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Abstract

The anti-aging gene, klotho, has been identified as a multi-functional humoral factor and is

implicated in multiple biological processes. However, the effects of klotho on podocyte injury

in diabetic nephropathy are poorly understood. Thus, the current study aims to investigate

the renoprotective effects of klotho against podocyte injury in diabetic nephropathy. We

examined lipid accumulation and klotho expression in the kidneys of diabetic patients and

animals. We stimulated cultured mouse podocytes with palmitate to induce lipotoxicity-

mediated podocyte injury with or without recombinant klotho. Klotho level was decreased in

podocytes of lipid-accumulated obese diabetic kidneys and palmitate-treated mouse podo-

cytes. Palmitate-treated podocytes showed increased apoptosis, intracellular ROS, ER

stress, inflammation, and fibrosis, and these were significantly attenuated by klotho adminis-

tration. Klotho treatment restored palmitate-induced downregulation of the antioxidant mole-

cules, Nrf2, Keap1, and SOD1. Klotho inhibited the phosphorylation of FOXO3a, promoted

its nuclear translocation, and then upregulated MnSOD expression. In addition, klotho

administration attenuated palmitate-induced cytoskeleton changes, decreased nephrin

expression, and increased TRPC6 expression, eventually improving podocyte albumin per-

meability. These results suggest that klotho administration prevents palmitate-induced func-

tional and morphological podocyte injuries, and this may indicate that klotho is a potential

therapeutic agent for the treatment of podocyte injury in obese diabetic nephropathy.

Introduction

Klotho was originally identified as an anti-aging gene [1], and it is predominantly produced in

the distal convoluted tubules of the kidney and several other tissues, including the brain cho-

roid plexus, pituitary gland, pancreases, and reproductive organs [2]. There are two distinct
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forms of klotho, including a membrane form and a secreted form. The membrane form serves

as a coreceptor for fibroblast growth factor 23 (FGF-23). It modulates phosphate metabolism

[3]. The secreted form by alternative klotho gene splicing or by the cleavage of large transmem-

brane klotho extracellular domain acts as a hormonal factor with anti-oxidation [4], anti-

inflammatory [5], and anti-senescent [6] properties.

The kidney, under normal physiological conditions, is the major regulator that helps main-

tain klotho levels [7, 8]. However, klotho was reported to decline and to be associated with

renal insufficiency following kidney injuries, such as streptozotocin (STZ)-induced hyperten-

sive diabetic nephropathy (DN), chronic kidney disease (CKD), or ischemia/reperfusion acute

kidney injury [9, 10]. In addition, our recent studies demonstrated that soluble klotho defi-

ciency in plasma is associated with albuminuria in the patients with diabetes, and serum and

urinary klotho levels correlate strongly with renal fibrosis and podocyte foot process efface-

ment [11–13].

Diabetic nephropathy is considered the most common cause of CKD, comprising about 20

to 40 percent of all patients with type 2 diabetes mellitus [14]. Recent evidence suggest that sol-

uble klotho plays a renoprotective role in the experimental models of diabetic nephropathy [5,

15, 16]. However, most studies have been focused on the protective effect of klotho against

tubulointerstitial injury because of the main site of klotho production. The podocyte is a highly

differentiated cell type in the kidney glomerulus, and its loss and dysfunction result in slit dia-

phragm disruption and proteinuria of both clinical and experimental DN [17–19]. Few studies

have shown klotho expression in podocytes and its renoprotective effects in diabetic podocytes

[20, 21]. However, little is known about whether and how klotho protects podocytes against

glomerular damage.

In this study, we investigated the protective effects of klotho against palmitate-induced

podocyte injury.

Materials and methods

Ethics statement

All animal experiments were performed in accordance with the recommendations in the

Guidelines for Proper Conduct of Animal Experiments and Related Activities in Academic

Research Institutions. The protocol was approved by the Committee on the Ethics of Animal

Experiments of Yonsei University Wonju College of Medicine (Protocol Number: YWC-

110225-1 and YWC-140304-1). Daily inspections were performed to minimize animal suffer-

ing and mice with signs of disease or discomfort were euthanized by CO2 and cervical disloca-

tion. Surgical tissue isolations were performed as terminal procedures under anesthesia as

described below.

The Institutional Reviewed Board (IRB) of Soonchunhyang University Cheonan Hospital

(Cheonan, Korea) approved this study. The IRB waived the need to obtain informed consent

from the participants. The methods in this study conformed to the relevant guidelines and

regulations.

Animal model

We purchased diabetic db/db mice (n = 9) and nondiabetic db/m mice (n = 9) at 6 to 7 weeks

of age from Jackson Laboratory (Bar Harbor, MA, USA). We purchased LETO (n = 9) and

OLETF (n = 8) rats from Otsuka Pharmaceutical Co., Ltd. (Tokushima, Japan). We anesthe-

tized all experimental animals at the age of 16 to 46 weeks with Zoletil (Virbac Laboratories,

Carros, France) and xylazine hydrochloride (Rompun TS, Bayer AG, Leverkusen, Germany)

by intraperitoneal injection.
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Human specimens

We obtained normal control kidney tissue from two patients who had undergone unine-

phrectomy for renal cell carcinoma. These samples were free of neoplastic and glomerular

lesions. The nondiabetic control specimen was obtained from a patient with minimal change

disease (MCD). We collected a diabetic kidney biopsy from five patients, which showed the

typical pathology of diabetic nephropathy (S1 Table in S1 File). All renal biopsy specimens

were histopathologically re-examined by one pathologist (JH Lee) to confirm the diagnosis

and pathological features of glomerular injury including glomerular basement membrane

thickening, podocyte foot process effacement, and global sclerosis.

Klotho expression in renal biopsy specimens was investigated by immunohistochemistry.

The paraffin-embedded kidney tissues were cut into 4-μm thickness, deparaffinized in xylene,

hydrated using an ethanol-deionized water series, and stained with klotho (LS-B6625; LifeSpan

BioSciences, Seattle, WA, USA). Primary antibody binding was detected using Bond Polymer

Refine Detection Kit (Leica, Wetzlar, Germany).

In vitro cell culture

Dr. Peter Mundel kindly provided conditionally immortalized mouse podocytes [22]. We cul-

tured the podocytes at 33˚C under permissive conditions in DMEM containing 10% FBS and

10 U/mL of mouse recombinant interferon-γ (Sigma-Aldrich, St. Louis, MO, USA) to enhance

the expression of a thermosensitive T antigen. For differentiation, we cultured podocytes

under nonpermissive conditions at 37˚C without interferon-γ for 14 days. We maintained

these cells under serum-deprived conditions for 24 hours, treated them with 400 μM of palmi-

tate (Pal) with or without 400 pM of recombinant human klotho protein (R&D systems, USA),

oleate (Sigma-Aldrich, St. Louis, MO, USA), or NAC (Sigma-Aldrich) for 24 hours. We then

harvested them for the next assay.

Dr. Moin A. Saleem (University of Bristol, Bristol, UK) generously provided human condi-

tionally immortalized podocytes (AB8/23) [23]. We cultivated the human podocytes at 33˚C

(permissive conditions) in an RPMI-1640 medium supplemented with 10% FBS and Insulin-

Transferrin-Selenium-Pyruvate Supplement (ITSP; WelGENE Inc., Daegu, South Korea) to

induce expression of a thermosensitive T antigen. For differentiation, we maintained podo-

cytes at 37˚C (non-permissive conditions) without ITSP for 14 days. We grew immortalized

human tubule cells in a DMEM/F12 medium containing 10% FBS.

Klotho ELISA

α-klotho in culture media was analyzed using a mouse klotho ELISA kit (Cusabio, Houston,

TX, USA) according to the manufacturer’s protocol. Samples were analyzed in duplicate and

were within the range of the standard curve (3.12–200 pg/mL).

Oil Red O staining

We sliced an OCT-embedded frozen kidney tissue sample into 4-μm thick sections. We fixed

the kidney samples and cells in 4% formalin for 15 minutes, washed them with PBS, and

stained them with Oil Red O (Sigma-Aldrich) working solution for 30 minutes. After remov-

ing the Oil Red O solution, we immediately washed the samples with 60% isopropanol for 5

seconds and then counterstained them for 5 minutes. We observed the histological changes

with a microscope (Leica, Wetzlar, Germany).
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Immunofluorescence

We fixed podocytes that had been cultured on collagen-coated coverslips for 14 days with 4%

paraformaldehyde, permeabilized with 0.25% Triton X-100, blocked with 1% BSA, and immu-

nolabeled with FITC-phalloidin (Sigma-Aldrich, St. Louis, MO, USA), ZO-1 (Invitrogen,

Carlsbad, CA, USA) and paxillin (Invitrogen), as well as FOXO3a (Cell Signaling Technology,

Danvers, MA, USA). Subsequently, we incubated the cells with Alexa 594-conjugated anti-rab-

bit antibody (Invitrogen) for 2 hours at RT. The images were collected using an LSM 510

META laser-scanning confocal microscope (Carl Zeiss Microimaging, Thornwood, NY, USA)

at the Soonchunhyang Biomedical Research Core Facility of Korea Basic Science Institute

(KBSI).

Quantitative real-time PCR

Total RNA was isolated from the kidney cortex and cultured mouse podocytes using TRIzol

(Sigma). cDNA was synthesized from 0.5–1 μg of RNA with a ReverTraAce1 qPCR RT master

Mix (TOYOBO, Japan) according to the manufacturer’s protocol. To evaluate mRNA expres-

sion, cDNA was amplified using SYBR Green PCR Master Mix (TOYOBO). The primer pairs

for mklotho, mMCP-1, mBax, mBcl2, mChop, and rklotho were as follows. mklotho: 5’-agc

aca ggt ttg cgt agt ct-3’ (forward) and 5’-caa tgg ctt ccc tcc ttt ac-3’ (reverse); mMCP-1: 5’-ctg

gat cgg aac caa atg ag-3’ (forward) and 5’-cgg gtc aac ttc aca ttc aa-3’ (reverse); mBax: 5’- gga

tgc gtc cac caa gaa g-3’ (forward) and 5’- caa agt aga ggg caa cca c-3’ (reverse); mBcl2: 5’- tgt

ggt cca tct gac cct cc-3’ (forward) and 5’- aca tct ccc tgt tga cgc tct-3’ (reverse); mChop: 5’- tgt

ggt cca tct gac cct cc-3’ (forward) and 5’- aca tct ccc tgt tga cgc tct-3’ (reverse); mRPL13A: 5’-

cga tag tgc atc ttg gcc ttt-3’ (forward) and 5’- cct gct ctc aag gtt gtt-3’ (reverse); rklotho: 5’-cgt

gaa tga ggc tct gaa ag-3’ (forward) and 5’-gag cgg tca cta agc gaa ta-3’ (reverse). Real-time PCR

reactions were carried out on CFX connectTM (Bio-Rad) and data analysis was performed fol-

lowing ΔΔCT method. Data were normalized by β-actin or rPL13A mRNA levels in the same

sample.

TUNEL assay

We detected DNA fragmentation, which is one of the later steps in apoptosis, by using the

Apo-BrdU in situ DNA fragmentation kit (BioVision, Milpitas, CA, USA). We grew the podo-

cytes on glass cover slips, fixed them in 4% paraformaldehyde in PBS (pH 7.4), and permeabi-

lized them with 0.1% Triton X-100 in 0.1% sodium citrate. The commercial assay was

performed in accordance with the manufacturer’s specifications. We labeled the apoptotic

cells with exposed 3’-hydroxyl DNA ends with brominated deoxyuridine triphosphate nucleo-

tides (Br-dUTP). We then used the FITC labeled anti-BrdU mAb to stain the apoptotic cells.

We visualized the cells by using the LV10i inverted confocal microscope (Olympus, Tokyo,

Japan).

Measurement of Reactive Oxygen Species (ROS) generation

We detected intracellular ROS generation by using a 2’-7’ dichlorofluorescein diacetate

(CM-H2DCFDA; Molecular Probes, Eugene, OR, USA) fluorescent probe. We loaded the

podocytes onto a glass dish with 5 μM CM-H2DCF-DA for 20 minutes at 37˚C. We washed

the excess dye out with PBS. We measured the fluorescence intensity by using an LV10i

inverted confocal microscope.
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Fig 1. Diabetic kidney shows decreased klotho expression. (a) Representative images of the kidney from normal and diabetic biopsies

showing the decreased klotho expression in diabetic podocytes by IHC. Arrowheads and arrows indicated the podocytes and distal tubules

expressing klotho. Boxes are enlarged images of representative klotho expression in podocytes and tubules. magnification 40x; scale

bar = 50 μm. (b) Verification of klotho expression in immortalized mouse and human podocytes compared to human tubule cells by

Western blot. (c) Klotho gene was quantified by real-time qPCR analysis of total mRNA isolated from diabetic and nondiabetic kidneys. (d)
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Western blotting

We homogenized the cultured podocytes and kidney cortex in PRO-PREPTM protein extrac-

tion solution (iNtRON Biotechnology, Seoul, Korea) containing a protease inhibitor cocktail

(Roche Diagnostics GmbH, Mannheim, Germany). We determined the protein concentration

by using a Bradford assay (Bio-Rad, Hercules, CA, USA). We loaded equal amounts of protein

samples per lane, separated them by SDS-PAGE, and transferred them onto a PVDF mem-

brane (Millipore, Billerica, MA, USA). We blocked the membrane by using 5% non-fat dry

milk, followed by primary antibody incubation at 4˚C overnight: klotho (R&D system, Minne-

apolis, USA), nephrin (Progen, Heidelberg, Germany), Nrf2 (Santa Cruz Biotechnology, Santa

Cruz, CA, USA), Bcl2 (Santa Cruz Biotechnology), Bax (Santa Cruz Biotechnology), cleaved

caspase 3 (Cell Signaling Technology), Bip (Santa Cruz Biotechnology), TNFR2 (Santa Cruz

Biotechnology), TLR4 (Santa Cruz Biotechnology), TGF-β1(Santa Cruz Biotechnology), ATF4

(Santa Cruz Biotechnology), keap1 (Cusabio), SOD1 (Cusabio), IL-6 (Cusabio), TNF-α (Cell

Signaling Technology), TRPC6 (Abcam, Cambridge, MA, USA), Fibronectin (Dako A/S,

Glostrup, Denmark), p-FOXO3a (Cell Signaling Technology), FOXO3a (Cell Signaling Tech-

nology), MnSOD (Abcam), and VEGF (Invitrogen). Following primary antibody binding, we

incubated the membranes with horseradish peroxidase (HRP)-conjugated secondary antibody.

We visualized the bands with a ChemiDoc TM XRS+ (Bio-Rad, Hercules, CA, USA) imaging

system using a Luminata Forte enhanced chemiluminescence solution (Millipore).

Statistical analysis

We present the experimental values as a mean ± SEM or SD. The statistical analysis was per-

formed using a two-tailed unpaired Student’s t-test, and one-way ANOVA. P value less than
0.05 was considered significant.

Results

Decreased klotho expression in the glomeruli of obese diabetic

nephropathy

To determine whether podocytes in the glomerulus are one of the sources to express klotho,

we analyzed the distribution of klotho in human kidney using immunohistochemistry. Consis-

tent with the previous result, we observed the klotho in the distal tubules being surrounded by

normal tubulointerstitium. Podocytes in the normal glomerulus showed klotho expression as a

cytoplasmic pattern, whereas the expression level of klotho was decreased in diabetic podo-

cytes and tubules (Fig 1A). As shown in Fig 1B, we verified the expression of klotho in both

immortalized mouse and human podocytes using Western blots. Proteinuria is a common

consequence of kidney disease and is considered a marker of the severity of the disease pro-

cesses. In db/db and OLETF diabetic mice with increased albuminuria, renal expression of

klotho was significantly decreased at RNA and protein levels compared to the control (Fig 1C

and 1D).

Decreased klotho expression in palmitate-treated mouse podocytes

Renal lipid accumulation leads to glomerular damage and produces kidney dysfunction. To

determine the renal lipid accumulation in obese diabetic kidney and mouse podocytes, we

Western blot demonstrating decreased klotho in diabetic db/db mice (n = 9) and OLETF rats (n = 8). Data is presented as the mean ± SEM.
� P< 0.05 versus nondiabetic db/m mice and LETO rats.

https://doi.org/10.1371/journal.pone.0250666.g001
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visualized the lipid contents by using Oil-Red O staining. The kidney from diabetic patients

showed increased lipid accumulation in glomeruli compared to nondiabetic control (Fig 2A),

and podocytes treated with palmitate accumulated intracellular lipid droplet formation (Fig

2B). To evaluate the expression levels of klotho and slit diaphragm protein, nephrin, we incu-

bated podocytes with palmitate in a dose-dependent manner and harvested them at 24 hours

following treatment. Western blot analysis showed that klotho and nephrin protein levels were

significantly decreased in palmitate-treated podocytes compared to BSA control (Fig 2C). Fur-

thermore, stimulation of high glucose (HG) and advanced glycation end-products (AGE), and

co-treatment of HG with palmitate reduced klotho expressions at RNA and protein levels,

respectively (S1A and S1B Fig in S1 File). To investigate whether palmitate decreased soluble

klotho in mouse podocytes, an ELISA assay was performed using supernatant collected from

mouse podocytes. Consistent with our previous study demonstrating that soluble klotho was

negatively correlated with albuminuria in type 2 diabetic nephropathy [11, 12], soluble klotho

in culture media was decreased by palmitate treatment compared to control (Fig 1D).

Recombinant klotho inhibits palmitate-induced apoptosis in mouse

To examine whether klotho could prevent palmitate-induced cell death, we stimulated podo-

cytes with palmitate, with or without recombinant klotho (rKL). As shown in Fig 3A,

decreased cell viability by palmitate was significantly ameliorated by the rKL treatment. Apo-

BrdU TUNEL assay showed the increased incorporation with DNA strand breaks in palmi-

tate-treated podocytes than in the control, whereas rKL treatment significantly decreased

BrdU-FITC expression, as observed in oleate-treated cells (Fig 3B). Further, cleaved caspase-3

and Bax, which are known as apoptosis-related molecules, were significantly increased in pal-

mitate-treated podocytes as compared to the control cells, whereas the increased expression

levels of these proteins were significantly attenuated by rKL. Furthermore, Bcl2 decreased by

palmitate treatment was restored by KL (Fig 3C and 3D). This data indicates that klotho pre-

vents palmitate-induced cytotoxicity in podocytes.

Klotho inhibits palmitate-induced oxidative stress and ER stress

Next, we examined the effect of klotho on ROS production and ER stress. As shown in Fig 4A

and 4B, intracellular ROS was increased in palmitate-treated podocytes compared to control,

whereas the increased ROS production was significantly ameliorated by rKL treatment as

shown in ROS scavenger NAC-treated podocytes and oleate. In addition, the ER stress mark-

ers, such as Bip, ATF4, and Chop increased in palmitate-treated podocytes, were significantly

decreased by rKL as shown in NAC-treated cells (Fig 4C and 4D).

Klotho induces antioxidant activity through FOXO3a in palmitate-treated

mouse podocytes

To examine the antioxidant activity of klotho on palmitate-induced oxidative stress, we inves-

tigated Nrf2, which plays a critical role in the response against oxidative stress. After the

Fig 2. Increased lipid accumulation and decreased klotho expressions in palmitate-treated mouse podocytes. (a

and b) Representative Oil-Red O staining from diabetic human kidney biopsies (a) and palmitate-treated mouse

podocytes (b) demonstrating the increased lipid accumulation. Boxes are enlarged images of representative lipid

droplets. magnification 20x; scale bar = 50 μm and 100 μm. (c) Western blot showing the decreased expression of

klotho and nephrin proteins by palmitate treatment. Podocytes that were not treated with palmitate or BSA were

marked as 0 μM. (d) ELISA assay demonstrating decreased soluble klotho by palmitate treatment. Culture media was

collected from podocytes treated by palmitate in a dose-dependent manner. Data is presented as the mean ± SD.

Similar results were obtained in two independent experiments. �P< 0.05 versus BSA-treated control (CTL).

https://doi.org/10.1371/journal.pone.0250666.g002

PLOS ONE Klotho effects on palmitate-induced podocyte injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0250666 April 23, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0250666.g002
https://doi.org/10.1371/journal.pone.0250666


PLOS ONE Klotho effects on palmitate-induced podocyte injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0250666 April 23, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0250666


treatment with palmitate, the expression levels of Nrf2 and keap1 were downregulated and

Nrf2 down-stream target SOD1 was also decreased. However, rKL treatment restored the

decreased expression of these proteins (Fig 5A). Next, to investigate the underlying molecular

mechanism for the protective role of klotho, we checked the expression of antioxidant enzyme

induced by FOXO3a activity. As shown in Fig 5B, western blots with whole-cell lysates

revealed that palmitate treatment increased FOXO3a phosphorylation, whereas rKL inhibited

FOXO3a phosphorylation. Also, rKL restored MnSOD expression decreased by palmitate. Fig

5C showed the klotho-induced FOXO3a nuclear translocation by immunostaining assay. Pal-

mitate-treated podocytes showed decreased levels of FOXO3a in the nucleus compared to con-

trol cells (Fig 5C). However, treatment of rKL restored FOXO3a levels in the nucleus

compared to palmitate-treated cells indicating that palmitate-mediated FOXO3a phosphoryla-

tion inhibits translocation of FOXO3a into the nucleus. This data suggests that klotho protects

podocyte injury against palmitate-induced oxidative stress by enhancing the activity of

antioxidants.

Klotho suppresses the expression of inflammatory cytokines and fibrotic

markers

Along with oxidative stress, inflammation and fibrosis have been associated with the progres-

sion of DN. The expression levels of inflammatory cytokines, tumor necrosis factor (TNF)-α,

TNFR2, TLR4, and IL-6 at protein level, and MCP-1 at RNA level were increased in palmitate-

treated podocytes, but rKL treatment attenuated these increased expression levels (Fig 6A and

6B). As shown in Fig 6C, the expression levels of fibronectin and TGF-β1, the profibrotic fac-

tors, were increased in the palmitate-treated podocytes. In addition, palmitate treatment

exhibited an increased expression of VEGF associated with pathogenesis of diabetic retinopa-

thy. However, rKL treatment exhibited a decreased expression of these proteins.

Klotho attenuates palmitate-induced actin cytoskeleton disruption and

albumin permeability

To assess whether klotho could restore palmitate-induced cytoskeleton rearrangement and

changes in cell-cell junctions, we subjected podocytes to immunofluorescence. As shown in

Fig 7A, palmitate disrupted the uniformly organized actin stress fibers throughout the podo-

cyte cytoplasm, whereas rKL treatment restored these changes. The expression of ZO-1 at the

cell junction was reduced in palmitate-treated podocytes as compared to the control cells.

Treatment with rKL restored the ZO-1 levels, as did the F-actin. Furthermore, rKL treatment

restored the decreased expression of nephrin and the increased TRPC6 expression (Fig 7B).

To evaluate the effect of klotho on podocyte filtration barrier function, we tested the albumin

permeability. We observed a significant increase in albumin permeability in palmitate-treated

podocytes, whereas rKL treatment attenuated albumin leakage (Fig 7C). This data suggests

that klotho could improve the podocyte actin cytoskeleton and function.

Fig 3. Klotho protects podocytes from palmitate-induced cell death. Mouse podocytes were stimulated by palmitate with

or without treatment of rKL for 24 hours. (a) Cell cytotoxicity was assessed by MTT assay (n = 6). (b) Podocytes grown on

coverslips were fixed with 4% PFA and performed Apo-BrdU in situ DNA fragmentation assay. Cells were stained with

propidium iodide (PI, red) and the Br-dUTP/TdT enzyme (green). Magnification 10x; bar = 200 μm. (c) Western blot and

(d) real-time qPCR (n = 3) demonstrating the restored expression of apoptosis-related molecules by rKL. Consistent with

rKL, oleate and ROS scavenger NAC restored the palmitate-induced apoptosis. Data are presented as the mean ± SD. The

experiments were repeated twice. �P< 0.05 compared to control (CTL). #P< 0.05 compared to palmitate (Pal).

https://doi.org/10.1371/journal.pone.0250666.g003
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Fig 4. Klotho protects mouse podocytes from palmitate-induced oxidative stress and ER stress. (a) Representative images of ROS

measurements in podocytes loaded with 2’7’-dichlorofluorescein (DCF) dye. Magnification 40x; bar = 40 μm. (b) The intensity of DCF was

quantified by Image J software. (c) Western blot and (d) real-time qPCR (n = 3) showing decreased expression of ER stress markers by rKL.

The blots were cropped from different parts of the same gel. Data are expressed as mean ± SEM for three experiments.

https://doi.org/10.1371/journal.pone.0250666.g004
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Discussion

We have demonstrated that klotho in glomerular podocytes was decreased in the lipid-accu-

mulated obese diabetic kidney and palmitate-treated podocytes. The administration of rKL

protein could protect podocytes from injury under obese diabetic mimic conditions by inhibit-

ing intracellular ROS, ER stress, and apoptosis. rKL inhibited the phosphorylation of FOXO3a

induced by palmitate, and it promoted its nuclear translocation. Therefore, rKL increased

MnSOD and antioxidants expression during palmitate-induced toxicity in podocytes. Further-

more, rKL restores palmitate-mediated inflammation, fibrosis, disruption of the actin cytoskel-

eton, and increased albumin permeability. These findings suggest that rKL restores palmitate-

mediated functional and morphological podocyte injuries, which indicates that klotho has a

protective effect on the glomerular injury of obese DN.

Abnormal lipid metabolism and accumulated lipids in non-adipose tissue causes various

types of cellular and organ damage in several chronic diseases, including DN. Free fatty acid

(FFA) is the major pathogenic mediator in the development of diabetes mellitus and its com-

plications [24]. Palmitate is the most abundant circulating saturated FFA in human and rodent

plasma [25, 26] and impairs insulin signaling and increases ER stress, whereas monounsatu-

rated fatty acid oleate has a protective effect by restoring palmitate-induced defects at insulin

signaling [27]. Type 2 diabetic patients showed 1.5- and 3-fold higher plasma palmitate levels

compared with healthy subjects [28]. Accumulated renal lipids lead to glomerular damage and

produce dysfunction in podocytes that maintain a glomerular filtration barrier. Consistent

with previous studies showing lipid accumulation in podocytes and human DN [24, 29], in the

present study, lipid deposition was observed in obese diabetic human kidneys and in palmi-

tate-stimulated podocytes. In many studies, a renal klotho expression is decreased in experi-

mental animal models and in the patients with diabetic nephropathy [9, 10], and plasma

soluble klotho is negatively correlated with the progression of nephropathy with type 2 diabetic

patients [11–13]. Further, hyperglycemia and angiotensin II inhibited klotho gene expression

[30, 31]. Consistently, we found that glomerular podocyte is another source of klotho expres-

sion along with renal tubules, and klotho expression is decreased from lipid-accumulated

obese diabetic kidney and palmitate-induced podocyte injury.

Production and function of klotho are reduced in obese diabetes, and rKL administration

can make up for those losses. Increasing evidence has shown that klotho administration or

overexpression can be renoprotective against glomerular injury. Deng et al. showed that the

klotho transgene ameliorates kidney hypertrophy and glomerular injury in STZ-induced DM

[15]. In addition, Kim et al. observed that klotho attenuates proteinuria by suppressing the

TRPC6 channel in podocytes [20]. Furthermore, Oh et al. investigated whether klotho exerts a

renoprotective effect against glomerular injury in diabetes, and observed that administration

of klotho has a protective effect on glomerular hypertrophy via a cell cycle-dependent manner

and decrease albuminuria in DM [21]. However, the renoprotective effect of klotho in lipotoxi-

city-induced obese diabetic kidney disease remains unclear.

The accumulation of palmitate induces oxidative stress affecting protein misfolding [32].

Excessive production of ROS induced by palmitate participates in ER Ca2+ depletion and ER

Fig 5. Klotho induces antioxidant activity by regulating the FOXO3a in palmitate-treated mouse podocytes. (a) Western blots

demonstrating the restored expression of anti-oxidative proteins by rKL. The blots were cropped from different parts of the same gel. (b)

Western blots measuring the protein expression of phosphorylated FOXO3a (p-FOXO3a) and MnSOD. All proteins were normalized to

β-actin or total (t) protein controls. (c) Immunofluorescence staining showing klotho-induced FOXO3a nuclear translocation. Arrows

indicated FOXO3a expression in the nucleus. The intensity of DCF was quantified by Image J software. Magnification 40x; scale

bar = 40 μm. Data are expressed as mean ± SEM for three experiments. �P< 0.05 compared to control (CTL). #P< 0.05 compared to

palmitate (Pal).

https://doi.org/10.1371/journal.pone.0250666.g005
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stress-mediated cell death [33]. Our study showed that the anti-ROS function of klotho

restores the upregulated expression of ER stress-associated proteins and cell death in palmi-

tate-mediated podocyte injury. Increased oxidative stress occurs by an imbalance between

ROS production and the antioxidant defense system in DM [34]. The overproduction of ROS

in mitochondria under pathogenic conditions results in detrimental consequences, leading to

impaired cell function and death [35, 36]. Nrf2 is a transcriptional factor that regulates the cel-

lular antioxidant response by binding to the antioxidant response element (ARE) and appears

to counteract renal damage in diabetes [37, 38]. Klotho induces Nrf2-mediated antioxidant

defenses in several models [39, 40]. In our study, we observed that klotho increased Nrf2 and

SOD1 proteins in palmitate-treated podocytes.

The FOXO transcription factor is an important regulator of longevity and cancer by regu-

lating target genes associated with cellular differentiation, oxidative stress resistance and nutri-

ent shortage [41]. Phosphorylation modification regulates FOXO3a activity through a

cytoplasmic-nuclear shuttle mechanism. The PI3K-AKT signaling pathway regulates FOXO3a

activity through phosphorylation at three conserved residues (Thr 32, Ser 253, and Ser 315).

This phosphorylation excludes FOXO3a from the nucleus and induces binding to the14-3-3

nuclear export proteins, promoting its cytoplasmic accumulation and inhibiting the transacti-

vating activity of FOXO3a [42]. Yamamoto et al. demonstrated that klotho reduces FOXO

phosphorylation and promotes its nuclear translocation [4]. Lim et al. showed klotho’s protec-

tive role during tacrolimus-induced oxidative stress via FOXO3a-mediated MnSOD expres-

sion [43]. In the present study, we found that klotho decreases palmitate-induced FOXO3a

phosphorylation resulting in its nuclear translocation and enhances antioxidant expression,

including MnSOD. Taken together, this data suggests that klotho protects podocyte dysfunc-

tion against palmitate, which might be dependent on the FOXO3a-mediating antioxidant

defense system.

Growing evidence suggests that elevated pro-inflammatory cytokines, along with oxidative

stress, have been involved in the pathogenesis of diabetes mellitus and DN [44, 45]. The mech-

anism of lipotoxicity directly or indirectly involved the activation of inflammatory and profi-

brotic responses [46, 47]. The enhanced expression of IL-6, TNF-α, and IL-1 in DN is related

to proteinuria and the progression of DN. These inflammatory cytokines can activate the pro-

duction of VEGF [48]. Klotho has been reported to exhibit anti-inflammatory activity under

several pathological conditions [49, 50]. In our experiment, we showed that klotho administra-

tion prevented increased inflammatory cytokines, TNF-α, IL-6, and TNFR2 and MCP-1, and

also increased fibrosis-related molecules, fibronectin, and TGF-β1 in the palmitate-stimulated

podocytes. These results suggested that klotho administration has a protective effect on inflam-

mation and fibrosis mediated by lipotoxicity.

Proteinuria is a characteristic milestone in DN and is considered a marker of the disease

process’s severity. The structure of the actin cytoskeleton in podocytes is important in main-

taining a proper glomerular filtration barrier function [51, 52]. Palmitate-induced cytoskeleton

rearrangements in podocytes are associated with ER Ca2+ release mediated by phospholipase

C (PLC) activation [20]. In our previous study, we observed that TRPC6, a downstream target

of Ang II receptor signaling, is associated with the rearrangement of the actin cytoskeleton and

albumin permeability via Ca2+ influx [53]. Some studies have shown that soluble klotho

Fig 6. Klotho ameliorates palmitate-induced inflammatory chemokines and fibrosis in mouse podocytes. (a) Western blots

demonstrating the restored expression of inflammatory chemokines. (b) Real-time qPCR demonstrating decreased MCP-1 at the RNA

level by rKL treatment. (c) Western blots showing restored expression of fibrosis-related molecules by treatment of rKL. The blots were

cropped from different parts of the same gel. Data are presented as the mean ± SD. The experiments were repeated three times. �P< 0.05

compared to control (CTL). #P< 0.05 compared to palmitate (Pal).

https://doi.org/10.1371/journal.pone.0250666.g006
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Fig 7. Klotho restores palmitate-induced actin cytoskeleton disruption and impaired filtration barrier function of mouse podocytes. (a)

Representative morphologic changes of F-actin in palmitate-treated podocytes with or without rKL. Magnification 40x; scale bar = 50 μm. (b)

Western blots demonstrating the restored expression of nephrin (left) and TRPC6 (right) by rKL. The blots were cropped from different parts of the

same gel. (c) Podocyte permeability to albumin was measured. Podocytes on transwell filter chambers were treated with palmitate with or without

rKL. Bovine serum albumin-containing medium (40 mg/ml) was added into the lower chambers, and then the upper chambers were sampled. Data
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prevents renal damage [54] and protects against actin cytoskeletal reorganization and albumin

leakage in podocytes by suppressing TRPC6 overexpression [20]. In this study, we found that

the administration of klotho prevents the palmitate-induced arrangement of the actin cytoskel-

eton, decreased expression of nephrin, and albumin permeability. Also, klotho prevents palmi-

tate-induced TRPC6 overexpression.

In conclusion, we demonstrated that klotho is expressed in glomerular podocytes and that

lipid-accumulated podocytes decrease klotho expression. Klotho administration protects

against oxidative stress, inflammatory responses, fibrosis, cytoskeleton changes, and cell death

in palmitate-induced podocyte injury, eventually improving the podocyte filter function.

These renoprotective effects are strongly associated with its ability to inhibit palmitate-induced

oxidative stress by inhibiting phosphorylation of FOXO3a mediating antioxidant defense sys-

tem. Our observations strongly suggest that klotho may be a potential therapeutic agent to

treat diabetic podocytes.
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