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Abstract: Magnetic-luminescent composites based on semiconductor quantum dots (QDs) and
superparamagnetic iron oxide nanoparticles (SPIONs) can serve as a platform combining visualization
and therapy. Here, we report the construction of QD-SPION nanocomposites based on synthesized
SPIONs and alloyed QDs (CdxZn1−xSeyS1−y)/ZnS solubilized with L-cysteine molecules. The study
of the spectral-luminescence characteristics, the kinetics of luminescence decay show the composite’s
stability in a solution. After incubation with HeLa cells, QDs, SPIONs, and their composites form
clusters on the cell surface and associate with endosomes inside the cells. Component-wise analysis
of the photoluminescence decay of cell-associated QDs/SPIONs provides information about their
localization and aggregate status.

Keywords: quantum dots; SPIONs; magnetic-luminescent composites; photoluminescence; theranostics

1. Introduction

The development of nanotechnology makes it possible to use various materials to
create nano-sized structures. Nanostructures are increasingly used in various fields, in-
cluding biology and medicine, thus forming a new area of research: nanomedicine [1]. It
involves the use of nanoparticles (1–100 nm) to track the behavior of labeled cells, partic-
ularly tumor cells, and to carry out targeted therapy, or a combination of both methods
(“theranostics”) [2]. For these purposes, depending on the specific task, nanoparticles can
be technologically designed and modified so that they simultaneously contain components
for visualization and impact on transformed cells, leading to their death, for example, as a
result of hyperthermia.

Over the last few decades, semiconductor nanocrystals, referred to as quantum dots
(QDs), and different composites based on them have been extensively examined as lumines-
cent labels and theranostic agents in living cells and laboratory animals [3–6]. In particular,
the combination of QDs with magnetic nanoparticles is of interest.

Indeed, iron oxide nanoparticles (Fe3O4 or γ-Fe2O3) are one of the promising materials
for multifunctional nanostructures [7]. Work has been conducted on the formation of
multicomponent nanostructures that include, in addition to iron oxide nanoparticles,
various polymeric and inorganic compounds, which allows the nanostructures to be used
in various fields of biomedical research. The integrity of the resulting nanostructures is
provided by binding the components using various intermolecular interactions or direct
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immobilization, for example, through thiol bonds, etc. [8–10]. Unlike macro-sized iron
compounds, iron oxide nanoparticles do not have residual magnetization in the absence of
an external magnetic field, which makes them superparamagnets. In connection with their
properties, they are called superparamagnetic iron oxide nanoparticles (SPIONs) [11]. They
can be used for magnetic hyperthermia therapy under the condition of specific interaction
with tumor cells [12–16]. For example, antibodies specific to cancer cell receptors attached
to SPIONs led to their targeting properties [17,18]. Other molecules that are characteristic of
certain transformed cells, for example, the overexpressed proteins mesothelin or epidermal
growth factor receptor, can also be targets [19–21]. SPIONs can be detected using magnetic
resonance imaging (MRI), but this method is difficult to use widely.

On the other hand, QDs have unique properties for detection by fluorescence mi-
croscopy. They are characterized by a large effective Stokes shift, high quantum yield of
photoluminescence (PL), narrow PL spectra, broad absorption spectra, high molar extinc-
tion coefficients, and high photostability [22]; in addition, it is possible to attach various
target molecules to the QD surface. For biomedical applications, core/shell QDs are most
often used (for example, QDs with a CdSe core coated with a ZnS shell). Such QDs are
coated by mercaptopropionic acid, alkylated amphiphilic polymers, glutathione, PEG,
L-cysteine, and other water-soluble compounds [23–26] for use in living systems.

Despite an enormous number of publications discussing QDs with different chemical
compositions in regard to their biological and medical applications [27,28], the mechanisms
of cellular uptake of nanoparticles, the interaction with intracellular structures, and the
relaxation of electron excitation in QD-based hybrid structures at the unstable ionic compo-
sition of an intraendosomal medium in living cells remain unexplored. This is, first of all,
because in most cases, only steady-state luminescence characteristics of QDs are taken into
account. Similar principles are presented in the study by Zhou et al. [29]. Any information
on average PL decay time can rarely be found for QDs, while one of the fundamental
distinctions of QDs from organic luminophores, namely multiexponentiality of PL decay,
is almost never taken into consideration [30]. Possible reasons for the multi-exponential
nature of the QD PL decay are the presence of a ”dark” state [31], from which the transition
to the ground state is spin-forbidden, as well as “blinking,” that is, the ability of nanocrys-
tals to randomly switch between states with different rates of non-radiative relaxation of
electronic excitation [32]. We believe that only the component-wise analysis of PL decay
makes it possible to obtain realistic information on how the biological environment impacts
on PL quantum yield of QDs. It allows for obtaining typical protocols for imaging analysis
using QDs and for examining the stability of QD-based hybrid structures in living systems.

Here, we present a comprehensive analysis of PL properties of the commonly used
CdSe-based QDs and QD-SPION magneto-luminescent composites, which are the most
popular systems for tracking analysis and hyperthermia in living cells [33–37]. These
nanostructured objects have been selected due to (i) their typical behavior in living cells,
i.e., their uptake, toxicity, and intracellular localization in cells; (ii) the well-developed
and specified synthetic protocols for QDs and SPIONs; and (iii) a typical approach for the
composite development of QD-based hybrid structures, i.e., using stabilizing molecules,
particularly L-cysteine, on the QD surface as a linker for creation chemical bonds between
QDs and SPIONs.

We analyze the optical properties of QDs and QD-SPION composites in dimethyl
sulfoxide (DMSO) in detail. Then, we assess uptake and intracellular localization of
nanostructures in HeLa and A549 cells. Moreover, we analyze the PL kinetics of QDs and
QD-SPIONs both in solvents and cells using spectrally selected single-photon counting. We
show that our approach based on PL analysis of this complex system allows for correctly
evaluating the average PL quantum yield of QDs as well as for clearly confirming QD
aggregation and the integrity of QD-based composites in living cells.
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2. Materials and Methods
2.1. Synthesis of Alloyed Quantum Dots (CdxZn1−xSeyS1−y)/ZnS

In this work, we used (CdxZn1−xSeyS1−y)/ZnS quantum dots with a gradient chemi-
cal composition synthesized by high-temperature organometallic synthesis according to the
technique described in [38]. Briefly, 0.3 mM of CdO, 4.0 mM of Zn(OAc)3, 5.5 mL of oleic
acid, and 20 mL of octadecene (ODE) were placed in a 50 mL three-necked flask equipped
with a magnetic stirrer and a thermometer. The reaction mixture was degassed for 1 h
at a temperature of 100 °C, after which it was heated to 310 °C in an argon atmosphere.
Then, 0.25 mM Zn and 3.5 mM Se were dissolved in 3 mL trioctylphosphine (TOP), quickly
introduced into the reaction mixture at a temperature of 310 °C, kept for 1.5 min, and
cooled in a water bath to room temperature under argon. The obtained nanocrystals were
precipitated with a mixture of acetone and methanol and redissolved in chloroform (all
solvents from Lenreactiv, Saint Petersburg, Russia).

Since organic solvents are not suitable for biological applications, these hydropho-
bic nanocrystals were transferred to DMSO using L-cysteine as a stabilizer for colloidal
nanoparticles. To carry out solubilization with L-cysteine, the nanostructures were dis-
solved in chloroform and kept at a temperature of −20 °C for 15 min, after which a solution
of L-cysteine in methanol was added until flocculation was formed. The mixture was stirred
vigorously, and water and a concentrated KOH solution were added. Then, it was stirred
again until about half of the nanostructures passed into water. The resulting aqueous solu-
tion of QDs (CdxZn1−xSeyS1−y)/ZnS solubilized with L-cysteine molecule nanostructures
was used for further work (all precursors from Merck KGaA, Darmstadt, Germany).

2.2. Synthesis of Magnetic Nanoparticles and Analysis of Samples Size

We used superparamagnetic Fe3O4 nanoparticles obtained as a result of an original
synthesis developed on the basis of techniques [39–42]. Briefly, 12 mL of triethylene glycol
(TEG) and 0.5 mmol Fe(acac)3 were placed in a two-necked flask with a volume of 50 mL
equipped with a magnetic stirrer and a thermometer. The solution was degassed at 100 °C
for 90 min, after which it was heated to 275 °C in an argon atmosphere and kept at this
temperature for 2 h. The reaction mixture was cooled to room temperature under argon.
The resulting magnetic nanoparticles were precipitated with tetrahydrofuran (THF) and
dissolved in DMSO (all precursors from Merck KGaA, Darmstadt, Germany).

The SPION size was estimated using a transmission electron microscope (TEM), and
their magnetic properties were investigated using a vibrating sample magnetometer. The
average size of the obtained samples was estimated by dynamic light scattering (DLS)
(Zetasizer Nano ZS (Malvern Panalytical, Malvern, UK)) and scanning electron microscopy
(SEM) (MERLIN (Carl Zeiss, Jena, Germany)).

2.3. Spectral and Luminescent Properties of QDs and Their Nanocomposites

The methods of steady-state optical spectroscopy have been used to study the optical
properties of samples. Absorption and PL spectra were measured on a UV-3600 spec-
trophotometer (Shimadzu, Kyoto, Japan) and a Cary Eclipse spectrofluorometer (Agilent,
Mulgrave, Australia).

The PL kinetics of the samples was studied using a MicroTime 100 time-resolved
confocal fluorescence microscope (PicoQuant, Berlin, Germany). The radiation wavelength
of the pulsed diode laser was 405 nm, the pulse duration was 50 ps, and the pulse repetition
frequency was 5 MHz. The PL decay curves of nanocomposites were approximated
according to the following equation:

I = A0 + A1 · exp
(
− t

τ1

)
+ A2 · exp

(
− t

τ2

)
+ A3 · exp

(
− t

τ3

)
(1)

where Ai and τi are the amplitudes at the initial time and the PL decay times of the ith
component, respectively. The average PL lifetime is calculated using the equation:
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〈τ〉 = ∑i Aiτ
2
i

∑i Aiτi
(2)

The average PL decay time was recorded using a Continuous filter monochroma-
tor b (Carl Zeiss, Jena, Germany) characterized by 10 nm full width at half maximum
(FWHM) pass band at 555, 570, and 580 nm. The luminescence acquisition wavelength
was chosen at the maximum of the PL spectrum as well as in the shorter-wavelength and
longer-wavelength parts of the PL spectrum of QDs to obtain data from QD fractions of
different sizes.

2.4. Cell Cultures and Compartment Identification

Human epidermoid cancer HeLa cells and human epithelial lung cancer A549 cells
(Institute of Cytology, Center of collective using “Cultures collection of cells of vertebrates”,
supported by Ministry of Science and Higher Education of the Russian Federation (Agree-
ment №075-15-2021-683)) were grown in Dulbecco’s modified Eagle medium (DMEM,
Biolot, St.Petersburg, Russia) with 10% fetal bovine serum (FBS, Biolot, St.Petersburg, Rus-
sia) and 1% penicillin/streptomycin (GIBCO, Waltham, Massachusetts, USA) at 37 °C with
5% CO2. The cells were plated on Petri dishes or Petri dishes with glass coverslips (Nunc).
The experiments were performed at 60–70% confluence 48 h after seeding. To displace func-
tional cholesterol from the membrane, the cells were pretreated with Methyl-β-cyclodextrin
(MβCD) (5 mM, 2 h), followed by incubation with QDs (50 {nM ) for 24 h.

LysoTracker Green DND-26 (Invitrogen, Eugene, OR, USA) at a concentration of
50 nM was used for vital staining of lysosomes and late endosomes. After incubation with
nanostructures, LysoTracker was added to the culture medium 20 min before confocal
imaging. For vital staining of nuclei, Hoechst 33342 (Invitrogen, Eugene, OR, USA) was
used at a concentration of 1.6 µM for 5 min. After the indicated periods, the cells were
washed from dyes and analyzed.

For immunofluorescent staining of early endosomes with EEA1-antibody and lyso-
somes with Lamp1-antibody, the cells were fixed with 4% paraformaldehyde for 15 min,
permeabilized with 0.5% Triton X-100 for 15 min, and blocked with 1% BSA for 1 h. Then,
the cells were incubated for 1 h at room temperature with the selected primary antibodies
against EEA1 at a dilution of 1:200 (Transduction Lab, Franklin Lakes, NJ, USA) and against
Lamp-1 at a dilution of 1:100 (Abcam, Waltham, MA, USA) and for 1 h with secondary
antibodies (Alexa 488 goat anti-mouse IgG, 1:500, Molecular Probes, Eugene, OR, USA).
After immunostaining, the cells were plated on Fluorescent Mounting Medium (Dako
Cytomation, Glostrup, Denmark) and processed for confocal imaging and, where indicated,
differential interference contrast (DIC) microscopy.

2.5. Identification of SPION Localization by Microscopy

After incubation with the cells, SPIONs were detected with the help of Perls’ Prussian
blue stain, which is a standard indicator for iron ions [43,44]. The samples were washed
from unbound nanostructures using PBS and then fixed according to the standard protocol.
Then, the samples were incubated in a solution of 4% HCl/4% potassium hexacyanoferrate
(II) (1:1) for 20 min. The samples were washed and stained with Neutral red 0.05% dye
for 20 min and, then, washed with PBS. Transmitted light microscopy images of cells with
nanoparticles were obtained with a LSM 5 PASCAL microscope (Carl Zeiss, Jena, Germany).

2.6. Confocal Microscopy of the Cells

The cells were examined using a FV3000 inverted laser scanning confocal microscope
(Olympus, Tokyo, Japan). Photoluminescence of QDs and QD-SPION nanocomposites
was excited at 405 nm and recorded in the range of 520–620 nm. Alexa 488 fluorescence
was excited at 488 nm and recorded in the 500–550 nm range. Hoechst 33342 fluorescence
was excited at 405 nm and recorded in the range of 430–480 nm. LysoTracker Green
DND-26 fluorescence was excited at 488 nm and recorded in the 500–550 nm range. The
samples were observed with a 40/1.42× oil immersion objective, obtaining images of
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1024 × 1024 pixels. Images were captured in one or two spectral channels in sequential scan
mode, with only one laser operating at a time to avoid spectral overlap. Z-series optical
sections were taken at 0.5 µm steps from bottom to top (14–16 sections).

In each experiment, 5–10 fields containing 20–60 cells totally were imaged for each
experimental point. Images were processed and analyzed using Fiji software (National
Institutes of Health, Bethesda, MD, USA). The most representative single sections from
a Z-series of typical cells were selected for demonstration. For quantitative analysis, raw
images were used.

2.7. Analysis of the Viability of Cell Population by Flow Cytometry

Fluorescence activated cell sorting (FACS) analysis was carried out by CytoFLEX
cytometer (Beckman Coulter, Brea, CA, USA) at a maximum sample feed rate (1 µL/s) for
100 s. To study the amount of QDs associated with cells, the suspensions of control and
incubated with QDs cells were analyzed with laser excitation at 405 nm; luminescence was
recorded using a 660/20 BP filter. Under the same conditions, the study of the MβCD effect
on the cells was carried out. The data obtained were analyzed using the CytExpert 2.0.0.152
software (Beckman Coulter, Brea, CA, USA).

To assess viability, the suspensions of control cells and cells incubated with QDs
or QD-SPION composites were stained with 50 µg/ml of propidium iodide (PI, Sigma,
St. Louis, MO, USA) and analyzed. Data collection was based on optical characteristics:
PI fluorescence versus forwarding scattering on a logarithmic scale (FSLOG/FL4LOG).
The results were expressed in the proportion of live cells (not stained with PI) relative to
the total number of cells in each sample. The number of total and live control cells not
incubated with nanoparticles was taken for 100%.

2.8. Statistical and Colocalization Analysis

Statistical data processing was performed using Microsoft Office Excel 2007 (Microsoft
Corporation, Albuquerque, NM, USA). The graphs were built using the Origin 8.5 software:
bar charts (mean ± standard error) and box plot—using Microsoft Office Excel 2007.

The quantitative colocalization analysis was performed using ImageJ JACoP Plugin
to determine Manders’ colocalization coefficient M1, which is defined as the sum of the
intensities of the selected red objects containing green signal divided by the sum of the
intensities of all selected red objects. Thresholds were set by a visually estimated value for
each channel. The results are represented as mean ± standard error of the mean.

3. Results and Discussion
3.1. Optical Properties of As-Prepared QDs and QD-SPION Composites in Dimethyl Sulfoxide

Figure S1 shows the absorption and luminescence spectra of (CdxZn1−xSeyS1−y)/ZnS
QDs before (1) and after (2) their surface solubilization with L-cysteine. The analysis of
the spectral-luminescent properties of QDs has shown that the QD luminescence band is
symmetrical and has a maximum at a wavelength of 568 nm, with 26 nm FWHM. This
indicates that the QDs are characterized by small size dispersion [45]. The decoration of
the QD surface with L-cysteine molecules does not significantly change the position and
form of their PL band. The average size of these QDs according to the evaluation of the
spectral-luminescent properties is about 6 nm, which is confirmed with SEM images of the
QDs (see Figure S2).

Estimation of the quantum yield of QD luminescence (φ) has shown that, for hydropho-
bic QDs before solubilization with L-cysteine, φ is 46% and that, after solubilization and
transfer of QDs to the aqueous phase, φ decreased to 10.2%. A decrease in the luminescence
intensity occurs due to the hole transfer from the QDs to the thiol molecule of the stabilizer.
This process occurs because the trapping of holes is energetically favorable for thiols at-
tached to QDs based on CdSe. If a hole is captured by a thiol molecule, recombination of
the exciton (bound state of an electron and a hole) is impossible [46].
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Briefly, the QD-SPION nanocomposites formed in an aprotonic bipolar solvent, DMSO,
by the portion-wise addition of SPIONs to the QD solution in different molar ratios
(n = CSPIONs : CQDs). The nanocomposites formed due to the coordination of L-cysteine
molecules attached to the QD surface to the surface iron atoms of SPIONs [47].

Figure S3 presents the optical properties of QD-SPION nanocomposites with different
molar ratios (n). Figure S3a shows the absorption spectra of the samples. It is clearly
seen that all spectra include a specific pattern of QD absorption spectrum, i.e., the band at
552 nm.

The analysis of the PL spectra of samples (Figure S3b) has shown that a sequential in-
crease in the concentration of SPIONs in the samples is accompanied by effective quenching
of the QD luminescence. The decrease in the luminescence intensity is associated both with
the formation of composites and with the high absorption capacity of magnetic particles.
Figure S3b shows the PL spectra taking into account the effect of the internal filter associ-
ated with the high optical density of the SPIONs at the PL excitation wavelength (515 nm).
Based on the quenching of luminescence, we can suppose the presence of composites in the
sample. The experimental dependence of the relative intensity of QD PL on the relative
concentration of SPIONs in the mixture was well approximated by the exponential function
y = 0.94 · exp(−3.81x) + 0.06 (Figure 1). The exponential factor 3.81 shows that one SPION
quenches the luminescence of about four QDs [48].

Figure 1. Dependence of the relative PL intensity of the samples in DMSO solution on the ratio of
the molar concentrations of CSPIONs/CQDs. The experimental data are approximated by the function
y = 0.94 · exp(−3.81x) + 0.06.

However, the composite formation has not been spoken of directly yet because a
decrease in the quantum yield of QD luminescence can occur in the case of their aggregation,
which is often observed when their immediate environment changes [49].

Therefore, we studied the PL kinetics of the QDs at different concentrations of SPIONs
(Figure 2). The luminescence decay curves (Figure 2a) were approximated with the three-
exponential function (see Materials and Methods, Equations (1) and (2)), the characteristic
PL time and their amplitudes are presented in Table 1.
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Figure 2. PL kinetics of QD-SPION nanocomposites. (a)—PL decay curves of the samples; (b)—
Dependence of the sample average PL decay times calculated using formula (2) on the acquisition
wavelength; 1—free QDs (red), 2–4—mixture (SPIONs/QDs) with n (CSPIONs : CQDs) = 0.2 (green);
0.5 (blue); 1 (black), samples in DMSO solution.

For free QDs, the characteristic PL decay times are 3.2, 13.9, and 43.9 ns. Based on
the fact that the radiative rate for CdSe QDs is 25 ns [50], it can be concluded that the
fraction with the decay time of 43.9 ns corresponds to the delayed luminescence of QDs [51].
The delayed luminescence component was excluded from further analysis because its PL
intensity does not exceed 10% of the total PL intensity of QDs.

It is known that the PL decay time and the quantum yield of the photoluminescence
of the phosphor are related according to the following formulae [52,53]:

ϕi =
τi
τr

(3)

τi =
1

kr + ki
nr

(4)

where ϕi is the PL quantum yield of the phosphor, τi is the PL decay time, τr is the radiative
time, and kr and ki

nr are the radiative (kr =
1
τr

= 4 · 107s−1 ) and non-radiative rates.
The “dark” fraction (Ndark) in the free QD solution is estimated by the following

formula [54]:

ϕ = (1− Ndark) · ϕ(τ) (5)

It equals 79%, which is explained by the high rate constant of non-radiative relaxation
k1

nr = 27 · 107s−1 and k2
nr = 3 · 107s−1 that is comparable to or exceeds the radiative rate.

During the formation of QD-SPION composites, new channels of non-radiative QD
energy relaxation are added. It is mainly associated with energy transfer from QDs to
SPIONs, since the QD luminescence overlaps with the SPION absorption because they
show absorption in the entire visible range at room temperature [55]. The total rate of these
channels is characterized by the quenching rate of QDs with SPIONs ki

Q obtained using the
following formula [56]:

τi =
1

kr + ki
nr + ki

Q
(6)

The quenching efficiency of each QD fraction with SPIONs can be estimated by
the following formula:

Ei
Q = ki

Q · τi (7)

The average quenching efficiency can be estimated taking into account the concentra-
tion of QDs in each fraction [54]:
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〈EQ〉 =
∑(Ei

Q)
2 · Ai

∑ Ei
Q · Ai

(8)

The rate and efficiency of PL quenching of QDs with SPIONs (Table 1) rise with
an increase in the SPION concentration, which means that more QDs become bound in
composites with SPIONs.

Table 1. Photophysical properties of QDs and QD-SPION nanocomposites *.

Molar Concentration
Ratio

(n = CSPIONs : CQDs)
0 0.2 0.5 1

τ1, ns 3.2 ± 0.2 2.4 ± 0.1 2.0 ± 0.1 1.4 ± 0.1
A1,% 41 ± 2 49 ± 3 51 ± 3 61 ± 3
τ2, ns 13.9 ± 0.7 11.7 ± 0.6 10.6 ± 0.5 7.0 ± 0.4
A2,% 51 ± 3 42 ± 2 40 ± 2 33 ± 2
τ3, ns 44 ± 2 34 ± 2 31 ± 2 24 ± 1
A3,% 8 ± 1 9 ± 1 9 ± 1 6 ± 1

<τ>, ns (2) 21 ± 1 17.9 ± 0.9 16.7 ± 0.8 11.7 ± 0.6
ϕ1,% (3) 12.8 ± 0.6 9.6 ± 0.5 8.0 ± 0.4 5.6 ± 0.3
ϕ2, % (3) 56 ± 3 47 ± 2 42 ± 2 28 ± 1
<ϕ>, % 49 ± 2 40 ± 2 36 ± 2 22 ± 1

k1
nr, ·107s−1 (4) 27 ± 1

k2
nr, ·107s−1 (4) 3.2 ± 0.2

k1
Q, ·107s−1 (6) - 10.4 ± 0.5 18.8 ± 0.9 40 ± 2

k2
Q, ·107s−1 (6) - 1.4 ± 0.1 2.2 ± 0.1 7.1 ± 0.4

< kQ >, ·107s−1 - 9.5 ± 0.5 17.4 ± 0.9 37 ± 2
E1

Q, % (7) - 25 ± 1 38 ± 2 56 ± 3
E2

Q, % (7) - 16 ± 1 24 ± 1 50 ± 3
< EQ >, % (8) - 22 ± 1 33 ± 2 54 ± 3

* The numbers (2)–(8) correspond to the formulas that are used to estimate these values.

It can be seen from Table 1 that an increase in the SPION concentration is accompanied
by a symbate reduction in all characteristic PL decay times, which denotes the energy
transfer from QD to SPION. Therefore, it confirms the formation of QD-SPION composites
rather than the spontaneous aggregation of QDs, which is usually accompanied by a sharp
increase in the percentage of the QD fraction with the shortest characteristic PL time [57].

No dependence of the PL characteristic decay time of QDs on the acquisition wave-
length should be observed if QD ensemble is monodispersed, while QD agglomeration
results in the the appearance of the PL decay time growing with the PL acquisition wave-
length [58]. According to Figure 2b, the average PL decay time of nanocomposites does not
depend on the acquisition wavelength within the error margin. It means the absence of
energy transfer between QDs, i.e., proves the absence of their aggregation.

In two weeks, the PL decay time of QDs in the composites in water was re-measured
(Figure S4), and no changes in PL kinetics of samples were found. It confirms the stability
of QDs and composites.

3.2. Behavior and Properties of QDs and QD-SPIONs during Interaction with Cells
3.2.1. Analysis of the Interaction of QD with Cultured Cells

The photophysical properties described above make it possible to detect QDs solubi-
lized with L-cysteine molecule interactions with the cells cultivated in vitro. Figure 3 shows
confocal images of HeLa and A549 cells after incubation with QDs (50 nM) for 24 h. The
typical HeLa cells image focused at the level of the middle of the nucleus, and orthogonal
sections of the cells, built as a result of scanning the sample along the Z-axis, correspond to
the intracellular localization of QDs in vesicular endolysosomal-like structures (Figure 3a).
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Large QD clusters were detected in the investigated cells. However, diffuse staining of
cytoplasm was negligible. To identify their localization more accurately, we combined
luminescence and DIC images taken at the level of the nucleus (middle, Figure 3b) and
those focused just above the highest part of the cells (top, Figure 3b). In the first case, with
the focus on cytoplasm, clear vesicular structures were visible, but clusters have blurred
outlines indicating their location out of focus. Several sharply defined clusters of different
sizes were also detected on the coverslip outside the cells. When the focal plane was chosen
just above the cells, blurred vesicular structures were seen only in DIC channel as dark dots,
but clusters with clear outlines were observed. Such a picture was typical for both HeLa
and A549 cells. This approach allows us to separate fluorescent objects inside and outside
of rather flat cells and indicates that some number of QDs enters the cells via endocytosis
while a significant portion of QDs non-specifically associates with the cell surface and
forms large clusters there.

Figure 3. Confocal images of cells after incubation with QDs (50 nM) for 24 h. (a) Optical slice of
HeLa cells at the nucleus level (red channel—QDs, blue channel—Hoechst 33342); below and on the
right, there are orthogonal sections of cells obtained as a result of scanning along the XZ and YZ
axes. (b) Overlay of DIC images of cells and the QD luminescence channel. Localization of QDs is
represented by optical sections taken from Z-series at the level of the nucleus (middle) and just above
the apical surface (top) of HeLa and A549 cells. Thin arrows show examples of QDs inside cells; thick
arrows indicate of QDs association with the cell surface outside the cell. Photoluminescence of QDs
excited at 405 nm and recorded in the range of 520–620 nm. Hoechst 33342 fluorescence was excited
at 405 nm and recorded in the range of 430–480 nm. Scale bars 15 µm.

3.2.2. Analysis of QD Association Dynamics with the Cells

HeLa cells incubated with QDs for 1, 4 and 24 h have been analyzed to study the
dynamics of QDs interaction with the cells by combination of fluorescent microscopy and
DIC imaging to separate signals from cell surface-associated and internalized QDs, as was
described above. Figure 4a demonstrates that only a few small fluorescent structures can be
detected both inside the cells and on their apical surface after 1 h incubation. However, in
4 h much more peripherally localized vesicular structures can be seen at the cytoplasm level,
and large clusters were detected at the surface. At 24 h, the number of clusters increased and
internalized structures moved into the juxtanuclear region typical for lysosomal localization.
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Quantitative estimation of apparent integral PL intensity per cell (Figure 4b) shows that
the most intensive growth of both associated with the surface and intracellular uptake of
QDs occurs between 2 and 4 h of incubation. At 4 and 24 h, a portion of internalized QDs is
about twice smaller than that associated with the surface.

Figure 4. Dynamics of accumulation of QDs by HeLa and A549 cells, obtained by analysis of confocal
images. (a) Confocal image of HeLa cells after culturing for 1, 4, and 24 h with QDs (50 nM). Typical
optical sections from the Z-series at the level of the nucleus (middle) and on the apical surface (top)
of cells; overlay of differential contrast images of cells and the QD luminescence channel are shown.
(b) QDs’ apparent accumulation by HeLa cells during incubation for 1, 2, 4, and 24 h, plotted from the
integral intensity of QD luminescence at the level of the nucleus (middle) and on the apical surface
(top) of cells. The integral luminescence intensity of QDs per cell in the middle focal plane after 24 h
of incubation is taken at 100%. Photoluminescence of QDs excited at 405 nm and recorded in the
range of 520–620 nm. Scale bars 15 µm.

Such evaluations using image processing of several cells can give significant errors
due to a small number (up to several dozens per experimental point) of calculated objects.
To analyze a larger population (100 thousand cells), the apparent intracellular accumulation
of QDs was also analyzed using flow cytometry. FACS analysis (Figure 5a) has shown
that the accumulation of QDs by A549 cell line is quite similar to that by HeLa cell. The
intensity distribution among the cells makes also it obvious that the accumulation of
QDs by individual cells is very different. The fluorescence intensity associated with the
main portion of the cells increases several times compared with the control; however, the
population contains both the cells that are practically not associated with QDs and the cells
in which fluorescence intensity increases by more than an order of magnitude. Additionally,
some surface clusters can contribute to the total fluorescence. At the same time, the analysis
of the averaged values of PL intensity per cell after 24 h of incubation shows that they are
proportional to the concentration of QDs in the medium (Figure 5b), which is characteristic
of fluid-phase endocytosis [59].

All types of endocytosis occur in surface membrane regions known as rafts, the main
property of which is enrichment with cholesterol. Taking this into account, to quantify
the ratio of internalized versus surface-associated QDs, we tried to use the incubation of
cells with methyl-β-cyclodextrin (MβCD), which removes native lipid from membranes
and thereby suppresses all types of endocytosis. Interestingly, this treatment led to a
decrease in the luminescence intensity of cell cultures interacting with QDs (Figure 5c)
almost to the control level. This result indicates that not only is the entry of QDs into the
cells inhibited but also the association with the surface membrane is blocked when rafts
are disturbed. The tendency to anchoring in rafts was reported earlier in the work by
Karabanovas et al. [60] on QDs functionalized with carboxylic acid coating and functional-
ized with amino groups [61].
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Figure 5. Dynamics of the accumulation of QDs by HeLa and A549 cells obtained by flow cytometry
analysis. (a) Comparison of the distribution of the luminescence intensity of HeLa and A549 cells
in the control and after incubation with 50 nM QDs for 24 h. (b) Concentration dependence of
QD association with HeLa and A549 cells in the control and after incubation with QDs at different
concentrations (50–200 nM) for 24 h. (c) FACS analysis of QD accumulation (50 nM, 24 h) by HeLa
and A549 cells saturated with Methyl-β-cyclodextrin. The results are presented as a mean ± standard
error of at least 40 cells for each case. Three independent experiments were carried out.

To track QDs’ fates upon internalization, we used classical markers of the main
compartments of the endolysosomal pathway [21]. Early endosomes were identified using
Alexa 488-labeled antibodies to EEA1, and lysosomes were identified using Alexa 488-
labeled antibodies to Lamp1. The acidified compartments in general, which included late
endosomes and lysosomes, were identified using vital staining with LysoTracker Green
DND-26. Figure 6 shows the overlay of QDs luminescence channels and that of EEA1
(Figure 6a), Lamp1 (Figure 6b), and LysoTracker (Figure 6c).

Figure 6. Analysis of the association of QDs with markers of the endocytic pathway. Confocal
images of HeLa cells after incubation with QDs (50 nm) for 4 h (a) and 24 h (b,c). Cells were
fixed and immunostained with EEA1/Alexa 488 (a) or Lamp-1/Alexa 488 (b) antibodies before
confocal microscopy. Live cells stained with LysoTracker Green DND-26 (c) for 20 min before confocal
imaging. The insets represent enlarged views (3×) of the corresponding boxed region of the cell.
Photoluminescence of QDs excited at 405 nm and recorded in the range of 520–620 nm. Alexa
488/LysoTracker Green fluorescence was excited at 488 nm and recorded in the 500–550 nm range.
Scale bars 10 µm.

Based on the data on the dynamics of QD interactions with HeLa cells (see Figure 4b),
the analysis of the cargo localization in early endosomes was carried out 4 h after initi-
ation of cells incubation with QDs. Despite the constant presence of QDs in the incuba-
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tion medium, no colocalization with the marker of early endosomes EEA1 was detected
(Figure 6a). Since EEA1 is a key protein in the first phase of heterotypic fusion of early
endosomes [62], an event necessary for entering the pathway of lysosomal degradation,
this result confirms the entry of QDs into cells via nonspecific fluid-phase endocytosis. For
comparison, upon stimulation of receptor-mediated endocytosis of QDs associated with
epidermal growth factor receptor (EGFR), the maximum colocalization of such targeted
complexes with EEA1 reached about 70% (M1 = 0.7 ± 0.2) [21] while, in QDs, was only
about 4% (M1 = 0.04 ± 0.01).

Fluid-phase endocytosis is a typically slow process without saturation effects [59]. It is
well established that molecules internalized through this way are generally recycled back
into the medium, but some fraction of external medium with all its compounds internalized
during the formation of vesicles entering by more specific portals can reach the lysosomes.
Obviously, this portion will be small enough. Indeed, in 24 h of incubation, some of the
QD-containing vesicles were localized together with lysosomal markers in the juxtanuclear
region of the cells (M1 = 0.27 ± 0.05 for Lamp-1 and M1 = 0.31 ± 0.07 for LysoTracker
Green compared with M1 of about 0.7–0.8 in the case of targeted delivery according to our
data [21]). This indicates that untargeted QDs are weakly colocalized with an acidified
compartment of the degradation pathway.

Thus, the interaction of cells with the first component of the QD-SPION nanocom-
posites was analyzed. The study of the SPION interaction with cells is discussed in the
Supplementary Material (Figure S6).

3.2.3. Interaction of QD-SPION Nanocomposites with Cells

QD-SPION nanocomposites with a 1:1 molar concentration ratio of the components
were incubated with HeLa cells for 24 h. Similar to experiments with free SPIONs, the
presence of QD-SPIONs in HeLa cells after fixation was detected using the Pearls reac-
tion (Figure 7a). QD-SPIONs at low concentrations (Figure 7a, left image, 25 nM) are
poorly detected due to the relatively low sensitivity of the method, which is confirmed
by significantly brighter and more distinct staining of cells incubated with QD-SPIONs
at a concentration of 140 nM (Figure 7a, right image). However, the cytotoxicity at this
concentration seems to be relatively high, since in this case, only a few cells of those initially
seeded with the same density, as shown in Figure 7a (left image), remained in the field of
view. These data may indicate a greater cytotoxic effect of the composites in comparison
with QDs.

Nevertheless, the composites were internalized with the same efficiency as free QDs,
forming on average, similar numbers of endosomes per cell. The fluorescence of QD-
SPIONs was reliably detected at 20 nM (Figure 7b–d) and was localized in endosome-like
structures of different sizes.

To establish more accurate localization of QD-SPIONs, cell samples with composites
were analyzed using a combination of confocal microscopy and DIC (Figure 7c), as de-
scribed previously. Composites, as well as in the case of single QDs and SPIONs, were
found both inside the cells and on their surface. Intracellular composites were associ-
ated with relatively small vesicular structures, while there was no diffuse staining of the
cytoplasm or nucleus even after 24 h of incubation. On the surface of cell membranes,
composites were revealed as large clusters (Figure 7c). This arrangement of the composites
is confirmed in Figure 7b, where the orthogonal projection shows a confocal image of
cells with QD-SPION composites and nuclei stained with Hoechst 33342. It should be
noted that in the case of composites, the colocalization of signals from nanostructures with
markers of acidified endolysosomes of the degradation pathway after 24 h is rather low
(M1 = 0.11 ± 0.03) (Figure 7d).

Thus, the interaction of the QD-SPION nanocomposites with cells is similar to the case
of free QDs and SPIONs.
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Figure 7. Microscopy of HeLa cells after incubation with QD-SPIONs (1:1 concentration ratio of QDs
and SPIONs) for 24 h. (a) Light microscopy of cells stained with Perls Prussian blue to detect iron
compounds after the incubation of cells with QD-SPION nanocomposites at concentrations of 25 nM
(left) and 140 nM (right). (b–d) Confocal images of cells after incubation with QD-SPIONs (20 nM):
(b) Optical slice of HeLa cells at the nucleus level (red channel—QD-SPIONs, blue channel—Hoechst
33342); below and on the right, there are orthogonal sections of cells obtained as a result of scanning
along the XZ and YZ axes. (c) Overlay of DIC images of cells and the QD-SPION luminescence
channel. Localization of QD-SPIONs represented by optical sections from the Z-series at the level
of the nucleus (middle) and on the apical surface (top) of HeLa cells. (d) Live cells stained with
LysoTracker Green DND-26 for 20 min before confocal imaging. Visualization is represented by
optical sections from the Z-series at the level of the nucleus (middle) and on the apical surface (top)
of the cells. The insets 1 and 2 represent enlarged views (3×) of the corresponding boxed region of the
cell. Thin arrows show examples of QD-SPIONs inside cells; thick arrows indicate the accumulation
of QD-SPIONs on the cell surface. Photoluminescence of QDs excited at 405 nm and recorded in the
range of 520–620 nm. Hoechst 33342 fluorescence was excited at 405 nm and recorded in the range of
430–480 nm. LysoTracker Green fluorescence was excited at 488 nm and recorded in the 500–550 nm
range. Scale bars 15 µm.

3.2.4. Cytotoxicity of QDs and QD-SPION Nanocomposites

Summarizing the data obtained, it can be argued that the composites manifest them-
selves as stable nanostructures that are easily detected in cells and can be used in further
biological research. In this regard, the study of the cytotoxic effects of both free QDs and
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QDs as part of the QD-SPION nanocomposites is very important. We took into account
that the cytotoxicity can manifest itself in membrane damage and cell death directly on
the substrate as well as in their detachment from the coverslip. In the second case, these
cells are removed from the sample together with the incubation medium during sample
preparation. Using flow cytometry in a series of experiments, the proportion of cells in
the sample after incubation of cells with QDs or QD-SPIONs was determined in relation
to control cells that were not incubated with nanoparticles (Figure 8, left columns), and
among them, the proportion of live cells using the PI test was calculated (Figure 8, right
column of each point).

Figure 8. Analysis of HeLa cell viability during incubation with QDs and QD-SPIONs for 24 h. Data
on the number of cells in the sample and the proportion of live cells (cell viability) are presented in %.
The number of cells of control cells (no QDs or QD-SPIONs) was taken as 100%. The results represent
a mean value ± standard error of the mean.

The data obtained show no cytotoxic effect of QDs within the concentration range
of 50–200 nM, since neither the total number of cells nor the proportion of viable cells
noticeably differ from the control, even though the QD cores contain cadmium. We suggest
that alloyed QDs reliably prevent Cd core ions from leakage into the medium. The study
of the cytotoxicity of QD-SPIONs in the concentration range of 10–140 nM showed that,
starting from 25 nM, a significant cytotoxic effect is observed. Thus, the cytotoxicity of
QD-SPION composites is higher than the cytotoxicity of free QDs. These data confirm the
changes noted in cell morphology in the presence of both free SPIONs and their composites
with QDs.

3.3. Analysis of PL Kinetics of QDs and QD-SPIONs Using Spectrally Selected
Single-Photon Counting

The widespread approach to the study of the PL properties of QDs associated with
cells by steady-state luminescence methods can give an erroneous result, since the QD PL
intensity can decrease for many reasons, including QD aggregation and the emergence of
new non-radiative relaxation channels. We also showed earlier that the pH of the medium
also affects the PL intensity of QDs [63,64]. Steady-state methods cannot answer what
exactly the reason for the quenching of QD luminescence in cells is. However, additional
information on the interaction of QDs with cells can be obtained by studying the QD PL
decay kinetics.

The cells cultured in vitro are grown in media that mimic the biological environ-
ment of cells. Ions, vitamins, essential amino acids, proteins, and other compounds con-
tained in such complex solutions (Thermo Fisher Scientific; DMEM, high glucose, “Techni-
cal Resources—Media Formulations” https://thermofisher.com/ru/ru/home/technical-
resources/media-formulation.8.html, accessed on 15 December 2021) can affect the spectral-
luminescent properties of QDs due to their interaction with the QD surface. In our experi-

https://thermofisher.com/ru/ru/home/technical-resources/media-formulation.8.html
https://thermofisher.com/ru/ru/home/technical-resources/media-formulation.8.html
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ments, HeLa cells grown on the glass coverslips were incubated in DMEM containing QDs
and QD-SPION composites. After cell fixation, areas of 512 × 512 pixels, each containing
about 4–5 cells, were analyzed using the PicoQuant microscope. In this experiment, we
technically were not able to distinguish between luminescence from inside the cells and
that from the cell surface, so the resulting luminescence lifetimes represent averaged values
of signals collected from the whole cells. The QD PL lifetimes were also calculated using
the model of the QD PL decay (Equations (1) and (2)). Figure 9 shows the dependence of
the average PL decay time of free QDs and those bound with SPION QDs on the acquisition
wavelength for different times of incubation with HeLa cells.

Figure 9. Dependence of the average PL decay time of QDs and QD-SPION nanocomposites on the
acquisition wavelength for 4 (a), 24 (b), and 48 (c) hours of incubation in HeLa cells; the dotted curve
shows the PL spectrum of QD solution in DMSO.

The average PL decay time of QDs in cells is noticeably shorter than in the solution. This
is typical for all samples and is explained by the emergence of new non-radiative energy
relaxation channels due to the interaction of the QD surface with the cellular environment.

Figure 9 demonstrates that, for all experiments, an increase in the average QD PL
decay time with the acquisition wavelength is observed. This implies the increasing energy
transfer from smaller QDs to larger QDs and, therefore, indicates the QD aggregation
during their incubation with cells. The efficiency of the energy transfer process between
QDs can be estimated by the following formulae:

EQD−QD
FRET = 1− τ555

τ580
(9)

EQD−QD
FRET =

R6
0

R6
0 + R6

(10)

where τ555 and τ580 are the average PL decay times acquired at 555 and 580 nm, R is the
average distance between quantum dots, and R0 is the Förster radius calculated using
the following formula:

R6
0 =

9000 · ln10 ·Φ2 · ϕ
128 · π5 · n4 · Na

· J (11)

where Φ is the orientation factor that takes into account the mutual orientation of the
transition dipole moments in the donor and acceptor (in solution, Φ2 = 2/3), ϕ is the
PL quantum yield of the energy donor, n is the refractive index of the solvent, Na is the
Avogadro number, and J is the overlap integral between a donor luminescence and an
acceptor absorption spectra.

An estimation of the average distance between quantum dots in cells makes it possible
to calculate the energy transfer rate between QDs using the following formula:

kQD−QD
FRET =

R6
0

τ580 · R6 (12)
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It is clear from Figure 9 and Table 2 that FRET efficiency between adjacent QDs
(EQD−QD

FRET ) increases with incubation time due to the QD aggregation on the cell membrane.
This tendency has already been detected in the analysis of confocal images (Figure 4b),
where “top” corresponds to the surface (membrane) of cells and “middle” refers to inside
of cells. However, upon reaching a certain value of about 30%, QD aggregation ends. This
is typical for both free and composite-bound QDs.

Table 2. Parameters of the QD–QD interaction for free QDs and QD-SPION nanocomposites in cells *.

Incubation
Time, h Nanostructures Type τ555, ns τ570, ns τ580, ns EQD−QD

FRET , %
(9)

R0, nm (11) R, nm (10) kQD−QD
FRET ,

·107s−1 (12)

4 QDs 3.0 ± 0.2 3.2 ± 0.2 3.6 ± 0.2 18 ± 1

4.6 ± 0.2

5.9 ± 0.3 6.2 ± 0.3
4 QD-SPIONs 2.4 ± 0.2 2.8 ± 0.5 3.3 ± 0.8 28 ± 2 5.4 ± 0.3 11.9 ± 0.6
24 QDs 5.0 ± 0.8 6.2 ± 1.0 7.6 ± 0.9 34 ± 2 5.1 ± 0.3 6.7 ± 0.3
24 QD-SPIONs 3.4 ± 0.6 4.2 ± 0.8 4.9 ± 0.9 30 ± 2 5.3 ± 0.3 8.9 ± 0.4
48 QDs 5.1 ± 0.7 6.0 ± 0.1 7.7 ± 0.3 34 ± 2 5.1 ± 0.3 6.7 ± 0.3
48 QD-SPIONs 3.4 ± 0.3 4.5 ± 0.4 5.1 ± 0.4 32 ± 2 5.2 ± 0.3 9.5 ± 0.5

* The numbers (9)–(12) correspond to the formulae that are used to estimate these values.

The increased energy transfer rate in cells between composite-bound QDs, compared
with free QDs, may indicate more pronounced composites’ aggregation than that of free
QDs in cells.

Additionally, all incubation times are characterized by a decrease in the average PL
decay time upon passing from free QDs to composites. This directly indicates the transfer
of energy from QDs to SPIONs, that is, their interaction in the composites. The efficiency of
the QD-SPION quenching can be estimated according to the following formula:

EQD−SPION
Q = 1−

τQD−SPION

τQD
(13)

where τQD and τQD−SPION are the average PL decay times of free and composite-bound QDs.
Figure 10 shows that the efficiency of QD luminescence quenching in QD-SPION

composites plotted as a function of incubation time saturates before 24 h of incubation
regardless of the wavelength and approaches the PL quenching efficiency for these com-
posites in solution (dashed line in Figure 10; the estimates are based on the data given in
Figure 2b). This confirms the stability of the composites in cells.

Figure 10. The efficiency of QD PL quenching by SPIONs in cells estimated by the PL decay times
measured at 555, 570, and 580 nm, as a function of incubation time (data from Figure 9); the dashed
line is PL quenching efficiency in solution (data from Figure 2b).
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A completely different picture is observed at a shorter time (4 h) of incubation of cells
with QD-SPION composites: (i) the efficiency of QD PL quenching depends on the PL
detection wavelength, essentially on QD size; (ii) the efficiency of QD PL quenching by
SPIONs in cells is significantly lower than for 24 and 48 h in cells or for a colloidal solution of
composites. It is known that the formation of aggregates of QDs or aggregates of composites
comprising QDs is accompanied by the appearance of a dependence of the characteristic
QD luminescence decay times on the recording wavelength. This phenomenon is attributed
to the size dispersion of QDs in an ensemble, which in turn leads to the appearance of
Förster energy transfer from smaller to larger QDs. The efficiency of this process can be
estimated using formula (9).

As a rule, aggregation of QDs or their composites leads not only to the wavelength
dependence of the PL decay but also to a sharp decrease in the luminescence quantum
yield due to the appearance of effective non-radiative relaxation of QD electronic excitation.
Therefore, the wavelength dependence of QD luminescence quenching and the weaker
effect of SPIONs on the PL of QDs in the case of short incubation implies that most of
the composites form aggregates on the cell surface. A longer incubation enables QD-
SPION composites to penetrate into the cytoplasm. This leads to an increase in the average
distance between the composites and, as a result, to the elimination of Förster energy
transfer between QDs belonging to different composites, hence the disappearance of the
non-radiative photoexcitation energy relaxation channel competing with the energy transfer
from QDs to SPIONs in a composite.

4. Conclusions

QDs are known for their photostability and brightness, while magnetic nanoparticles
can be used for hyperthermia, one of the ways to kill cancer cells. In this work, QD-SPION
nanocomposites were created for the combined possibility of detection and effect on cells.
The QD-SPION composites created showed fairly high stability of their properties. The
pathways of cellular uptake of nanostructures were studied in detail.

It was shown that QDs and non-targeted QD-SPION nanocomposites can enter the
cells by endocytosis and, during prolonged incubation, accumulate in vesicular structures,
most likely in endolysosomes. It is important to note that, due to the spectral-luminescent
properties of QDs, the composites are perfectly detected in cells even at low nanomolar
concentrations, which allows for minimizing the risks of cytotoxicity.

The spectrally resolved analysis of the QD PL kinetics both free and as part of compos-
ites with energy transfer allows for (1) understanding the reasons for the quenching of QD
luminescence in cells; (2) evaluating the average distance between QDs nearby and, on the
basis of this, concluding the degree of QD aggregation in cells; and (3) drawing conclusions
about the preservation/non-preservation of the QD-quencher composites integrity in cells.
Therefore, the analysis of the luminescence kinetics showed that QDs and SPIONs remain
bound in composites during incubation with cells. Thus, the approach based on PL decay
analysis is more informative for estimations of the biological microenvironment impact
on the luminescent properties of quantum dots in nanocomposites compared with the
analysis of fluorescence intensity and allows us to avoid incorrect interpretation of image
analysis data.
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