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The cells of the immune system respond to a great variety of different signals that

frequently reach them simultaneously. Computational models of signaling pathways

and cellular behavior can help us explore the biochemical mechanisms at play during

such responses, in particular when those models aim at incorporating molecular

details of intracellular reaction networks. Such detailed models can encompass

hypotheses about the interactions among molecular binding domains and how these

interactions are modulated by, for instance, post-translational modifications, or steric

constraints in multi-molecular complexes. In this way, the models become formal

representations of mechanistic immunological hypotheses that can be tested through

quantitative simulations. Due to the large number of parameters (molecular abundances,

association-, dissociation-, and enzymatic transformation rates) the goal of simulating

the models can, however, in many cases no longer be the fitting of particular parameter

values. Rather, the simulations perform sweeps through parameter space to test

whether a model can account for certain experimentally observed features when

allowing the parameter values to vary within experimentally determined or physiologically

reasonable ranges. We illustrate how this approach can be used to explore possible

mechanisms of immunological pathway crosstalk. Probing the input-output behavior

of mechanistic pathway models through systematic simulated variations of receptor

stimuli will soon allow us to derive cell population behavior from single-cell models,

thereby bridging a scale gap that currently still is frequently addressed through heuristic

phenomenological multi-scale models.

Keywords: computational models, cellular signaling, cytokine crosstalk, multi-scale modeling, rule-based

modeling

INTRODUCTION

Immune cells have been found to play important roles for processes ranging from embryogenesis to
tumor clearance to host defense against pathogens (1). What allows them to perform such diverse
tasks is the ability to respond to a great variety of different signals, many of which reach them
simultaneously (2, 3), and adjust their behavior through communication with other, immune and
non-immune, cells (4–6). When their response mechanisms fail to induce the appropriate action,
clearance of pathogens or tumor rejection may fail and immune-pathologies such as autoimmune,
or inflammatory diseases may develop.
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In our efforts to understand immune cell function, the
challenge of understanding multi-signal cellular responses or
multi-cellular communication and how these integrate at the
tissue level is perhaps the most daunting since it seems to go
directly against the paradigm of reductionism that has brought
forth most of the insights science, not just immunology, is
based upon. Indeed, approaching this challenge requires more
comprehensive data than classical one-condition-one-readout
assays. In model organisms, such as mice, lack of approaches
to generate data elucidating cellular behavior under various
conditions is no longer the main problem, though. Highly
multiplexed assays can be employed and allow us to glimpse into
cellular protein expression levels including post-translational
modifications (7) and genomic states, increasingly also at the
single-cell level (8, 9). Multi-parameter in-vivomicroscopy shows
us where cells are, where they go and with whom they interact
(10–12). However, such data are dots waiting to be connected into
mechanistic hypotheses: Even though we may be able to use the
data directly to predict disease progression probabilities through
artificial intelligence based informatic approaches we need to
understand mechanisms to devise therapeutic interventions.
Moreover, the invasiveness of many assays prevents us from
generating similar data in humans, both in clinical practice or
in a research setting. Thus, we are facing the conundrum that we
are able to generate highly detailed data but cannot be certain
which of the predictions we derived from the data will translate
to humans.

Here, we will discuss how the complexity of some of these
challenges may be addressed using mechanistic computational
models using an approach that can clearly state even complex
biological hypotheses involving multiple overlapping signals and,
sometimes, may permit to test them directly through simulations.
We will first explain how such models can be concise and flexible
representations of knowledge and hypotheses and, along the way,
demonstrate that these representations can be fully accessible
to researchers without modeling experience. Then, we will use
the modeling approaches we introduced to investigate multi-
parametric manipulations of a simple example pathway (a simple
model of G-protein coupled signaling and its “pharmacological”
manipulation) before illustrating how computational models can
be used to explore possible mechanisms of crosstalk in immune
signaling pathways. Finally, we will briefly discuss how to
extrapolate from single-cell models to models of communicating
cell-populations that could serve, for instance, as a basis for
more realistic pharmacokinetics-pharmacodynamics (PK-PD)
simulations (13) to improve practical applications of basic
immunological research.

MODELING SIGNALING PATHWAYS
BASED ON MOLECULAR INTERACTIONS

Cellular responses toward stimuli they receive emerge from
interactions among proteins, lipids, and sugars mediated
through specific binding sites. Sequences of such interactions are
frequently depicted as networks or pathway diagrams linking,
for instance, phosphorylation of a given protein domain to

the recruitment of other proteins that subsequently induce
or undergo further biochemical modifications. Mathematical
and computational models translate such scenarios into
quantitative predictions by describing how the abundances of
the involved molecules or their post-translational modifications
change over time as a result of the interactions among the
network’s molecules. Depending on the modeling approach,
those predictions are generated by solving differential equations
or other, sometimes stochastic, algorithms. Many excellent
reviews have been written on computational modeling of
cellular behavior. See, for instance (14, 15), or (3, 16) for a
focus on mathematical modeling approaches in immunology.
Ideally, whatever the approach, the mathematical descriptions
should not contain more assumptions than the underlying
biological hypotheses. One way to achieve this is, perhaps
counter-intuitively, to try to model directly the components
and interactions within those biological hypotheses, rather than
use abstract elements that are introduced for simplification.
This avoids introducing properties that do not follow directly
from the modeled biology and that may be difficult to spot
for non-modelers, in particular when they are formulated
in mathematical terms. Moreover, given that cell-biological,
immunological, and biochemical research has assembled a wealth
of mechanistic insights, it would be unwise not to take as much
as possible advantage of prior knowledge about the constituents
and interactions that shape signaling pathway behavior. Finally,
building models that incorporate details considered important
by experimental biologists allows us to convert model behavior
directly into experimental assays for validation since model
components have real biological counterparts.

Yet, we are typically lacking many of the parameters required
for detailed models, such as protein abundances or kinetic
interaction rates, and more experimental data than are usually
collected would be needed to determine the values of the
unknown parameters through fitting (17). This problem is
frequently taken as a motivation to resort to models that
incorporate pathway structure but not kinetics [for instance
in Boolean models (18)] or abandon prior pathway knowledge
altogether in favor of extracting only as much information
as the data being modeled provide directly (19). Both such
approaches have their merits given the problem of “over-
fitting” in models with large numbers of parameters. But we
wish to argue that we can use detailed models in spite of
parameter uncertainty simply by asking what kinds of behaviors
the models can have when taking into account the possible
range of their parameters. Exploring crosstalk among cytokine
signaling pathways in T cells, we will show that, in contrast to
what many theorists would assume, pathway models based on
the description of molecular binding sites can have surprisingly
little flexibility in their behavior. Thus, the frequently cited
von Neumann quote about the four parameters that can fit an
elephant and five that can make him wiggle his trunk does not
always apply.

Another potential hurdle when creating detailed, mechanistic
models is that they can be rather large and assembling or
maintaining them (i.e., adapting them to new hypotheses)
can be laborious and error prone. However, the translation
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of a pathway diagram (which is, in a way, a model) into
a formal language can be done automatically nowadays and
in a manner that does not modify the biological content.
A number of tools have been developed that can perform
such automated translations into computer simulations (see,
for instance, http://sbml.org/SBML_Software_Guide). Among
them, “rule-based” approaches permit specifying details such
as the binding sites that mediate the molecular interactions
(20–22), thereby incorporating aspects that can, for instance,
help identify molecular binding motives as potential targets for
pharmacological modulation through small molecule inhibitors.
Finally, constructing models step-by-step by specifying the
interactions among its components and then letting algorithms
assemble the computational representations of the resulting
networks will allow us to consider models that would be too
complex for manual construction because of the number of
components or because they span several scales (23) or utilize
as experimental input very large data sets, for instance based on
proteomic studies (24).

A SIMPLE EXAMPLE: MODULATING A
MODEL OF G-PROTEIN COUPLED
RECEPTOR SIGNALING

Cells use G-protein coupled receptors (GPCR) for a wide
range of extracellular stimuli, among them such that guide
immune cells to and within lymphoid structures (25). While
the GPCR themselves have been a frequent target of potential
pharmacological manipulation based on molecular structural
studies (26) the downstream signaling events present many
not fully explored opportunities for modulation (27). GPCR
mediated signaling follows a simple common principle (28): A
ligand binds to the receptor’s extracellular binding site, thereby
inducing changes in the accessibility or affinity of intracellular
binding sites that can recruit heterotrimeric G-proteins. In
complex with the receptor, the α subunit (Gα) of the G-proteins
will more readily exchange a GDP (Guanine-diphosphate)
group for a GTP (Guanine-triphosphate) group, and as a
result, will lose its high affinity for the Gβγ subunit that
subsequently will be released and can activate downstream
signaling proteins such as, for instance, Ras. Avoiding the
need to write equations or computer scripts, we can use an
iconographic representation (see Figure 1A) to represent the
sequence of reactions in a “formal” way just as precisely as
differential equations would. In fact, the diagram contains
additional information about the interacting binding sites. The
modeling software Simmune (22, 29) and a recent extension
to the Virtual Cell platform (30) permit using such graphical
symbols to specify molecular interactions and illustrates how
these interactions are linked in the resulting signaling network.
These approaches expand the network beyond the manually
specified complexes by determining which complexes can form
based on the user-specified bi-molecular interactions. Then, they
generate computational representations that can be explored
through computer simulations and display time courses for the
concentrations of these complexes.

Simulating and Modulating the GPCR
Pathway
Once we have a computational representation of a signaling
pathway we can not just simulate the kinetics of the
concentrations of the involved molecular complexes and,
typically, their post-translational modifications. We can
systematically vary the parameters in the model to analyze
their influence on the behavior of the modeled system. We
might, for instance, ask how the affinity of the G-proteins for
the activated receptor or the rate at which Gα switches back
to its GDP state (the auto-GTPase activity of Gα) shape the
characteristics of the response. Experimenting with these rates
in the computational model is far easier than altering molecular
properties experimentally in the lab.

The possibility to vary reaction rates and molecular
concentrations easily in a computational model becomes
particularly interesting when starting with a well-established
model, such as the GPCR model here, and adding signaling
components to identify which combinations of such additions
can be used to achieve a desired type of response—a recurring
question for pharmacological research on “small molecule
inhibitors.” In this example, we added a receptor kinase
that phosphorylates the activated receptor and an inhibitor
that can associate with the receptor binding site used by the
kinase (“RecKin_Inhib”). Furthermore, we added a molecule
(“Gbg_Inhib”) that competes with Gα for binding to Gβγ

(and thus interferes with the reassembly of the activatable
heterotrimeric G protein complex) and a molecule that competes
with Gα for binding to the receptor (“Rec_Inhib,” Figure 1D).
Varying the concentrations of the three inhibitors, the single
response curve shown in Figure 1C turns into a series of time
courses (Figure 1F) for the concentration of free Gβγ, each
corresponding to a particular set of inhibitor concentrations.
Now, we can analyze which features of the curves are compatible
with which ranges for the inhibitor concentration parameters. In
the diagram, we selected a region (green square) that corresponds
to a strong sustained generation of free Gβγ and find that the
inhibitors interfering with the association of Gα and Gβγ need
to have a low concentration to allow for efficient activation of the
G proteins. On the other hand, the concentration of the inhibitor
interfering with the kinase phosphorylating the receptor must
be high since phosphorylation deactivates the receptor. In this
sense, the inhibitor of the receptor kinase actually strengthens
the output (see the figure legend for more details). Whereas,
these results are simply what we would have predicted intuitively,
they illustrate how features can constrain parameter ranges and
how we can map between the two.

COMPUTATIONALLY EXPLORING
CYTOKINE CROSSTALK IN T CELLS

In the previous section, we showed how the features of a
simulated model can constrain the ranges of its parameters.
In this section, we take advantage of the parameter mapping
technique to show that we can identify the limits of what the
pathway can do by varying model parameters over a broad range
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FIGURE 1 | Mechanistic models promote insight into the behavior of signal transduction networks. (A) Visualization of G-protein (Gα and Gβγ) recruitment and

activation by a ligand bound (L) receptor (R) using the Simmune iconographic notation. Colored boxes indicate required states of the interacting molecules, such as

the activation of the receptor (filled red square) or the absence of receptor phosphorylation (empty blue square). Three reaction steps are shown: (i) Gαβγ with Gα in

the (inactive) GDP state is recruited to the active receptor. (ii) Gα switches from GDP to GTP (green square on Gα becomes filled). (iii) The activated G proteins are

(Continued)
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FIGURE 1 | released from the receptor. (B) Network diagram of a simple GPCR signaling network. Lines connecting different molecules represent possible

association or dissociation events. Loops indicate possible state changes, such as the auto-GTPase activity of Gα. Partially filled boxes indicate the presence of states

in the model without specifying their values. (C) Simulated response of the signaling network shown in (B) to exposure with the Ligand. The initial increase of the free

Gβγ concentration is due to the model equilibration to a homeostatic state. After 50 s the ligand is added to the model and concentration of Gβγ increases as the

G-protein rapidly dissociates. After 120 s a virtual wash of the cell is performed, removing the ligand from the simulation. This leads to a recombination of the G protein

subunits and thus a reduction of the concentration free Gβγ. (D) Iconographic representation of an inhibitor competing with the recruitment of the G-protein complex

to the receptor. (E) Expanded network model including receptor phosphorylation by a kinase and inhibitor molecules interfering with receptor-kinase interaction (dark

green molecule), formation of the heterotrimeric G-protein (dark brown molecule) and recruitment of the G-protein to the receptor (orange molecule). (F) 500 simulated

responses of the model in (E) to varying inhibitor concentrations. Red lines indicate simulations matching the selection of high Gβγ concentration (green square in

upper panel). Empirical cumulative distributions function (Ecdf) of simulation parameters for selected simulations (red), unselected simulations (blue), and total

distribution (black). The Ecdf curves are automatically constructed based on the selected curves. The red Ecdf curve increases whenever a parameter value (x-axis) is

part of a parameter set that contributes to the selected curves in the upper panel. (G) Network representation of a JAK-STAT signaling network downstream of the

IL-4 and IL-7 receptors (IL4Rα and IL7Rα) sharing the common gamma-chain. (H) Simulated behavior of STAT6 phosphorylation of the model in (I) following different

doses of IL-7 pre-treatment. Red lines show experimentally observed values and their corresponding parameter distributions in the matching simulations. The inset

focuses on the parameter determining the rate of dissociation of the common gamma (CG) chain from the IL7-bound IL7 receptor. The selected phospho-STAT6

levels (red ranges in upper panel) impose clear constraints, ruling out parameter sets with high off rates for the binding between CG and cytokine-bound IL7Rα. (I)

Expanding the model in (G) by a JAK1 induced phosphatase acting on both STAT3 and STAT6. (J) The hypothesis of a signal induced phosphatase is inconsistent

with experiments, which observed a signal independent decay of STAT6 phosphorylation (indicated by the range between the red lines). In contrast, the simulations

predicted at least 10-fold induction of phosphatase activity, as indicated by the lines connecting low and high IL7 stimulus for pairs of simulations that match all other

experimental constraints. (K) Predicted dissociation constants for the private receptor chains with the γ-chain in the affinity conversion (light gray) and the ruled-out

phosphatase induction models (medium gray and black).

of physiologically plausible values. Exploring these possibilities
becomes useful whenwewant to test whether amodel can explain
experimentally observed features even if we have only rough
estimates for many of its biochemical parameters.

We have recently used this approach (31) to study elements
of the common gamma cytokine signaling pathways that are
highly important for many aspects of lymphocyte activation,
differentiation and survival (32). The cytokine receptors in
these pathways all require the common gamma chain (GC)
to initiate downstream signals after binding to their specific
cytokines, hence the name “common.” The fact that GC is
shared among multiple receptor systems means that, depending
on the amount of GC and the combined number of receptors
that can interact with it, the behavior of the downstream
signaling pathways that lead to activation of STATs may be
affected when several cytokine signals have to be processed
simultaneously by the responding cell. Indeed, stimulating CD4T
cells with the common gamma cytokine IL-7 reduced their
responsiveness toward IL-4 and IL-21, two other CG dependent
cytokines. Experimental determination of cell surface receptor
abundances revealed a limited abundance of CG relative to other
private receptor chains. Intuitive first explanations for this cross-
suppression would thus posit that the limited abundance of CG
leads to competition for this rate limiting signaling component.
Paradoxically, however, the observed cross suppression was
asymmetric as neither IL-4 or IL-21 were able to suppress IL-7
signaling. Further, only a few ligated IL-7 receptors were required
to cause suppression of IL-4 signaling leading us to question
whether CG was truly limiting. To explore this quantitative
riddle and determine whether CG sequestration can, nevertheless
explain the crosstalk, we simulated the model with private IL-4
and IL-7 receptor chains and a shared common gamma chain
as well as receptor-associated JAKs and STAT6 and STAT5
as downstream targets of IL-4 and IL-7 signaling, respectively
(Figure 1G). Mapping back from the various experimentally
observed suppression strengths for different IL-7 doses we found
that the private IL-7 receptor chain needs to have an order

of magnitude higher affinity for CG than the private IL-4
chain (Figure 1K). Importantly, we found that the IL-7 private
chain was required to have a high affinity for CG even before
cytokine stimulation (Figure 1K light gray bar for unligated
IL7Rα), a result which we confirmed experimentally. Previous
hypotheses alternatively suggested that CG is associated with
private receptor chains prior to cytokine binding (33, 34) or
assumed that private receptor chains gain high affinity for CG
only subsequent to cytokine binding (35, 36). Our explorations
suggested that both are probably true: CG has a substantial pre-
association with some private receptor chains that is further
increased upon cytokine binding (Figure 1K light gray bar for
ligated IL7Rα).

Competing Computational Models of CG
Pathway Crosstalk
Being able to modify models with less effort than would
be required when writing equations or scripts by hand,
we computationally explored other mechanisms that could
potentially explain IL-7 induced cross suppression. In particular,
we explored the hypothesis whether IL-7 induced phosphatases
acting on the JAKs at the receptor level or on the STATs further
downstream would be compatible with the experimental
data on cytokine induced responses and IL7 mediated
suppression. Figure 1I shows the model modification that
includes such a phosphatase acting on the STATs. Assessing
phosphatase activity prior to and after IL-7 stimulation in
quantitative experimental assays, we found a much narrower
range of activities than would be required for the degree
of suppressive crosstalk we had observed (see Figure 1J).
In summary, combining multi-dose stimulation data with
a detailed model and mapping back from simulations that
reproduced the data to parameter ranges we identified
quantitative relationships between receptor-ligand affinities
and were able to reject alternative models that relied on
IL-7-induced phosphatases.
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FIGURE 2 | Single-cell models as building blocks for multi-cellular and multi-compartmental higher scale models. (A) Experimental data inform mechanistic models of

cellular signaling pathways. Parameter scans, such as described in Figure 1 can identify the possible modes of behavior of the single cell models, which subsequently

can be used to build systems of interacting coarse-grained cell models to build the scale of interacting cell populations, as illustrated in (B). Iterating this step by

extracting the possible patterns of behavior for those cell population models one can build multi-compartment models (C) that encompass multiple cell populations

and interactions among compartments.

FROM PATHWAYS TO CELLULAR
BEHAVIOR AND CELL POPULATIONS

Here, we discussed two strategies for using parameter scans:
(i) to explore how model features depend on parameters such
as molecule concentrations (how can a model be compatible
with the data?) and (ii) to test whether a model can reproduce
data at all when allowing the model parameters to vary over
a physiologically plausible range (is the model compatible at
all with the data?). Both strategies can be used to calibrate
or select models at the single cell level (Figure 2A). Building
on such calibrated models we can sample the input-output
behavior of the single-cell models for such combinations
of inputs and cellular states (e.g., abundance of cytokine
receptors) that would occur in a multi-cellular system with

cells that exchange signaling molecules such as cytokines
(Figure 2B). Such a strategy has recently been explored (37).
These input-output patterns could then be considered as a
collection of simplified models themselves and thus could
be employed on the multi-cellular scale to allow for large
numbers of cells within a single simulation. Importantly,
however, these simplified models would be based on systematic
explorations of mechanistic detailed models as opposed to
having been designed as simplified models from the beginning.
If a combination of stimuli is outside of the range of
the previously performed detailed single cell simulations, the
collection simplified models could be extended automatically.
Using a similar sampling strategy, we will soon be able
to extrapolate toward simulations that can generate realistic
behavior of compartments comprising many cells of different

Frontiers in Immunology | www.frontiersin.org 6 September 2019 | Volume 10 | Article 2268

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Meier-Schellersheim et al. Mechanistic Multi-Scale Modeling

types while exchanging cells and or molecular messengers
(Figure 2C), as is the case for the lymphatic system. This kind
of stepwise coarse-graining will be required to link behavior
of cell populations to the scale of single-cellular mechanistic
models that not only incorporate the current state of biological
knowledge but also will allow us to link pathwaymodulation (e.g.,
through small molecule inhibitors) to cell population or even
tissue behavior.
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