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The antigenic evolution of influenza:
drift or thrift?

Paul S. Wikramaratna, Michi Sandeman, Mario Recker and Sunetra Gupta

Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

It is commonly assumed that antibody responses against the influenza virus

are polarized in the following manner: strong antibody responses are

directed at highly variable antigenic epitopes, which consequently undergo

‘antigenic drift’, while weak antibody responses develop against conserved

epitopes. As the highly variable epitopes are in a constant state of flux, cur-

rent antibody-based vaccine strategies are focused on the conserved epitopes

in the expectation that they will provide some level of clinical protection

after appropriate boosting. Here, we use a theoretical model to suggest the

existence of epitopes of low variability, which elicit a high degree of both

clinical and transmission-blocking immunity. We show that several epide-

miological features of influenza and its serological and molecular profiles

are consistent with this model of ‘antigenic thrift’, and that identifying the

protective epitopes of low variability predicted by this model could offer a

more viable alternative to regularly update the influenza vaccine than

exploiting responses to weakly immunogenic conserved regions.

1. Introduction
Influenza A viruses are responsible for between three and five million cases of

severe disease annually, and up to half a million deaths worldwide. These viruses

are classified into subtypes on the basis of variation in their envelope glyco-

proteins, haemagglutinin (HA) and neuraminidase (NA), and the event of their

replacement on a global scale is commonly referred to as an antigenic shift in

the virus population. In the last 100 years, we have experienced three such

shifts: in 1957, the H1N1 subtype that had been circulating since 1918 was replaced

by H2N2; in 1968, H2N2 was replaced by H3N2; H1N1 was reintroduced in 1977

and has been cocirculating since with H3N2, although, in 2009, the current lineage

was replaced by one derived from pre-existing swine, avian and human viruses.

Each subtype, while in circulation, also undergoes a form of antigenic change cul-

minating in the sequential dominance of antigenically distinguishable strains with

very limited cross-sectional genetic diversity. The underlying process is generally

visualized as a continuous and incremental transformation principally of the HA

glycoprotein, and goes by the name of antigenic drift.

While it has considerable appeal as a verbal explanation for the epidemic

behaviour of influenza, a formal link between the process of antigenic drift

and patterns of influenza strain replacement is very difficult to make. This is

because random mutation is much more likely to lead to a diffuse cloud of anti-

genic types on a variety of genetic backgrounds than the sequential emergence

of discrete strains. A simple, but biologically unsatisfactory solution is to restrict

the mode of mutation such that the virus population effectively travels in a pre-

ordained straight line or circle [1,2]. The alternative explanation is that most

mutants do not succeed, either because they are diffusing through genotypic

space along phenotypically neutral networks [3] or because they are out-

competed by strains that have achieved greater antigenic distance from the

preceding epidemic strains [4] or as a consequence of short-term strain-

transcending immunological interference [5]. These additional assumptions

can allow the virus population to progress in a linear manner through its avail-

able ‘antigenic space’ by counteracting the diffusive tendencies of antigenic

drift. A common assumption here is that the potential for variation of the HA
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Figure 1. The antigenic thrift model is based on a multi-locus representation
of the virus with each locus corresponding to an epitope region. This figure
shows how these may locate to the known antigenic sites on a monomer of
haemagglutinin (adapted from [71] & [72] with permission from OUP and
NEJM, respectively).
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Figure 2. The structure of the antigenic thrift model is shown here with
reference to a two locus and two allele system. A system of overlapping
compartments can be used to indicate the proportions immune to each strain
(z) and the proportion immune to antigenically related variants (w), from
which the proportion infectious with this strain ( y) can be deduced. In the
diagram, zax and wax are indicated by purple and red shading, respectively.
The notation ij � ax indicates all strains sharing alleles with ax. The
parameters b and 1/s, respectively, define the transmission coefficient and
infectious period of the virus, 1/m corresponds to the life expectancy of the
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protein is extremely high and that long-term immune responses

to HA are strain-specific, such that immunity to one antigenic

type has no effect on any forms other than those that have

very recently diverged from it. We have challenged this

notion [6] by showing that epidemic behaviour of influenza

can be readily explained by assuming that each strain elicits

long-term partially cross-protective immune responses in

addition to strain-specific immunity. This model—which we

will henceforward refer to as the ‘antigenic thrift’ model

(as suggested by Eddie Holmes)—departs from the convention-

al ‘antigenic drift’ hypothesis in a number of important ways:

(i) there are a restricted number of unique but inter-connected

antigenic states, (ii) the virus population has continuous

access to these states, but (iii) most of these are unsuccessful

owing to pre-existing partially cross-reactive immune

responses in the host population.

We have no shortage of sequence data on influenza, but

limited means as yet to use it to discriminate between com-

peting hypotheses concerning the antigenic evolution of the

virus population. Phylogenetic trees of influenza A exhibit

a spindly structure that has commonly been misinterpreted

as evidence of antigenic drift, but, in fact, simply indica-

tes that the populations repeatedly pass through tight

bottlenecks either as a result of selection or—as has recently

been shown—as a straight-forward consequence of sampling

sequences serially through time under neutral evolution [7].

It is clear that several of the models based on a process of

antigenic drift [3–5] are capable of generating the observed

trees; indeed, a principal focus of these efforts was to repro-

duce the ladder-like phylogeny of influenza A. It is as yet

unknown, however, whether the antigenic thrift model is

consistent with the phylogenetics of influenza. The antigenic

relationships between different strains of influenza can also

be determined using serological methods. An important

focus of this paper is how the antigenic thrift model stands

up to the scrutiny of sero-epidemiological analyses of the

antigenic evolution of influenza.

We first provide a review of the antigenic thrift model; we

then show how discriminating between epitopes of high and

low variability provides a novel means of reconciling the

dynamics of this model with empirical data on the antigenic

evolution of influenza. Finally, we discuss how we may use

improved serological techniques in conjunction with molecu-

lar methods to identify protective epitopes of low variability

that may enable us to address the problem of influenza

vaccination in a novel and practicable manner.
host population and g measures the cross-immunity of a host gains from
having seen a related but not identical variant.
2. The antigenic thrift model
Figure 1 provides a caricature of the fundamental assump-

tions of the antigenic thrift model in terms of how the

various epitopes might map onto the structure of an HA

monomer. In essence, the model combines highly variable,

strain-specific epitopes (here visualized as surrounding the

binding pocket) as well as epitopes of low to intermediate

variability that are shared between strains. The model

argues that immune responses against the latter are critical

determinants of the protection against disease and onward

transmission and drive the population dynamics of influenza

in concert with antibodies directed at the uniquely strain-

specific epitopes. Those individuals who have been exposed

to a particular strain—as defined by a combination of these
epitopes—have lifelong immunity to that same strain, but

also have partial immunity (also lifelong) to strains related

to it by virtue of possessing common epitopes. This network

of cross-protection acts to limit the emergence of new anti-

genic types and can thus reconcile the high mutation rates

of influenza with the dominance of a single antigenic type

in each season.

Figure 2 summarizes the model structure using a simple

schematic based on a system with only two relevant loci

and alleles a and b at the first locus and x and y at the

second. It is assumed that individuals who have been

exposed to a particular strain (say ax, as shown in the dia-

gram) are immune to further infection by the same strain,
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Figure 3. Strain dynamics within a f2,3,5g antigenic structure with
(a) g ¼ 0.95 and (b) g ¼ 0.8 (b ¼ 292; s ¼ 73; m ¼ 0.02).
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while those who have been exposed to strains that share

alleles with it (in this example, ay and bx) have a reduced

probability (1 2 g) of transmitting the strain when infec-

ted; the parameter g reflects the strength of allele-specific

responses in preventing transmission. This structure can be

easily generalized to multiple loci or epitopes with different

levels of variability (i.e. number of possible alleles); we will

henceforward use the notation f2,3,25g, for example, to

indicate that there are three loci with 2, 3 and 25 alleles,

respectively, and [i,j,k] to designate a particular strain or

combination of alleles.

Mutation is not explicitly considered in this model. Instead,

and since the model is deterministic, each possible antigenic

variant is continuously present within the viral population.

It is difficult to ascertain how this translates into an explicit

mutation rate, but it does mean that at the precise moment a

gap emerges in the network of host immunity, this gap can

be exploited by any and all appropriate antigenic variants.

Thus, it is this network of host immune responses, and not

the mutational capability of the virus, that constrains observed

antigenic diversity within the premise of antigenic thrift.

Multi-locus systems are capable of exhibiting two kinds of

structuring, as shown in figure 3. At high levels of immune

selection and provided that there is an equal number of poss-

ible alleles at each locus, discrete strain structure emerges

with the stable maintenance of a set of strains that do not

share alleles [8,9]. This discrete antigenic structure tends to

break down in deterministic multi-locus models, when

unequal numbers of allelic variants are instead possible at

each locus but are recovered by the inclusion of stochastic

processes [9]. At intermediate levels of immune selection,

cyclical or chaotic strain dynamics (CSS) occurs [10]. We

posit that the epidemic behaviour of influenza maps onto

an area of CSS that exhibits high single strain dominance

[6]. Figure 3b provides an example of this kind of dynamic
for a f2,3,5g system; figure 4 traces a section of the antigenic

trajectory of the virus population within a three-dimensional

space that can be used to represent the relationships between

all possible strains.

Single strain dominance can be quantified by the mea-

sure of 1 by comparing the relative prevalence of the two

most common antigenic variants within single epidemics

(figure 3), and then averaging across extended periods of

time [6]. More formally, averaging across each of P epidemics:

1 ¼ 1

P

XP

i¼1

yi
max�yi

sub

yi
max

:

High 1, therefore, indicates strong single strain domi-

nance as apparent for the antigenic evolution of influenza.

Single strain dominance peaks at certain intermediate levels

of g [6], but also shows a dependence on epitope architecture.

Figure 5a shows how different multi-locus systems, all with

32 total variants, differ in the region of g where they exhibit

strong single strain dominance. Interestingly, the combi-

nation that most favours strong single strain dominance

here is f8,2,2g, while those that do least well are f16,2g and

f2,2,2,2,2g, which respectively minimize and maximize con-

nectivity. The complexity of the relationship between high 1

and antigenic architecture is further demonstrated in figure

5b by comparing structures with 400 variants each. It is

clear, nonetheless, that structures with high variability (HV)

at every locus rarely tend to exhibit 1 . 0.5 (even though

they are in CSS) and a single-locus system with 400 alleles

will not exhibit any oscillations whatsoever. Those combi-

nations that perform well on this measure tend to contain

some epitopes of low variability, but can also contain at

least one highly variable locus.
3. Serological signatures of antigenic evolution
A common method for recording antibody levels in sera

of either naturally or experimentally infected animals is the

haemagglutination inhibition (HI) assay. HI assays exploit

the ability of the influenza virus to bind to sialic acid recep-

tors, and thus agglutinate avian and mammalian red blood

cells [11]; the level of dilution at which a serum sample

stops being able to prevent agglutination determines its HI

titre. Published HI tables of human influenza A based on

antisera raised in ferrets tend to show very high titres to

the homologous isolate, but highly variable titres to tem-

porally close isolates and, usually, a complete loss of

reactivity against strains isolated more than a few years dis-

tant from the considered strain. This has commonly been

interpreted as evidence of gradual antigenic drift, with each

dilution step corresponding to an increase in antigenic dis-

tance. We have previously shown that such empirical data

are consistent with the antigenic thrift model under the

sampling scheme and multivariate analysis commonly used

in their representation in two-dimensional antigenic space

[6]. Indeed, the zig-zagging movement through antigenic

space revealed by sophisticated cartographic methods

applied to the evolution of H3N2 since 1968 [12] may be

better explained by the antigenic thrift model. We have

suggested that the apparent continuous increase in antigenic

distance may be due to the censoring of entries between non-

adjacent time-points, and that this signature of drift would
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disappear if accurate distance measures were available for all

of the elements of the HI data matrix. This may be under-

stood with reference to figure 4b: erasing the links between

non-consecutive strains would have the effect of stretching

out the trajectory, but nonetheless preserve some of the

inherent transverse movement.

There are at least two alternative interpretations that

reconcile the absence of reactivity by HI between non-adjacent

time-points with the antigenic thrift model. The first is that HI

assays selectively provide information on the unique strain-

specific epitopes rather than the shared epitopes of limited

diversity: in other words that the antibodies that prevent

haemagglutination are directed only at the highly variable

epitopes putatively clustering around the receptor-binding

pocket as shown in figure 1. Figure 6a shows the antigenic

relationships between strains within a f2,3,25g system as

revealed by an assay that focuses solely on the third, highly

variable, epitope region. A strong diagonal signature is

observed, offering the impression of linear movement through

antigenic space when in fact the population is actually zig-

zagging within it in a manner analogous to that shown in

figure 4b. Assuming instead that the magnitude of the HI

titre depends on the precise number of shared epitopes

(figure 6b), we can again find a strong diagonal signature,

but with more evidence of clustering of similar antigenic var-

iants in time, as seen in human HI data and by genetic

analysis of influenza virus sequence evolution [13]. This

emerges as a natural property of this model, owing to the

time-scales at which epitope-specific immunity declines. In

effect, as older hosts die, population-level immunity against

the strains that they have specifically experienced wanes,

thus creating gaps in the network of herd immunity that

may be occupied by similar strains. This can lead to a

sequence of antigenically related epidemics, until eventually

a completely discordant allele combination is favoured and
a cluster jump occurs. This is evident even in systems of

low dimensionality such as the f2,3,5g example in figure 3b:

the sequence [2,1,1]! [2,1,3]! [1,3,5]! [1,3,3] can be

interpreted as a cluster transition between [2,1,*]! [1,3,*].

Another consideration in the interpretation of HI is

that the laboratory animals used in generating the data may

produce a response that is more focused towards the varia-

ble regions of HA than humans upon natural infection.

HI assays are typically performed on post-infection antisera

raised in ferrets and there is evidence suggesting that the

cross-reactivities can be different to that of sera to the same

isolate raised in mice and rabbits [14,15]. To our knowledge,

no comparative study has been performed on post-infection

sera taken from ferrets and humans or ducks and chickens,

or indeed for many of the pairs of animals, where post-

infection sera from the former are used to infer antigenic

relationships in the latter.

Antigenic relationships between influenza strains can also

be interrogated using microneutralization (MN) assays, where

the virus is mixed with varying dilutions of serum and then

inoculated into culture, and the presence of virus-specific anti-

bodies in the serum is indicated by impaired or absent viral

replication. HI titres correlate well with the results of MN

assays [16], suggesting that both are detecting antibodies

against highly variable epitopes putatively clustering around

the receptor-binding pocket. However, discrepancies between

the two assays—such as antisera with high neutralization titre

but low or even absent HI titre or vice versa—have been

reported for avian [17,18] and swine [19] influenza, and

there are monoclonal antibodies that neutralize but do not

inhibit haemagglutination and vice versa [20,21], suggesting

that they do have different (although possibly overlapping)

specificities. In theory, MN assays and other sophisticated

serological techniques currently are in development [22],

should be able to detect additional antibody responses against
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the epitopes of limited variability (LV) provided they are

performed on the appropriate sera.

There is also growing evidence that antibodies targeting

the stem region of HA (HA2) are capable of mediating protec-

tion from influenza infection. Such antibodies appear capable

of recognizing a variety of different subtypes and strains,

resulting also in protection of mice from lethal infection

upon challenge (as reviewed by Yewdell [23]). In particular,

monoclonal antibodies against HA2 have been shown

capable of neutralizing drift variants of H3N2, and also pro-

tecting mice from challenge by the same variants [24]. Such

responses do not appear to block viral attachment, and there-

fore do not exhibit cross-reactivity in the HI test, but may

instead inhibit viral fusion [24,25]. The epitopes targeted by

this class of antibody, may correspond to those of LV posited

by the model of antigenic thrift, perhaps not least because

escape from them can be precipitated by single point

mutations in HA2 [26].
Epitopes of LV may also be located on NA; antibodies

against these would act to prevent release of virus from the

infected cell. The recent application of antigenic cartography

methods to NA inhibition data reveals a high degree of asymme-

try that is consistent with the antigenic thrift model. Sandbulte

et al. [27] further suggest that antigenic evolution of NA may

account for unexpected vaccine failures, where there is a good

match based on HI data, highlighting the potential importance

of more than just HI data in understanding the ways in which

the virus can change to evade immune recognition.
4. Re-emergence of antigenic types
Perhaps, the most compelling evidence in support of the

antigenic thrift hypothesis comes from the antigenic analysis

performed in the wake of the 2009 H1N1 pandemic. Multiple

serological studies have found evidence in the elderly of
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pre-existing antibodies that recognize the 2009 pandemic

strain [28–35], and this appears to explain the low rates of

disease in this age group during the pandemic [30,35–37].

Infection of both ferrets and mice with A/New Jersey/76

has been shown to confer strong cross-protection against

challenge with 2009 pandemic H1N1, together with high

cross-reactivity in the HI test [38–41]. In humans, receipt of

the A/New Jersey/76 vaccine has been implicated in

superior antibody responses against the 2009 strain [42].

H1N1 isolated prior to 1950 has also been shown to elicit

significant, though less complete, protection upon challenge

by pandemic H1N1 in both animal models, despite only

weak cross-reactivity within HI and MN tests [38–41,43].

An inability of later seasonal isolates to protect against pan-

demic H1N1 challenge has been linked to glycosylation

patterns on the globular head of HA, which may also explain

why not all pre-1950 isolates appear to protect equally well [41].

Similar serological and clinical observations of cross-

reactivity and clinical protection in the elderly have also

been made in each of the previous three pandemics [44].

This could be explained by original antigenic sin (a phenom-

enon by which individuals continue to produce antibodies

against the strain they were first infected with, even when

challenged by a different strain/subtype), but this would

still require a high degree of similarity between the returning

strain and those to which they had been previously exposed.

There are hints of re-emergence of certain epitopes in anti-

genic analyses performed on H2N2 influenza, with a number

of monoclonal antibodies raised against a 1957 strain cross-

reacting strongly with a strain isolated in 1964, but not with

a 1963 strain [45]. Antigenic analyses of influenza in pigs

and birds are also suggestive of the re-emergence of antigenic

types. Contractions in antigenic distance can be observed

among populations of swine H1 viruses in the USA [46],

and HI tables of H5N1 isolates from a variety of avian species

demonstrate discordances in cross-reactivity [47] that are more

easily explained by recycling of variants than incremental

accrual of antigenic distance.
5. Discussion
Many features of the epidemiology of influenza can be

explained by assuming that neutralizing antibodies act

upon shared epitopes of LV as well as upon epitopes of HV

that may be unique to a particular epidemic strain. We

argue here that the use of HI assays has focused our attention

on HV epitopes, but immune responses against these alone

cannot produce a sequential emergence of antigenic types.

We propose that the structuring of the virus population is

achieved principally through immune responses against the

LV epitopes which are not adequately represented in HI

tables as they have a limited role in the binding of the virus

to RBC. The existence of these additional LV epitopes is consist-

ent with the observation that clinical protection and HI titre are

logarithmically related, with limited improvement in protec-

tion beyond a certain (fairly low) titre [48], and also explains

why high vaccine efficacy is sometimes observed even when

HI data indicate that the incoming influenza strain has changed

[49]. The results of early studies showing induction of superior

HI titres with inactivated vaccines, but inferior protection from

disease and shedding when compared with live vaccines [50]

can be justified within this framework, if the latter induce a

broader response that includes the LV epitopes. It is also tempt-

ing to speculate that some of the effects of original antigenic sin

may be attributed to the skewing of antibody responses

towards LV epitopes in later infections. In other words, a

naive individual would produce antibodies to both HV and

LV epitopes, but selectively towards LV epitopes in subsequent

infections since they are shared between strains. They would

thus maintain a strong HI response to the original strain, but

may not show high HI titres to more recent infections. A

recent Japanese study [51] showing that sera from young chil-

dren were prone to recognize only the antigenic site B1 of the

HA1 region of H3, in contrast to older individuals who had

broad recognition, supports this idea.

Our model is not unique in invoking multiple com-

ponents of immunity, but differs critically from other
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frameworks in that the targets of immunity divide between

HV and LV epitopes, which both elicit strong specific life-

long immunity and do not include epitopes that induce

short-term non-specific immunity (as in [5]). The validity of

the antigenic thrift model rests on the existence of LV epi-

topes: identifying these would thus allow us to discriminate

between competing hypotheses concerning the antigenic

evolution of influenza (although they are by no means

mutually exclusive), but, more importantly, could form the

basis of a new vaccine that would release us from our depen-

dence on monitoring change in the HV epitopes, and could

complement the use of both antibody and T-cell-based vac-

cines towards fully conserved but weakly immunogenic

epitopes that are currently under development [52].

How do we go about looking for LV epitopes, if they

are not visible by HI? We anticipate that the dissection of

antibody responses in human sera using MN assays, in con-

junction with other more advanced techniques in the pipeline

[22], will assist in identification, but we can also use molecu-

lar sequencing methods? It has long been recognized that the

virus possesses a number of discrete antigenic sites [53], and

several studies indicate that the number of amino acid differ-

ences in these sites is a better predictor of vaccine efficacy

than HI data from ferrets [54,55]. We have previously high-

lighted that there is LV at 18 amino acid positions that have

been identified by Bush et al. [56] as being under positive

selection in H3N2; several of these are represented among

the key immunodominant positions identified by pairwise

comparison of consecutive epidemic strains [12,57] and by

analysis of change in net charge [58]. Amino acid changes

in the HA epitopes of H2N2 [45], H1N1 [59] and highly

pathogenic H5N1 [60] also seem to be subject to strong

restrictions. Epistatic interactions between sites, as documen-

ted by Kryazhimskiy et al. [61], may act to further reduce the

potential nodes within antigenic space that may be occupied

by the virus or favour a particular combination even under a

very slight increase in transmissibility [62]. Sequence simi-

larities between epitopes of 1918 H1N1 influenza and the

2009 pandemic strain have been used to justify pre-existing

immunity to the latter [63,64]; similar arguments have also

been made for the presence of neutralizing antibodies
among individuals born before 1957 by comparing the HA

sequences of 1957 and 2009 H1N1 strains [65]. Many of

these studies rely on HI assays to discriminate between

strains: the antigenic thrift model would predict that this

method would selectively emphasize the role of mutations

near the receptor-binding sites and, indeed, this seems to be

the case in a recent study [63]. Rudneva et al. [63] also recorded

some discordance between HI and ELISA studies, suggesting

that the use of HI may not be sufficient to pick-up the

LV epitopes. Newer methods such as panning of whole-

genome-fragment phage display libraries (GFPDL) with

convalescent human sera [66], tend by contrast to direct our

attention towards weakly immunogenic conserved epitopes,

but may be deployed to pick out LV epitopes with finer resol-

ution of HA and NA gene fragments. It is also important that

these analyses include considerations of effects of glyco-

sylation, alteration of biophysical properties [67], complex

interactions between residues at antigenic sites both within

and between HA and NA [61,68,69] and potential effects of

antibody interference [70]. Combining these techniques to

elucidate the functional repertoire of human antibodies to

influenza will be invaluable in resolving to what extent its epi-

demiology is determined by epitopes of LV, and whether these

may be used to confer broader protection.
Note added in proof
Zinder et al. [74] have recently shown that the phylodynamics

of influenza can be readily generated within a similar frame-

work with a number of epitope regions of limited diversity,

under a somewhat different cross-immunity structure, pro-

vided it is also mutation-limited. This suggests that it will

be difficult to discriminate between competing hypotheses

of antigenic evolution on the basis of their ability to generate

realistic phylodynamic patterns.
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