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ABSTRACT
BACKGROUND: Defining the molecular genomic basis of the likelihood of developing depressive disorder is a
considerable challenge. We previously associated rare, exonic deletion copy number variants (CNV) with recurrent
depressive disorder (RDD). Sex chromosome abnormalities also have been observed to co-occur with RDD.
METHODS: In this reanalysis of our RDD dataset (N 5 3106 cases; 459 screened control samples and 2699
population control samples), we further investigated the role of larger CNVs and chromosomal abnormalities in RDD
and performed association analyses with clinical data derived from this dataset.
RESULTS: We found an enrichment of Turner’s syndrome among cases of depression compared with the frequency
observed in a large population sample (N 5 34,910) of live-born infants collected in Denmark (two-sided p 5 .023,
odds ratio 5 7.76 [95% confidence interval 5 1.79–33.6]), a case of diploid/triploid mosaicism, and several cases of
uniparental isodisomy. In contrast to our previous analysis, large deletion CNVs were no more frequent in cases than
control samples, although deletion CNVs in cases contained more genes than control samples (two-sided p 5 .0002).
CONCLUSIONS: After statistical correction for multiple comparisons, our data do not support a substantial role for
CNVs in RDD, although (as has been observed in similar samples) occasional cases may harbor large variants with
etiological significance. Genetic pleiotropy and sample heterogeneity suggest that very large sample sizes are
required to study conclusively the role of genetic variation in mood disorders.
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Recurrent major depressive disorder (RDD) is associated with
high morbidity, high economic burden, and high rates of
suicide (1–4). The genomic basis of the likelihood of develop-
ing RDD is largely unknown (5). Twin studies suggested that
recurrent and severe forms of major depressive disorder are
particularly heritable forms (6,7). However, genome-wide
association studies with single nucleotide polymorphisms
showed inconsistent results (8,9), and a mega-analysis failed
to find any genome-wide significant associations (10), sug-
gesting that other forms of genetic variation may be respon-
sible for the observed heritability. Large, rare copy number
variants (CNVs), defined as deletions or duplications of
genomic material . 1000 base pairs in length, have been
identified and associated with a range of psychiatric disorders
(11–15), although the evidence for association with mood
disorders is unclear (16–20). We previously showed an enrich-
ment of rare, exonic deletion CNVs in a sample of RDD, with a
low frequency of such variants in a screened control sample
(20). Large chromosomal abnormalities are also easily
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detectable by DNA microarray (21). Various abnormalities,
particularly sex chromosome aneuploidies (22,23) and the
22q11.2 microdeletion (24), have been associated with psy-
chiatric diagnoses such as schizophrenia and mood disorders,
although association with any specific phenotype is usually
incomplete (25).

We investigated the frequency of sex chromosome aneu-
ploidies and large, rare CNVs in 3106 cases of RDD. We
hypothesized that chromosomal aneuploidies, large (.100 kb)
rare CNVs, and particularly CNVs located in regions previously
associated with psychiatric disorders may be associated with
a diagnosis of RDD; a younger age of onset; longer duration of
illness; and measures of neuroticism, psychoticism, and
extraversion made in our dataset. We compared our case
sample with a control sample screened for a lifetime absence
of psychiatric disorder (n 5 459) and an unscreened popula-
tion control sample (n 5 2699) from phase 2 of the Wellcome
Trust Case Control Consortium (WTCCC2) and, for sex
chromosome aneuploidies only, with data from karyotype
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analysis undertaken in 34,910 sequentially screened live-born
infants in Denmark reported by Nielsen and Wohlert (26).

METHODS AND MATERIALS

Samples

Samples comprised 3106 cases (2197 female and 909 male)
taken from three studies of RDD: Genome Based Therapeutic
Drugs for Depression (27), Depression Network study (28),
and Depression Case Control study (29). This sample set is
almost identical to the sample set analyzed in our previous
work (20); however, calling methods and quality control
procedures have been updated and varied according to the
length of CNV being called. Further details of the contributing
studies are provided in Supplement 1. All samples were
derived from venous blood collected at the time of interview
and extracted in the same laboratory. All samples are from
individuals with European origin. Informed written consent was
obtained from all participants, and all studies were approved
by relevant local ethics committees. As an additional control
set, we used 2699 control samples (1354 female and 1345
male) run on Infinium 1M bead arrays (Illumina, Inc., San
Diego, California) from phase 2 of the WTCCC2 representing
the National Blood Service cohort, derived from subjects who
donated blood to the United Kingdom blood services
collection.

Phenotypic Data Collection and Extraction

The phenotypic data from across studies included in this
dataset were previously integrated into a single database (30).
We extracted data on the following items: 1) age at first onset
of disorder, 2) duration of worst episode, 3) trait neuroticism
scores, 4) trait psychoticism scores, and 5) trait extraversion
scores. Trait personality scores are derived from the Eysenck
Personality Questionnaire (31). See Supplement 1 for more
details.

Genotyping

Samples were genotyped on the HumanHap 610-Quad Bead-
chip (Illumina, Inc.) and contemporaneously processed at the
same laboratory. Raw probe intensity data were processed
according to the manufacturer’s guidelines with the
GenomeStudio platform (Illumina, Inc.) to obtain the normal-
ized probe intensity at each marker and the log R ratio and B
allele frequency at each marker.

CNV Calling

To make CNV calls, we processed fluorescence intensity data
for autosomal markers common to each Illumina array (n 5

562,680) using three separate algorithms: PennCNV (32)
(version released August 2009); QuantiSNP v2.3 (33), and
iPattern (34) in liaison with the authors.

Sample and CNV Quality Control

We analyzed all samples for chromosomal aneuploidies
because they are rare and pragmatic to confirm visually. We
used measures of the heterozygosity of the B allele frequency,
calculated by PennCNV for chromosome X, and the mean of
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the log R ratio of chromosome Y, calculated in R (35), to make
two predictions of gender for each sample and then looked for
discordances between the two predictions. In addition to
comparing the frequency of sex chromosome aneuploidy in
our case and control sets, we also compared the frequency
detected in 34,910 sequentially screened live-born infants
from an observational study by Nielsen and Wohlert (26).

To detect autosomal aneuploidy, we calculated the log R
ratio mean and B allele frequency heterozygosity for each
chromosome and visually inspected plots where this value
deviated by .3 SD from the mean for the value taken across
all autosomes in that sample. For phenotypic association
analyses, we used sample-wide quality control metrics calcu-
lated by Genome Studio and the PennCNV algorithm as
well as additional metrics calculated with code derived
from the CNVision package (36). For detailed methods,
including specific thresholds and CNV merging definitions,
see Supplement 1.

CNV Validation

To validate a subset of our CNV calls, we used a customized
high-density oligonucleotide comparative genomic hybridiza-
tion array (43180K, Agilent Technologies, Santa Clara, Cal-
ifornia) in liaison with Oxford Gene Technologies (Oxfordshire,
United Kingdom). We analyzed 183 samples from our cases
and screened control samples on the comparative genomic
hybridization array. Of 183 samples, 36 CNVs in 35 samples
were available for follow-up. All 36 CNVs (100%) were
validated. Full details of the regions used for follow-up, CNVs
available for validation, and further information regarding array
comparative genomic hybridization laboratory protocols are
provided in Supplement 1.

Power Calculations

Power calculations in CNV studies are problematic because
effect sizes and models of association are based on approx-
imations that may be unrealistic. For comparisons of sex
chromosome abnormalities, a post hoc calculation of power
given our figures for Turner’s syndrome suggests we have a
99% power to detect a significant effect. For analyses of large
CNVs, assuming a threefold enrichment between cases and
control samples, we have 75% power to detect an effect. For
phenotypic analyses, on the assumption of a linear model of
association with phenotype, a rare variant effect size of .005,
and a type 1 error probability of .05, we calculate that our
sample size has 88% power to detect an effect from rare
CNVs occurring over the whole genome.

Statistical Analysis

Frequencies of samples with large CNVs and aneuploidies were
compared with Fisher’s exact test (p values for one-sided and
two-sided tests are shown). Whole-genome analyses of CNV
burden between cohorts were performed using permutation
analysis in PLINK v1.07 (37). An initial α level of .05 was set.
Burden analyses were divided into three sets of tests—cases
versus all control samples, cases versus screened control
samples, and cases versus WTCCC2 control samples. Each
of these sets of larger analyses was subdivided further into
analyses considering all CNVs, deletion CNVs, and duplication
rg/journal
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CNVs. Within these subsets of analysis, 7 individual burden
tests were performed, resulting in a total of 63 burden tests
(Supplement 1). We set a Bonferroni corrected significance
p value of .00079. This significance level is likely to be
conservative because the datasets are not independent. For
phenotypic analysis, we set an initial α level of .05, then used
matrix spectral decomposition of the correlation matrix
between the five phenotypic variables analyzed (38), imple-
mented at http://gump.qimr.edu.au/general/daleN/matSpD/,
resulting in a corrected α level of .0073. Statistical association
with phenotypic data was performed using linear regression
implemented in STATA/IC v10.1 (39). Power calculations were
performed with G*Power v3.1.7 and the pwr package (version
1.1.1), implemented in R (35).

RESULTS

Sex Chromosome and Autosome Aneuploidies

All 3106 case samples were analyzed for sex chromosome
aneuploidy. Of 2197 female cases, we detected 3 cases of 45,
X (Turner’s syndrome) (Figure S2A in Supplement 1), of which
2 were probable 45,X/46,XX mosaics (Figure S2B in
Supplement 1). Of 909 male cases, we detected 2 cases of
47,XXY (Klinefelter’s syndrome), one of which had an addi-
tional deletion of Yq (Figure S3 in Supplement 1). Significantly
more cases of 45,X were observed in our case sample
compared with the population sample (N 5 34,910) of live-
born infants reported by Nielsen and Wohlert (26) (two-sided
p 5 .023, odds ratio [OR] 5 7.76 [95% confidence interval (CI)
5 1.79–33.6]). No other comparisons were statistically signifi-
cant. One case of 47,XXY (Klinefelter’s syndrome) was
detected in the WTCCC2 control samples. Full results are
presented in Table 1.

We detected no autosomal aneuploidies. We detected one
case of diploid/triploid mosaicism (Figure S4 in Supplement 1).
Three cases were found to harbor complete uniparental
isodisomy (UPD) for a single chromosome (one in chromo-
some 12 [Figure S5A in Supplement 1] and two in chromo-
some 4 [Figure S5B, C in Supplement 1]). Two samples from
the WTCCC2 control group were also found to harbor UPD of
a whole chromosome (one of chromosome 13 [Figure S5D
Table 1. Frequency of Sex Chromosome Aneuploidy in Cases,a P
Screened Control Samples

Sex

Cases Population Control Samples

Female Male Female Male

Clinical Status

Normal 2194 907 17,017 17,832

45,X 3 3b

47,XXX 0 18

47,XXY 2 20

Total 5 41

Total by Sex 2197 909 17,038 17,872c

Total 3106 34,910

WTCCC2, Wellcome Trust Case Control Consortium phase 2.
aN 5 34,910 live-born infants from Table 1 of Nielsen and Wohlert (26)
bThis value was derived from the number of infants with 45,X syndrome
c17,872 includes 20 further males with abnormal karyotypes other than
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in Supplement 1] and one of chromosome 21 [Figure S5E in
Supplement 1]) (one-sided p 5 .57, two-sided p 5 1.00, OR 5

1.30 [95% CI 5 .26–1). No samples from the screened control
group showed UPD (one-sided p 5 .66, two-sided p 5 1.00).

Large CNVs

Large CNVs are defined as having length .1 Mb and called
with .100 markers. All CNV details are published in Table S3
in Supplement 1. Large CNV frequencies are shown in Table 2.

Of 6264 samples, 5430 passed sample quality control (2723
case samples, 348 screened control samples, and 2359
WTCCC2 control samples). Among 123 (2.3%) samples, 126
CNVs .1 Mb were detected. Of these CNVs, 36 (28.5%) were
heterozygous deletions, and 90 (71.5%) were heterozygous
duplications. Size of CNVs was as follows: 3 (2.4%) were
.5 Mb, 2 (1.6%) were between 3 Mb and 5 Mb, 11 (8.7%)
were between 2 Mb and 3 Mb, and the rest (n 5 110; 87.3%)
were between 1 Mb and 2 Mb.

We detected 77 CNVs in 74 of 2723 case samples. We
detected 4 CNVs in 4 of 348 screened control samples (two-
sided p 5 .10, OR 5 2.40 [95% CI 5 .91–6.36]). Stratifying by
CNV type, 21 deletion CNVs were observed in 20 cases, and
2 deletion CNVs were observed in 2 control samples
(two-sided p 5 1.00, OR 5 1.28 [95% CI 5 .33–NaN]). There
were 56 duplication CNVs observed in 54 cases, whereas
2 duplication CNVs were observed in 2 control samples (two-
sided p 5 .084, OR 5 3.46 [95% CI 5 .93–NaN]).

Of 2359 WTCCC2 control samples, we detected 45 CNVs
in 45 samples. As stated earlier, 77 CNVs were seen in 74 case
samples (two-sided p 5 .063, OR 5 1.44 [95% CI 5 .99–
2.09]). Stratifying by CNV type, 21 deletion CNVs from 20
cases were observed in our case sample, whereas in the
WTCCC2 control sample, 13 deletion CNVs were observed in 13
samples (two-sided p 5 .49, OR 5 1.34 [95% CI 5 .67–2.65]).
There were 56 duplication CNVs observed in 54 cases, whereas
32 duplication CNVs were observed in 32 WTCCC2 control
samples (two-sided p 5 .10, OR 5 1.45 [95% CI 5 .94–2.25]).

In 141 cases (37 male and 104 female), mood-congruent
psychotic symptoms were demonstrated. There were five
CNVs in five case (two male and three female) within this
subset. We compared these data with CNV frequencies in our
opulation Control Samples, WTCCC2 Control Samples, and

WTCCC2 Control Samples Screened Control Samples

Female Male Female Male

1354 1344 281 178

0 0

0 0

1 0

1 0

1354 1345 281 178

2699 459

(Population Control Samples).
(n 5 1) and 45,X/46,XX mosaic syndrome (n 5 2).
47,XXY.
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Table 2. Frequencies of Large (.1 MB) CNVs Stratified by Type

No. CNVs (No. Samples [%])a

RDD Cases (n 5 2723) Screened Control Samples (n 5 348) WTCCC2 Control Samples (n 5 2359)

All CNVs 77 (74 [2.71%]) 4 (4 [1.10%]) 45 (45 [1.91%])

Deletion CNVs 21 (20 [.73%]) 2 (2 [.55%]) 13 (13 [.55%])

Duplication CNVs 56 (54 [1.98%]) 2 (2 [.55%]) 32 (32 [1.36%])

CNV, copy number variant; RDD, recurrent depressive disorder; WTCCC2, Wellcome Trust Case Control Consortium phase 2.
aFrequencies of samples with large CNVs in our datasets are given in parentheses with percentages in brackets.

Table 3. Phenotype-Genotype Association Results for
Tests Between Phenotype and CNVs Falling Over Regions
of the Genome Previously Associated With Schizophrenia

Phenotype CNV Type No. Samples t p . |t|

Age of Onset All 1926 2.12 .03a

Deletions 1926 1.35 .18

Duplications 1926 1.64 .10

Duration of Worst Episode All 977 2.56 .58

Deletions 977 2.14 .89

Duplications 977 2.57 .57

Neuroticism All 1580 21.74 .08

Deletions 1580 2.53 .60

Duplications 1580 21.71 .09

Extraversion All 1619 1.68 .09

Deletions 1619 1.72 .09

Duplications 1619 .92 .36

Psychoticism All 1619 2.21 .83

Deletions 1619 .57 .57

Duplications 1619 2.58 .56

CNV, copy number variant.
ap , .05.
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screened control sample, in which a history, family history, or
current presentation of psychosis were exclusion criteria. Of
348 control samples, we detected four CNVs in 4 samples
(two-sided p 5 .13, OR 5 3.16 [95% CI 5 .90–11.04]). We
stratified for deletions, where none were observed in the
psychotic cases group and two CNVs in two samples were
observed in the screened control group (two-sided p 5 .51, OR
5 0 [95% CI 5 0–4.75]), and duplications, where five CNVs in
five cases were observed in the psychotic cases group and two
CNVs in two samples were observed in the screened control
group (two-sided p 5 .023, OR 5 6.36 [95% CI 5 1.40–1]).

Several very large variants were observed in this dataset.
See Supplement 1 for further details.

Phenotypic Association Analyses

To minimize the effect of false-positive calls clustering in differ-
ent sample groups, CNVs .100 kb, called with at least 10
markers, in high-quality samples and called using three algo-
rithms were considered in this analysis. Of 3106 samples, 2397
cases (77.2%) (717 male and 1680 female) passed sample
quality control. Phenotypic data were available in 1940 (80.1%)
of these samples. Data from the Eysenck Personality Trait
questionnaire were unavailable in the GENDEP study, which
limited our analysis in these instances to a sample of 1631.

There were 1337 rare CNVs detected, of which 648 (48.5%)
were deletion CNVs and 689 (51.5%) were duplication CNVs.
Of CNVs, 106 fell within regions previously associated with
schizophrenia; 36 (34.0%) were deletion CNVs, and 70
(66.0%) were duplication CNVs. There were 402 CNVs defined
as singleton events (i.e., occurring only once in the dataset);
205 (41.7%) CNVs were deletions, and 287 (58.3%) were
duplications. Results for whole-genome CNV association
analyses with phenotypes are shown in Table S4 in
Supplement 1, analyses of singleton CNVs are shown in
Table S5 in Supplement 1, and analyses restricted to CNVs
within previously associated regions of the genome are shown
in Table S6 in Supplement 1.

Age of onset data were available in 1926 samples (98.7%).
No significant association was found between global rare CNV
burden per sample and age of onset of disorder. A non-
significant trend was found between the number of rare CNVs
falling over regions previously associated with schizophrenia
and increased age of onset of disorder (t 5 2.12, p . |t| 5 .03)
(Table 3). Reanalyzing by region, this association was driven
by duplications in 15q13.3 (t 5 1.9, p . |t| 5 .06) (Table S9 in
Supplement 1). No significant association was found between
singleton CNV burden and age of onset of disorder.

Duration of worst episode data were available in 977 samples
(50.3%). No significant associations were found between meas-
ures of rare CNV burden and duration of worst episode.
332 Biological Psychiatry February 15, 2016; 79:329–336 www.sobp.o
Eysenck Personality Questionnaire data were available in
1631 samples. Trait neuroticism data were available in 1580
samples (96.9%), trait psychoticism data were available in
1619 samples (99.3%), and trait extraversion scores were
available in 1619 samples (99.3%). No significant associations
were found in any analyses between personality trait scores
and CNV burden.

Whole-Genome Burden Analysis

This dataset is similar to the dataset used for our previous
research (20), in which we showed evidence that samples with
genic deletion CNVs .100 kb in size were more common in
RDD cases than control samples. We decided to revisit this
hypothesis using this dataset, which is subject to more
stringent quality control parameters and uses three algorithms
to call CNVs, rather than one. Of samples, 2397 case samples,
332 screened control samples, and 2151 WTCCC2 control
samples passed sample quality control. Compared with our
original results, we found no evidence to support the notion
that CNVs are more common in RDD cases, but deletion CNVs
in cases tended to harbor more genes in RDD cases than
control samples. Full results are shown in Table S13
in Supplement 1. Briefly, although there were no significant
differences between the proportion of samples that harbored a
deletion CNV (two-sided p 5 .55), the deletion CNVs that were
seen contained significantly more genes in case samples than
rg/journal
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in control samples when control cohorts were combined (two-
sided p 5 .0002) as well as independently and in the same
graduated manner observed in our previous analysis. A trend
suggesting that duplication events were more common in
control samples was seen (two-sided p 5 .049); however, the
absolute difference was modest.
DISCUSSION

We present an analysis of large CNVs and chromosomal
aneuploidies in a case-control sample of RDD. After correction
for multiple testing, we generally found little evidence for the
association of large CNVs with RDD. We found an enrichment
of undiagnosed Turner’s syndrome in RDD cases compared
with a large population sample (N 5 34,910) of live-born
infants in Denmark. We found further examples of other sex
chromosome abnormalities and autosomal UPD in the case
sample. We also present an analysis of global CNV burden. In
a reanalysis of rare CNVs .100 kb, there was little evidence of
differences in major measures of CNV burden; however, the
number of genes falling within deletion CNVs seen was
significantly higher in cases than in both control groups, even
after correction for multiple testing. When CNVs .1 Mb in size
were considered in isolation, we found they occurred more
frequently in the case sample compared with the screened
control sample and with the WTCCC2 control sample, but this
difference fell short of statistical significance. The increase in
frequency was driven by large duplication CNVs. A further
association analysis with phenotypic measures found a non-
significant trend between the burden of duplication events
over regions previously associated with schizophrenia and
increased age of onset. This trend was driven by duplications
in the region 15q13.3. Usually CNVs of this size are rare, and
we may lack power to detect an effect. An aggregated
association analysis of CNVs is also hampered by pleiotropy
in the regions studied; however, without a greatly increased
sample size, analyzing by region is invariably underpowered.
We present both methods of analysis here.

Some evidence exists for the enrichment of sex chromo-
some aneuploidies in psychiatric disorders. One of the largest
studies was published by Maclean et al. in 1968 (40), where the
buccal smear method (41) was used to distinguish between
cells with chromatin bodies of various numbers in the different
sexes. This technique does not reliably detect Turner’s syn-
drome because it relies on the process of X inactivation to
generate visible chromatin bodies. Nonetheless, this study
found a significant enrichment of sex chromosome abnormal-
ities among patients in psychiatric hospitals at the time
compared with a control population. However, the inclusion
of cases of schizophrenia, “mental deficiency,” and “epileptic
insanity” suggests a sample qualitatively different from our
own. Mood disorders are known to be common in people with
sex chromosome abnormalities (22), and the relative enrich-
ment of cases of Turner’s syndrome in our sample is unsur-
prising. The standardized mortality ratio for patients with
Turner’s syndrome who survive infancy is estimated to be 3.6
(42), and the use of a live-born sample compared with a sample
of adults is likely to underestimate the true difference. It is
possible that the cases of mosaic 45,X/46,XX observed are
derived from somatically acquired 45,X cells seen solely in
Biological Psyc
blood. Overall, our results add evidence to the association of
Turner’s syndrome with RDD. There is little evidence for the
association of Klinefelter’s syndrome with mood disorders (22),
and we found no evidence of this, although our sample
probably lacks sufficient power (54.6% assuming a twofold
enrichment and a base population frequency of 1:1000).

The detection of a diploid/triploid mosaic is notable.
Previously rare, DNA microarray studies have already docu-
mented this phenomenon (43,44). Individuals with congenital
diploid/triploid mosaicism tend to be profoundly disabled
(44,45) and are unlikely to have been included in our study.
This variant is probably a somatically acquired abnormality.

Five instances of UPD—in chromosome 4 (two cases),
chromosome 12 (one case), chromosome 13 (one WTCCC2
control), and chromosome 21 (one WTCCC2 control)—were
noted. When an individual receives two identical copies of a
chromosome, or part of a chromosome, from one parent, it is
known as UPD. All five instances of UPD observed in this
sample set had log R ratio values indicating diploid copy
number, and four of five demonstrated complete loss of
heterozygosity across the chromosome. This finding suggests
the mechanism of monosomy rescue (by which chromosomal
monosomy is avoided by duplication of the remaining chro-
mosome during gametogenesis) and an origin in meiosis II
(43). One sample demonstrated a resumption of heterozygos-
ity at the distal end of chromosome 21q, suggesting that
partial recombination has occurred and an origin later in
meiosis II (43). No significant differences in frequency were
observed between the case and control samples, although our
study may have been underpowered to detect an effect. The
significance of these observations is unclear, although UPD is
expected to disrupt imprinting and increase the chance of
homozygosity for a recessive mutation (46).

In our previous analysis, we showed that rare deletion CNVs
.100 kb in length were significantly associated with our case
sample, with a particularly low frequency of deletions being
seen in our screened control sample (20). This study could be
criticized for using only one calling algorithm for identification
of CNVs between 100 kb and 1 Mb. We reanalyzed this dataset
using more stringent quality control parameters and three
algorithms for CNV detection because more recent research
has shown that CNV algorithms are subject to high type 1 error
rates (47–52). Our reanalysis indicated that although the
proportion of samples containing CNVs is not significantly
different between cases and control samples, deletion CNVs
within case samples encompass significantly more genes than
control samples. It could be argued that restricting analysis to
calls made by three algorithms is overly conservative, resulting
in type 2 calling errors that reduce power to detect association.
This dichotomy illustrates the tricky balance to be struck
between known type 1 errors and unknown type 2 errors in
CNV calling, which is likely to affect all analyses relying on
indirect measures of genomic copy number.

In an attempt to clarify the relationship of CNV burden with
RDD, we analyzed the relationship between CNV and pheno-
type using clinical measures taken during sample ascertain-
ment. In general, no statistically significant associations were
observed. A trend was observed between CNVs occurring over
regions previously associated with schizophrenia and increased
age of onset. This trend was driven by duplication events in the
hiatry February 15, 2016; 79:329–336 www.sobp.org/journal 333
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15q13.3 region. The CNVs in this region all encompass the gene
encoding the alpha 7 nicotinic cholinergic receptor (CHRNA7).
This CNV has also been implicated in Alzheimer’s disease (53),
and a recent study (using some samples also included in this
work) found that this duplication was associated with a poorer
response to antidepressant medication (54). Although the
relevance of this observation to RDD is unclear, the occurrence
of this duplication in association with age of onset in the context
of other research implicating it in dementia and poorer response
to antidepressants is notable, especially given the clinical
crossover between depression and dementia observed in older
adults (55). A full table of results and illustrations of the CNVs in
these areas can be found in Supplement 1.

A significant limitation of this study is the small sample size
of screened control samples. The small sample size occurred
because most subjects in this cohort contributed DNA via
cheek swab, which we found to be of insufficient quality to call
CNVs reliably. Although our case sample is large, it is probably
of insufficient size to determine definitively the role of this level
of genomic variation in this clinical group.

In conclusion, this study adds little evidence to the notion
that rare CNVs are associated with RDD (in contrast to our
previous analysis), although deletion CNVs that do occur in this
group were shown to harbor more genes than deletion CNVs
occurring in control samples. This may be a relevant finding
because deletion CNVs, with concomitant loss of function, are
expected to be more deleterious than duplications. Occasional
large CNVs and chromosomal aneuploidies are seen in isolated
cases. We found no evidence to suggest that duration of worst
episode and personality traits as measured by the Eysenck
Personality Questionnaire are associated with rare CNVs in
cases of RDD, and other trends for significance fall short after
correction for multiple testing. In general, the evidence for the
involvement of CNVs in cases of mood disorders appears
much less convincing than the evidence in cases of autism and
schizophrenia. Genetic pleiotropy and sample heterogeneity in
mood disorder samples as well as the equivocal results from
current studies suggest that much larger sample sizes are
required to determine conclusively whether this level of
genomic variation is of relevance. Further light may be shed
on this issue by CNV meta-analyses from worldwide collabo-
rations of large sample sets, particularly the psychiatric
genome-wide association studies consortium (56).
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