChA-1 cells, achieving a
lowering by about 16 and 10-fold with respect to doxorubicin after 2 h and 24 h, respectively; a lower
but significant 8- and 5-fold reduction occurred in H69 cells too (Figure 12A,B).

Accordingly, the immunofluorescence analysis displayed that phospho(Tyr705)-STAT3
fluorescence was higher in doxorubicin-treated Mz-ChA-1 cells, compared the control cells (Figure 13).
By contrast, the doxorubicin-induced fluorescence was markedly downregulated in combination with
β-caryophyllene, without notable effects of the sesquiterpene alone (Figure 13). Similarly, the protein
resulted phosphorylated at tyrosine 705 residue by doxorubicin in H69 cholangiocytes (Figure 13),
although the fluorescence intensity was lower than that displayed in Mz-ChA-1 cells. Conversely, both in
the combination and in the presence of β-caryophyllene alone, the fluorescence was lacking (Figure 13),
thus highlighting that the natural sesquiterpene inhibited the expression of phospho(Tyr705)-STAT3
induced by the anticancer drug. It is noteworthy that a basal phospho(Tyr705)-STAT3 was found
expressed in Mz-ChA-1 cholangiocarcinoma cells compared the noncancerous H69 cholangiocytes,
thus confirming that the upregulation of this signaling is a typical feature of cancer cells.

In order to assess whether the chemosensitizing effects of β-caryophyllene (50 µM) towards
doxorubicin were dependent on STAT3, we also tested the substances and their combination in
human prostatic PC3 cells (Figure S4), known to be lacking in the expression of STAT3 [66,67].
Under our experimental conditions, the cytotoxic effect of doxorubicin was slightly increased by
β-caryophyllene, although no statistical difference was found in the IC50 values (48.4, C.L. 29.2–65.8
µM and 44.1, C.L. 19.8-72.1 µM for doxorubicin and doxorubicin plus β-caryophyllene, respectively)
(Figure S4A). Furthermore, immunofluorescence images revealed that β-caryophyllene did not affect
the doxorubicin-induced apoptosis in PC3 cells (Figure S4B). The western blotting analysis confirmed
that PC3 cells did not express STAT3 (Figure S4C).

These results reinforce our hypothesis about the modulation of STAT3 signaling as one of
the networking mechanisms involved in the chemopreventive and chemosensitizing effects of
β-caryophyllene in combination with doxorubicin.
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Figure 13. Representative immunofluorescence (IF) images and semiquantitative analysis of the
phosphorylated STAT3 on tyrosine 705 residue induced by the natural sesquiterpeneβ-caryophyllene (50
µM), doxorubicin (20µM) and their combination compared the control in Mz-ChA-1 cholangiocarcinoma
cells and H69 noncancerous cholangiocytes. After treatments of 24 h, the cells were fixed then stained
with a specific anti-phospho(Tyr705)-STAT3 primary antibody to assess the protein phosphorylation
rate, as shown by the yellow arrows. The semiquantitative analysis has been carried out (four fields for
each treatment) applying a previous published grading system [64]: 0%–5% = negative; 6%–10% = +/−;
11%–30% = +; 31%–60% = ++; > 61% = +++.
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4. Discussion

Chemosensitizers are defined as low toxic agents, able to affect tumor survival and progression
and to increase cancer sensitivity to pharmacotherapy by different synergistic or additive mechanisms,
thereby reducing chemotherapy toxicity and occurrence of multidrug resistance [60]. Searching for
chemosensitizing agents has attracted great attention by researchers due to the interesting possible
application of this strategy in adjuvant chemotherapy or in sensitizing resistant cancer cells to the
anticancer drugs. Recently, a complex so-called “resistome”, defined as the entire set of proteins
contributing to the mechanisms of chemoresistance exploited by tumor to endure chemotherapeutic
effects, has been characterized [68,69]. Among them, defective DNA repair pathways, altered growing
signaling and an imbalance between pro-apoptotic and pro-survival factors have been found responsible
for cholangiocarcinoma resistance to pharmacological treatment [7,70,71]. Therefore, targeting specific
deregulated mechanisms through suitable chemosensitizers have been approached as a promising
strategy to counteract CCA resistance and improve chemotherapy efficacy.

In line with this evidence, in the present study, we found that the natural chemosensitizer
β-caryophyllene was able to potentiate the anticancer effects of doxorubicin in cholangiocarcinoma
Mz-ChA-1 cells and also to prevent doxorubicin-toxicity in noncancerous H69 cholangiocytes, thus
highlighting a possible novel strategy to achieve both chemotherapy efficacy and drug tolerability.

The doxorubicin chemosensitization by β-caryophyllene in cholangiocarcinoma cells is in
agreement with our previous evidence in HepG2 [26]. Similarly, β-caryophyllene oxide produced
synergistic effects towards doxorubicin and other anticancer drugs in liver, breast, leukemic and
colon cancer cells [24–26,72–74]. Interestingly, doxorubicin-chemosensitization by β-caryophyllene
occurred after both a long-term exposure of 24 h and under the metronomic schedules, like in HepG2
cells [26]. Conversely, a long-term exposure of 72 h negatively affected the chemosensitizing properties
of β-caryophyllene, likely due to its possible biotransformation into ineffective metabolites [26,75,76].
According to the literature [26,77], the metronomic schedules increased the cytotoxicity of low dose
doxorubicin in cholangiocarcinoma cells too. Therefore, combining the doxorubicin chemosensitization
by β-caryophyllene and the metronomic schedule appears to be an interesting strategy to increase
the drug potency and to reduce its toxicity. Further in vivo studies could confirm this evidence and
support a future interest in pharmacological research.

In regard to the mechanisms of action, doxorubicin is known to possess a powerful cancer-killing
potential, mediated by multiple cytotoxic mechanisms, involving increased intracellular oxidative
stress, inhibition of topoisomerase IIα, DNA-damage and blocking of cancer cell growth, which in
turn lead to destruction of cell structures and cell death [78]. Induction of ROS formation, interference
with mitochondrial oxidative phosphorylation and GSH depletion represent key mechanisms of
anthracycline toxicity [78–80].

Under our experimental conditions, the behavior of doxorubicin in both cholangiocarcinoma and
noncancerous cholangiocytes was in agreement with published literature, being the drug responsible
for an increased oxidative stress along with a lowering of GSH, especially after a long-term exposure
(Figure 14A,B). Interestingly, GSH depletion was not associated with an increase in GSSG levels, thus
suggesting that reduced glutathione was exploited by cells for alternative requirements.

β-caryophyllene induced a significant ROS-increase in cancer cells and a marked upregulation of
GSH defenses, especially after 24 h exposure, without affecting cell viability: this could be ascribed to
a perturbation of cell biomembrane homeostasis, due to the high lipophilicity of the sesquiterpene.
Indeed, β-caryophyllene is known to possess a great capacity to alter phospholipid cooperativity,
membrane permeability and protein functions [45,81], which in turn can lead to cell morphology
changes and increased of intracellular oxidative stress [46].

Conversely, in the presence of doxorubicin/β-caryophyllene combination, the ROS levels were
partly reduced in cholangiocarcinoma cells despite a significant increase in normal cells, with a marked
GSH depletion in both cell lines (Figure 14A,B).
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Figure 14. Scheme of the possible network involved in the chemosensitizing and chemopreventive
effects of β-caryophyllene towards doxorubicin in Mz-ChA-1 cholangiocarcinoma cells (A) and in H69
noncancerous cholangiocytes (B). Doxorubicin-induced oxidative stress, measured by the intracellular
levels of reactive oxygen species (ROS), was partly reduced in combination with β-caryophyllene
in Mz-ChA-1 cells, whereas GSH defenses, markedly upregulated by the sesquiterpene alone, were
drastically reduced by both doxorubicin and its combination with β-caryophyllene, without affecting
GSSG amount. Conversely, in H69 cholangiocytes, despite a GSH depletion similar to doxorubicin and
not correlated with an increase in GSSG, the combined treatment of doxorubicin and β-caryophyllene
enhanced ROS levels with respect to both control and the anticancer drug alone, despite a slight increase
of GSH by the only β-caryophyllene. γH2AX, a biomarker of doxorubicin-induced DNA-damage,
resulted partly lowered by the presence of β-caryophyllene in cholangiocarcinoma cells, with an
almost complete inhibition in normal cholangiocytes. The increased G2/M checkpoint phase by
β-caryophyllene could allow to repair the doxorubicin-damaged DNA in H69 cholangiocytes. In
both cell lines, the phosphorylation of STAT3 at tyrosine 705 site, induced by the anticancer drug,
resulted markedly lowered by the natural sesquiterpene. These networking effects result in an
increased apoptotic fate in cholangiocarcinoma Mz-ChA-1 cells, despite an inhibition apoptosis in H69
noncancerous cholangiocytes.

Glutathione has been shown to act as a protective factor in both cancer and normal tissues, being
able to detoxify xenobiotics and ROS species by its antioxidant power or by glutathione S-transferase
(GST)-mediated phase II reactions [82].

In malignant cells, both ROS levels and GSH defenses have been found highly expressed and
this redox state seems to underpin cell resistance to many stressors, among which chemotherapeutic
drugs and to inhibit programmed cell death. GSH upregulation allows drug-conjugation and excretion
through MRP transporters, thus leading to cancer resistance [82]. In support, a high expression of both
GST and MRP pumps as well as high GSH levels represent common features of cholangiocarcinoma
cells [51,53]. Particularly, high GSH content can promote tumor cell survival by inhibiting apoptosis
and inducing post-translational modifications of transcription factors and proteins involved in the
control of cancer progression [82].

In line with this evidence, we hypothesize that when doxorubicin enters cholangiocytes, it
can be conjugated by glutathione, thus forming GSH-doxorubicin conjugates which are excreted
through MRP transporters, being toxic for cells. It is known that MRP1 and MRP3 are abundantly
expressed in cholangiocarcinoma [69,83,84], whereas MRP2 is typical of normal hepatocytes and
cholangiocytes [85]. The constant levels of GSSG found under our experimental conditions further
confirm the hypothesis that GSH expenditure was mainly due to doxorubicin detoxification, with a
lower impact on ROS neutralization.

The GSH upregulation induced by β-caryophyllene in cholangiocarcinoma cells seems to be
mainly exploited for doxorubicin detoxification, being unchanged the GSSG levels. Nevertheless,
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considering that β-caryophyllene is able to inhibit MRP pumps [25], GSH-doxorubicin conjugates can
be accumulated into cells, thus leading to the activation of cell death signalings. Our hypothesis is
supported by the evidence that lowering the intracellular GSH content has been found associated with
increased ROS amounts and apoptosis, thus being studied for potential anti-cancer therapies [86]. Also,
using inhibitors of MRP-mediated transport of GSH-conjugates has been approached as an alternative
strategy to overcome multidrug resistance and resensitize cells to chemotherapy [87].

Despite the increased GSH levels in cholangiocarcinoma cells, the sesquiterpene alone slightly
affected GSH in normal cholangiocytes: this could be reflected in the high ROS levels found in the
combined treatment with doxorubicin, being GSH unable to neutralize the intracellular oxidative
stress. Nevertheless, characterizing the true mechanisms responsible for the different behavior of
β-caryophyllene in cancer and normal cholangiocytes requires further investigations.

The increased ROS levels by doxorubicin are also associated with DNA-damage, although other
genotoxic mechanisms, such as a direct DNA-intercalation through the planar aromatic aglycone and a
topoisomerase IIα inhibition, which result in the accumulation of double-strand DNA breaks, have
been reported [10]. Double-strand DNA breaks by doxorubicin are usually correlated with a G2-phase
cell cycle block, while a S-phase accumulation is associated to DNA adducts [88].

Under our experimental conditions, doxorubicin was found able to increase γH2AX levels after
both a short and long-term exposure in both cell lines (Figure 14A,B): this effect was correlated with
an accumulation of cholangiocarcinoma cells in both S and G2/M phases, while the S phase greatly
prevailed in normal cholangiocytes. These results suggest that doxorubicin genotoxicity could be
mediated by both topoisomerase II inhibition and formation of DNA-adducts in biliary cancer cells,
whereas the formation of DNA-adducts could mediate drug toxicity in normal cells.

The sesquiterpene alone significantly increased the cell accumulation in G1 and G2/M phases,
without affecting γH2AX levels. In the presence of β-caryophyllene, the doxorubicin-increased γH2AX
levels were significantly lowered in both cell lines, although with about a 9-fold higher efficacy in H69
cells compared Mz-ChA-1 cells (Figure 14A,B). Furthermore, in both cell lines, along with a cell cycle
arrest in S-phase induced by doxorubicin, β-caryophyllene significantly increased the cell percentage
in G2/M phase: this point was of particular interest in H69 cholangiocytes, wherein this phase was
almost lacking (Figure 14A,B).

The normal cell cycle can be modulated by many different factors, thus leading to alterations in
cell proliferation which represent important features of cancer cells. Usually, after a genome damage, a
DNA damage response (DDR) occurs, followed by the activation of DNA damage checkpoints (G1 and
G2 phases), wherein cell cycle is blocked, thus restraining chromosome segregation until the damage
could be fixed, and DNA repair systems are stimulated [89,90].

A loss of G1 checkpoint is a common feature of cancer cells and allows mutagenic replication of
damaged templates and other replication defects: this failure makes cells more reliant upon the S and
G2 checkpoints to prevent DNA damage-triggered cell death [91]. Also, G2/M checkpoint can fail due
to the presence of unreplicated or damaged DNA [90]. Phosphorylation of H2AX at the serine residue
(S139) represents one of the earliest events upon DNA double-strand breaks and is involved in DDR
induction, delayed cell cycle progression and DNA repair, thus leading to cells recovering or death if
damage is unrepairable [92].

In line with this evidence, the stimulation by β-caryophyllene of G2/M checkpoint in response
to the increased γ-H2AX by doxorubicin can be considered as a cytoprotective mechanism aimed at
blocking cell cycle and repairing DNA-damage. Doxorubicin-induced DNA damage resulted strongly
inhibited in normal cholangiocytes, despite the high ROS levels and GSH depletion. Conversely, in
cholangiocarcinoma cells a lower genoprotection, which could be correlated to the lowered ROS levels,
occurred. This suggests that the genoprotective effects of β-caryophyllene could be partly due to a
direct potentiation of DNA repair systems, particularly in normal cholangiocytes. Indeed, cancer
cells are known to carry defective DNA repair systems and a loss in mismatch repair function has
been associated to doxorubicin resistance in cholangiocarcinoma cells [93,94]. This hypothesis could
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explain the different ability of the natural sesquiterpene to counteract the doxorubicin DNA damage
in cancer and noncancerous cholangiocytes. However, the involvement of other direct or indirect
genoprotective mechanisms cannot be excluded. Our results agree with previous evidence about
the genoprotective properties of β-caryophyllene towards the DNA-damage induced by different
environmental carcinogens [31,32] and pollutants [42,43]. The evidence that β-caryophyllene can
act through both desmutagenic and bioantimutagenic mechanisms [95] also supports present results
in cholangiocytes.

Under our experimental conditions, β-caryophyllene also activated proapoptotic signaling in
cancer cells in response to the unrepairable DNA damage of doxorubicin (Figure 14A); conversely, in
noncancerous cholangiocytes it activated survival signaling, likely as a consequence of a DNA-repair,
which can inhibit apoptosis rate (Figure 14B).

Apoptosis is finely regulated by a permissive apoptotic environment, characterized by an altered
redox homeostasis, involving a GSH depletion [96]. In numerous malignancies, apoptosis has been
found downregulated by STAT3, a latent cytosolic transcription factor, activated by phosphorylation
at tyrosine 705 (Tyr705) or serine 727 (Ser727) in response to different endogenous and exogenous
stimuli and aberrantly phosphorylated in cancer cells, likely to facilitate their transformation [97].
Despite its sustaining role in cancer progression, drug resistance and metastasization, STAT3 can also
act as a protective factor in normal cells, wherein it controls different genes, such as those involved
in proliferation, survival and self-renewal [97]. STAT3 phosphorylation has been also associated
to increased levels of ROS and γ-H2AX in damaged tissues, thus suggesting that this pathway
underpins the DNA repair abilities [98]. Conversely, elevated STAT3 levels in cancer contribute to
chemoresistance, thus suggesting that its inhibition can represent an interesting strategy for increasing
cancer chemotherapy sensitivity [54].

Accordingly, under our experimental conditions, we found that phosphorylation of STAT3 at
tyrosine 705 was promoted by doxorubicin in both cancer and noncancerous cells, being markedly
overexpressed in Mz-ChA-1 cells (about a 10-fold higher expression with respect H69 cholangiocytes),
whereas the combination with β-caryophyllene hindered its activation especially in H69 cells, achieving
the normal expression in the control (Figure 14A,B). The ability of β-caryophyllene to affect the
activation of phospho(Tyr705)-STAT3 agrees with our previous data in HepG2 cells [42], although the
true inhibitory mechanisms (e.g., direct binding site antagonism or indirect interference) require to be
further clarified.

On the basis of our results, we hypothesize that the natural sesquiterpene β-caryophyllene
suppresses STAT3 phosphorylation, likely as a consequence of its genoprotective effects, thus blocking
the activation of the survival signaling in cholangiocarcinoma cells and proapoptotic fate in normal
cholangiocytes. Accordingly, Lee et al. [58] highlighted that anticancer drugs, like doxorubicin, can
activate STAT3 to support cell survival and drug resistance. This reinforces the hypothesis that
administering an anticancer drug in combination with a STAT3 inhibitor can enhance chemotherapy
efficacy by disrupting the activation of this resistance mechanism.

Since STAT3 represents a key regulator of cancer survival and progression, several efforts have
been made over the years in order to identify suitable direct or indirect inhibitors for anticancer
therapies, although their application has been limited due to the low specificity for cancer tissues
and the severe side effects [55]. Therefore, searching for new agents, including natural compounds or
suitable delivery strategies to increase the cancer specificity and avoid undesirable effects, remains a
great challenge. Several natural compounds showed the ability to inhibit STAT3 activation, leading to
downregulation of survival genes, cell cycle arrest and apoptosis and also potentiating the cytotoxic
effects of anticancer drugs [22,23,99–105]. Among them, curcumin exhibited anti-cholangiocarcinoma
effects by the suppression of different transcription factor cascades, among which STAT3, NF-kB
and AP-1 [106]. Similarly, the suppression of STAT3 signaling by honokiol inhibited liver cancer cell
proliferation and potentiated the apoptotic effects of paclitaxel and doxorubicin [107].
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Our data highlighted for the first time that an indirect inhibition of phospho(Tyr705)-STAT3 by the
lowering of γ-H2AX, likely as a consequence of the activation of a DNA repair response, can be involved
in the chemosensitizing and chemopreventive effects of β-caryophyllene towards doxorubicin in
cancer and normal cholangiocytes. Interestingly, the inhibition of STAT3 by β-caryophyllene produced
nontoxic effects in normal cholangiocytes, thus suggesting the involvement of specific mechanisms for
cancer cells.

The here highlighted dual-acting role of β-caryophyllene, as both a chemosensitizer and a
chemopreventive agent, also agrees with previous evidence. Particularly, Pavithra et al. [108] found
that the natural sesquiterpene synergistically interacted with aromadendrene oxide 2 and phytol
in skin epidermoid cancer cells, thus leading to apoptotic cell death, through ROS accumulation,
caspase activation and PARP cleavage. Similar effects were registered in colon cancer cells [109].
Conversely, in normal neurons β-caryophyllene produced protective effects towards the damage of
MPP+ (1-methyl-4-phenylpyridinium), by suppressing ROS generation and apoptosis signaling [39].
Also, β-caryophyllene was found able to counteract the doxorubicin-induced acute cardiotoxicity
in rats through the inhibition of oxidative stress, DNA damage, apoptosis and inflammatory tissue
response [39,110].

Altogether, this evidence strengthens our hypothesis about the ability of β-caryophyllene to
both potentiate the antiproliferative activity of doxorubicin in cholangiocarcinoma cells and to
prevent its toxicity in normal cholangiocytes. STAT3 seems to act as a final effector of an intricated
network of apoptotic and survival stimuli, although further studies are required to deeply depict this
intricated network.

5. Conclusions

Doxorubicin-based chemotherapy is known to possess powerful properties although it is limited by
serious side effects and discomfort for administration route. Several strategies have been approached to
overcome drawbacks of doxorubicin chemotherapy, among which alternative administration schedules
and combination with adjuvant agents.

In the present study, we highlight the ability of a combination of doxorubicin with the
natural chemosensitizer β-caryophyllene to suppress the proliferation of cholangiocarcinoma cells
in both standard long-term and metronomic schedules and to prevent drug toxicity in normal
cholangiocytes. A complex and intricated network seems to mediate these effects, thus leading to a final
doxorubicin-chemosensitization in cholangiocarcinoma cells and chemoprevention in noncancerous
cholangiocytes. A regulation of STAT3 signaling seems to represent the final effector of these
networking effects, wherein the oxidative stress defenses, DNA damage response and cell cycle
checkpoints finely cooperate.

This evidence strengthens our consolidated interest for the natural sesquiterpene β-caryophyllene
as a dual-acting agent, i.e., chemosensitizer for chemotherapeutic drug and chemopreventive agent
towards the toxic damage of a number of xenobiotics, including both pollutants and drugs, and
suggests that a further characterization of its possible usefulness in chemotherapy can represent an
important challenge for cancer research.
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