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The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the ‘apicoplast’. The
discovery of the apicoplast ushered in an exciting new prospect for drug development against the para-
site. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of
therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast
have further reinforced its ‘plant-like’ characteristics and potential as a drug target. However, we
are still not sure why the apicoplast is essential for the parasite’s survival. This review explores the ori-
gins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle
within the parasite we also take a closer look at the transporters decorating the plastid to better
understand the metabolic exchanges between the apicoplast and the rest of the parasite cell.
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1. INTRODUCTION
The apicoplast is a vestigial plastid present in most
parasites of the Phylum Apicomplexa. The group
derives its name from the apical complex, a collection
of anterior structures that allow the parasite to invade
host cells and establish themselves therein. Apicom-
plexans are responsible for a wide range of serious
diseases of humans, livestock, wild animals and invert-
ebrates and there are an estimated 5000 species of
parasites in the group. Human apicomplexan diseases
include malaria and toxoplasmosis; babesiosis, theiler-
iosis and coccidiosis are common problems in
livestock. Malaria is a major global health problem
with 3.3 billion at risk of infection and an estimated
250 million cases per year that resulted in nearly a
million deaths in 2006 (WHO world malaria report
2008). Malaria is endemic in tropical areas owing to
warm temperatures and high humidity, which are con-
ducive to transmission by the mosquito vectors. Most
of the disease burden lies in Africa, where treatment
accessibility is the greatest limiting factor. Conse-
quently, malaria is often considered a ‘poor man’s
disease’ and, unlike most diseases, the malaria
problem is becoming worse rather than better.

The current greatest challenge in malaria manage-
ment is the resistance of parasites to conventional
monochemotherapies like chloroquine and sulphadox-
ine-pyrimethamine. These therapies were cheap and
effective but they are losing efficacy worldwide owing
to resistance. Artemisinin-based combination thera-
pies are currently the most effective treatment and
patients’ drug compliance is also reasonable. Although
combinatorial therapies are proving to be more
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effective in fighting malaria, and resistance will hope-
fully take longer to erode their utility, it is imperative
to discover more drug targets to manage the disease
before any more drugs lose clinical relevance.
Indeed, we need to identify as many new drug leads
as possible to expand our repertoire of drugs to use
in combination therapies and also to allow rotation
to minimize resistance.

The discovery of the apicoplast ushered in an exciting
new prospect for drug development against Plasmo-
dium falciparum. The eubacterial ancestry of the
organelle offers a wealth of opportunities for the devel-
opment of therapeutic interventions (McFadden et al.
1996; McFadden & Roos 1999). Morphological, bio-
chemical and bioinformatic studies of the apicoplast
have further reinforced its ‘plant-like’ characteristics
and potential as a drug target. However, we are still
totally ignorant about why the apicoplast is essential
to the parasite’s survival (Fichera & Roos 1997; He
et al. 2001). This review explores the origins and meta-
bolic functions of the apicoplast. In an attempt to
decipher the role of the organelle within the parasite
we also take a closer look at the transporters decorating
the plastid to better understand the metabolic
exchanges between the apicoplast and the rest of the
parasite cell.
2. ORIGIN AND EVOLUTION
(a) Where did the apicoplast come from?

The apicoplast is clearly of secondary endosymbiotic
origin, which refers to one eukaryote having engulfed
and retained another eukaryote with a plastid obtained
by primary endosymbiosis of a cyanobacterium-like
prokaryote. Secondary endosymbiotic plastids
typically have three or four membranes, whereas
primary plastids invariably have only two membranes,
which are homologous to the two membranes of the
This journal is # 2010 The Royal Society
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Gram-negative ancestral cyanobacterium like endo-
symbiont. Some observers describe three membranes
around the apicoplast but the majority see four, and
no one claims to see two, so a secondary endosymbio-
tic origin is agreed upon. The outermost membrane of
the apicoplast is analogous to the phagosomal mem-
brane of the host cell, hence it is also of endosomal
origin. The second outermost membrane of the apico-
plast originates from the plasma membrane of the
engulfed alga cell. The inner pair of membranes is
equivalent to the outer and inner envelopes of the
chloroplast, which evolved from the cell surface envel-
ope of the engulfed cyanobacterium by the primary
host.

What is not agreed however is the nature of the sec-
ondary endosymbiont. One school contends that the
endosymbiont was a green alga (Kohler et al. 1997;
Funes et al. 2002), whereas another school favours a
red algal endosymbiont. In our view, a red algal endo-
symbiont is now proven beyond much doubt by the
discovery of the photosynthetic apicomplexan Chro-
mera, which clearly has a plastid derived from a red
alga that has the same origins as the apicoplast. A
red algal origin for the apicoplast is also part of a
much broader hypothesis for secondary endosymbiotic
origin of plastids in a large group of protists known as
the chromalveolates. The chromalveolate theory pro-
poses that all algae belonging to Chromalveolata
possess secondary red plastids acquired by a single
common endosymbiotic event, whereby a rhodophyte
alga is engulfed by a heterotrophic eukaryotic host
(Cavalier-Smith 1999). This supergroup includes Api-
complexa, Dinophyta, Ciliophora, Heterokonts,
Haptophyta and Cryptophyta. In support of the chro-
malveolate hypothesis, structural characteristics of
the plastid genome (Blanchard & Hicks 1999) and
phylogenetic analyses of the nuclear-encoded plastid-
targeted GAPDH (Fast et al. 2001) and coxII (Waller
et al. 2003a) genes reinforced the red algal origin of
the apicoplast. Similarly, the apicoplast genome archi-
tecture is also more consistent with a red algal ancestry
(Blanchard & Hicks 1999; McFadden 2000; Fast et al.
2001; Harper & Keeling 2003).

Members of Apicomplexa, including P. falciparum,
Toxoplasma gondii, Eimeria tenella, Babesia bovis and
Theileria annulata, and the above-mentioned photo-
synthetic Chromera spp. all harbour an apicoplast.
However, the apicoplast is apparently absent from
gregarines (Toso & Omoto 2007), colpodellids
(Kuvardina et al. 2002) and Cryptosporidium spp.
(Zhu et al. 2000) and these members are now
presumed to have lost their apicoplasts.

There are no fossil records for apicomplexa but
molecular dating estimates the apicomplexan protists
to have evolved between 600–800 Ma ago (Douzery
et al. 2004) and there are fossils of the sister group
dinoflagellates that are in excess of 400 million years
old. Therefore, it is reasonable to assume that the orig-
inal free-living apicomplexan parasitized marine
invertebrates prior to the establishments in terrestrial
vertebrates (McFadden & Waller 1997; Okamoto &
McFadden 2008; Obornik et al. 2009). The discovery
of the free-living and coral-associated Chromera velia
is apparently a transition form from autotrophic
Phil. Trans. R. Soc. B (2010)
symbiont to parasite and provides a glimpse into the
earliest form of the apicomplexan–animal interaction
(Moore et al. 2008). Ultrastructural examinations
and molecular phylogenetic analyses demonstrated
this new organism to be the closest known photosyn-
thetic relative to apicomplexan parasites and the
common origin of its plastid to the apicoplasts
(Moore et al. 2008). The autotrophic nature of
C. velia allows it to be cultivated independently of its
coral host, which provides a model to study apicom-
plexan evolution and what makes the apicoplast
essential (Moore et al. 2008).
(b) The apicoplast and the mitochondrion

constitute the sticky duo

One striking feature of the apicoplast is its close proxi-
mity to the single mitochondrion (van Dooren et al.
2006). Early electron micrographs of various species
of Plasmodium revealed a ‘spherical body’ in intimate
association with the single mitochondrion within the
parasites (Aikawa 1966; Hepler et al. 1966). Initially
the ‘spherical body’ was speculated to be a metabolic
store for the mitochondrion (Aikawa 1966; Hepler
et al. 1966), but we now know this body as the apico-
plast (McFadden et al. 1996; Kohler et al. 1997).
Indeed the closeness of the two organelles seems
attributable to their metabolic dependences (Ralph
et al. 2004; van Dooren et al. 2006) discussed below.

During its life cycle the Plasmodium parasite under-
goes three rounds of asexual reproduction:
erythrocytic schizogony, sporogony within the oocyst
in the mosquito’s midgut wall, and exo-erythrocytic
schizogony within the liver cell. What happens to the
apicoplast during these cell proliferation stages? Gen-
etic manipulation and reporter constructs have
facilitated multiple labelling of intracellular compart-
ments in Plasmodium (van Dijk et al. 1995; Wu et al.
1995) allowing the organelle to be observed in live
parasites. Throughout the various asexual stages of
the parasite, the apicoplast is always in close contact
with the mitochondrion (figure 1; van Dooren et al.
(2005, 2006; Stanway et al. 2009). In erythrocytic
stages the apicoplast starts out as a relatively simple
round structure, elongates, branches extensively and
eventually divides such that each daughter cell has a
single small apicoplast (van Dooren et al. 2005,
2006; Stanway et al. 2009). In contrast to the apico-
plast in asexual stages, the apicoplast in gametocytes
remains simple and unelaborated morphologically
but its intimate relationship with the mitochondrion
is preserved (figure 1; Okamoto et al. 2009; Stanway
et al. 2009). It is noteworthy that the apicoplast and
mitochondrion were only observed in female gameto-
cytes and this is congruent with the maternal
inheritance of the organelles (Sinden et al. 1976,
1978; Creasey et al. 1994; Okamoto et al. 2009;
Stanway et al. 2009).
(c) Endosymbiotic gene transfer and apicoplast

protein import

Compared with the usual photosynthetic plastid
genomes, the 35 kb circular apicoplast genome is one
of the smallest known to date (Reith & Munholland



intra-erythrocytic
stages 

mosquito stages

exo-erythrocytic or liver stages
apicoplast only

sporozoite

gametocyte gamete × 2

zygote

ookinete

oocyst
apicoplast only

schizont

merozoite

early

late

trophozoite

ring

Figure 1. Morphology of the apicoplast throughout the different life stages of Plasmodium. Images of the malaria parasite at differ-
ent life stages are taken from Van Dooren et al. (2005), Okamoto et al. (2009) and Stanway et al. (2009). In the intra-erythrocytic
stages and the gametocyte. Green denotes mitochondrion; red denotes apicoplast; blue denotes nucleus. In the sporozoite and
other non-erythrocytic stages of the parasite, green denotes apicoplast; red denotes mitochondrion; blue denotes nucleus.

(Reproduced with permission from Stanway et al. (2009), The Biochemical Society, http://www.biolcell.org).
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1993; Wilson et al. 1996; Oudot-Le Secq et al. 2007;
Rogers et al. 2007; Obornik et al. 2009). As a conse-
quence of the establishment of an endosymbiont as
an organelle, many genes of the endosymbiont have
transferred to the host cell nucleus (Martin &
Herrmann 1998). Endosymbiotic gene transfer likely
minimizes the effects of Muller’s ratchet, whereby
non-recombining genomes accumulate deleterious
mutations. Nuclear primacy probably also serves to
provide more subtle gene regulation so that the host
cell can manage its endosymbiont better (Martin &
Herrmann 1998). In general, the apicoplast genome
encodes less than 50 proteins and a great majority
are encoded by nuclear genes and the products
targeted into the organelles (Wilson et al. 1996;
McFadden 2000).

The general pathway by which most nuclear-
encoded proteins traffic to the apicoplast is mediated
by a bipartite leader at the N-terminus of a polypep-
tide chain (Waller et al. 1998, 2000). This leader
sequence comprises a signal peptide (SP), which
commits the nascent polypeptide chain into the
endomembrane system in which the apicoplast is
positioned, and a transit peptide (TP), which takes
the protein into the plastid (Waller et al. 2000).
Phil. Trans. R. Soc. B (2010)
Positive charges at the N-terminus of the TP are
essential for faithful apicoplast targeting but the TP
lacks any consensus and no secondary structure is
evident (Foth et al. 2003; Tonkin et al. 2006,
2008a). Recent work has focused on the machinery
in apicoplast membranes that translocates the protein
cargo across the apicoplast membranes. Transport
across the outermost membrane is the courtesy of
the SP. Passage through the next membrane (the
periplastid membrane) is now believed to be
mediated by an extra set of endosymbiont-derived
endoplasmic reticulum-associated degradation com-
plex (Sommer et al. 2007; Tonkin et al. 2008b;
Kalanon et al. 2009; Spork et al. 2009). Since the
inner pair of apicoplast membranes is homologous
to that of the primary plastids, the translocon of
outer envelope of chloroplast (TOC) and translocon
of inner envelope of chloroplast (TIC) complexes are
postulated to facilitate protein import (van Dooren
et al. 2001; Tonkin et al. 2008b). Thus far no
TOC components have been identified in apico-
plasts, but two TIC components—Tic20 and
Tic22—have been described in or associated with
the inner apicoplast membrane (van Dooren et al.
2008; Kalanon et al. 2009).

http://www.biolcell.org
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Figure 2. Metabolic map of apicoplast in relation to the mitochondrion in Plasmodium. PfoTPTand PfiTPTare the only ident-

ified transporters on the apicoplast. They are hypothesized to supply carbon and energy to fuel the metabolic pathways of the
organelle. The nature and fates of the substances the apicoplast is predicted to make are unknown, as indicated by the question
marks. ALA: aminolaevulinic acid; CPIII: coproporphyrinogen III; DHAP: dihydroxyacetone phosphate; DOXP: 1-deoxy-D-
xylulose-5-phosphate; DXS: DOXP synthase; G3P: glycerol-3-phosphate; GA3P: glyceraldehyde-3-phosphate; GpdA: gly-
cerol-3-phosphate dehydrogenase; 3PGA: 3-phosphoglyceric acid; PDH: pyruvate dehydrogenase; PEP:

phosphoenolpyruvate; PfiTPT: P. falciparum innermost triose phosphate translocator; PfoTPT: P. falciparum outermost
triose phosphate translocator; PK: pyruvate kinase; and TPI: triose phosphate isomerase.
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3. WHAT IS THE FUNCTION OF THE
APICOPLAST? METABOLIC PATHWAYS
OF THE ORGANELLE
Since the apicoplast is non-photosynthetic but is
essential to the parasite, the plastid community was
very intrigued by its function. The small apicoplast
genome provided insufficient hints to what the apico-
plast is doing besides basic metabolic processes such
as DNA replication, transcription and translation
(Wilson et al. 1996) and attention shifted to the
nuclear-encoded apicoplast proteins for functional
clues. Because nuclear-encoded apicoplast stromal
proteins require a bipartite leader for targeting into
the organelle, they are relatively simple to identify
from the genome and two bioinformatic tools, PATS
Phil. Trans. R. Soc. B (2010)
and PlasmoAP, are available for predicting P. falci-
parum proteins residing in the apicoplast (Zuegge
et al. 2001; Foth et al. 2003). The former is a neural
network-based algorithm while the latter works on a
set of rules that identifies putative targeting leaders
based on amino acid frequency and distribution. A
predicted apicoplast proteome has been assembled
using these tools, and putative pathways for the bio-
syntheses of fatty acids, isoprenoids, iron-sulphur
clusters and haem have been mapped out in the apico-
plast (figure 2; Ralph et al. 2004). These metabolic
pathways are essentially the same as those found in
bacteria because the apicoplast is of endosymbiotic
origin and they are distinct from the pathways found
in the mammalian host. It remains to be shown
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which of these pathways make the apicoplast
indispensable.

One of the interesting issues relating to the apico-
plast is the unique ‘delayed death’ phenomenon
observed of parasites treated with drugs that perturb
its basic housekeeping processes (Ramya et al. 2007).
As expected of its eubacterial ancestry, the machinery
that maintains the apicoplast is prokaryotic in origin.
Treatment of the malaria parasites with ciprofloxacin,
an inhibitor of the bacterial DNA gyrase, and other
antibiotics including chloramphenicol, clindamycin,
tetracycline and rifampicin resulted in the arrest of
growth in the second asexual cycle, while the parasites
in the current cell cycle appeared relatively unaffected
(Geary et al. 1988; McFadden & Roos 1999; Surolia
et al. 2004; Ramya et al. 2007). In contrast, drugs
that disrupted the biosyntheses of fatty acids, isopre-
noids and haem resulted in relatively rapid death of
the parasites (Jomaa et al. 1999; Surolia & Surolia
2001; Waller et al. 2003b; Ramya et al. 2007). Together
with the observed compromise or loss of apicoplasts in
parasites treated with antibiotics, the rapid elimination
of parasites with drugs targeting the apicoplast meta-
bolic pathways point towards one or more anabolic
products of the plastid being essential for the parasites
to establish new infections (Ramya et al. 2007). It is
generally believed that the metabolic pathways of the
apicoplast contribute to lipid production and the
modification of lipid-bound proteins (Ralph et al.
2004). In this light, the organelle most probably
plays a crucial role in the successful establishment of
parasite–host interaction and this is likely the for-
mation of a functional parasitophorus vacuole (Ralph
et al. 2004). Understanding the ‘delayed death’
phenomenon is important in using the apicoplast as
a drug target as there are serious clinical outcomes in
the rapid clearance of parasites versus the kicking in
of drug effectiveness after 48 h of drug administration.

Despite having developed a relatively detailed meta-
bolic map of the apicoplast (Ralph et al. 2004), we are
still largely ignorant of what metabolic products it
actually makes and what is their role in parasites.
Experiments to study the roles of the metabolic pro-
ducts are difficult to design and conduct, not least
because the parasites are able to scavenge some of
the products from the host cells in addition to those
made de novo complicating the analyses (Bisanz et al.
2006). The challenges in resolving the functions of
the apicoplast are compounded by its small size and
difficulties in isolation, which hamper efforts in bio-
chemical manipulations of the organelle. This
following section provides an update on the metabolic
pathways housed within the apicoplast in P. falciparum
to facilitate an appreciation of how each of them con-
tributes to the survival of the parasite. The apicoplast
of the malaria parasite is the best characterized
among apicomplexan parasites and is described here.
We caution however, that not all apicoplast functions
are conserved across Apicomplexa.
(a) Fatty acid synthesis

The type II fatty acid synthesis (FASII) pathway is the
best characterized of all the known metabolic pathways
Phil. Trans. R. Soc. B (2010)
the apicoplast houses. Unlike the cytosolic type I path-
way found in typical eukaryotes where the fatty acid
synthase is a huge multifunctional polypeptide, the
FASII pathway in the apicoplast is constituted by sep-
arate enzymes (Waller et al. 2003b; Ralph et al. 2004).
The conversion of acetyl-CoA to malonyl-CoA by
acetyl CoA carboxylase (ACCase) is the first com-
mitted step of the pathway. Fatty acid elongation is
achieved with rounds of priming the acyl carrier
protein (ACP) with a malonyl moiety which adds
two carbons to the growing acyl chain in each round
by a series of condensation, reduction, dehydration
and reduction reactions. The first clue in the discovery
of the apicoplast FASII pathway was the identification
of nuclear FASII genes whose products are targeted to
the apicoplast. Initial drug studies at first seemed to
confirm the presence of FASII in blood-stage parasites
(Waller et al. 1998; Surolia & Surolia 2001; Waller
et al. 2003b) but recent gene deletion studies suggest
that apicoplast FASII is only essential in liver stages
of the parasite (Yu et al. 2008; Vaughan et al. 2009).
Vaughan et al. (2008) successfully deleted
b-ketoacyl-ACP synthase I/II (FabB/F) and b-hydro-
xyacyl-ACP dehydratase (FabZ) from the genome of
P. yoelii and showed that the enzymes were only critical
to late liver-stage parasites while parasites in blood and
mosquito stages were unaffected. Deletion of enoyl-
ACP reductase (FabI) in P. falciparum also did not
affect parasite replication in blood stage (Vaughan
et al. 2009). Yu et al. (2008) further supported this
notion in another study where the FabI-deficient
P. berghei parasites compromised with infectivity
in vivo and often failed to complete liver-stage develop-
ment while growth in blood stages was unaffected
(Yu et al. 2008). Considering that liver-stage schizog-
ony gives rise to thousands of fold more merozoites
than blood-stage schizogony (Prudencio et al. 2006),
the apparent necessity of the apicoplast FASII pathway
for liver-stage replication but not blood-stage division
suggests that the apicoplast probably provides one or
more metabolic products with levels that cannot be
met by scavenging at late liver stage but the amount
required in blood stage does not need to be sup-
plemented by the plastid (Yu et al. 2008; Vaughan
et al. 2009).

Analysing the roles of various metabolic pathways
like FASII throughout the complex life cycle of an api-
complexan parasite proves to be very important and
insightful. Relying on studies on parasites at a single
stage to map the contributions of pathways can
indeed be misleading. It was long thought that FASII
was important to blood-stage parasites because of the
observed growth inhibition of triclosan-treated asexual
blood-stage parasites (Surolia & Surolia 2001). More-
over, triclosan is known to specifically inhibit the
bacterial FabI (Stewart et al. 1999; Heath et al.
2002). Nevertheless, Yu et al. (2008) have demon-
strated from binding studies that the Plasmodium
FabI and bacterial FabI are different as the former is
not targeted by triclosan. In addition, triclosan was
found to affect the growth of T. parva even though
the apicoplast of the parasite appears to lack FASII
components, including FabI (Gardner et al. 2005;
Lizundia et al. 2009). Control studies on non-infected



754 L. Lim & G. I. McFadden Review. Apicoplast
host cells demonstrated that triclosan indeed has non-
parasite-specific off-target effects (Lizundia et al.
2009). Therefore, caution should also be exercised
when extrapolating findings from other organisms.

If FASII is redundant to blood-stage parasites,
the presence of FASII enzymes such as ACCase
(D. Goodman 2009, personal communication), pyru-
vate dehydrogenase (PDH) complex (Foth et al.
2005) and ACP in the Plasmodium apicoplast is some-
what anomalous (Waller et al. 2000; van Dooren et al.
2002; Foth et al. 2005). The gene knock out data
demonstrates that blood-stage parasites survive when
FabI is absent (Yu et al. 2008) so why are components
of the pathway expressed at all? One explanation is that
FASII at blood stage could simply be supplying lipoic
acid, a potent antioxidant, to protect the parasite
against oxidative insults—ingestion of haemoglobin
from the erythrocyte subjects the parasite to increased
oxidative stress (Toler 2005). The lipoic acid generated
de novo can also be used as a cofactor for the mitochon-
drial a-keto acid dehydrogenase (van Dooren et al.
2006). However, exogenous addition of lipoic acid to
triclosan-treated parasites did not rescue them
(Ramya et al. 2007) but this could be owing to the
unexpected toxicity of triclosan as mentioned previously
(Lizundia et al. 2009). The presence of ACCase, PDH
and ACP at blood stage may, alternatively, be attributed
to the lack of mechanism for the downregulation of the
genes or turnover of the proteins. We await further
studies to resolve the conundrum.
(b) Isoprenoid synthesis

Isoprenoids are made up of repeated isopentenyl pyro-
phosphate (IPP) or dimethylallyl diphosphate
(DMAPP) units. They are prosthetic groups on
many enzymes and also precursors to ubiquinones
and dolichols, which are involved in electron transport
and the formation of glycoproteins, respectively. Simi-
lar to bacteria and chloroplasts, the apicoplast
harbours the non-mevalonate/2-C-methyl-D-erythritol
4-phosphate (MEP)/1-deoxy-D-xylulose-5-phosphate
(DOXP) pathway for isoprenoid synthesis (Jomaa
et al. 1999; Ralph et al. 2004). Like FASII, the apico-
plast is the sole site of isoprenoid precursor synthesis in
the Plasmodium parasite. A striking difference between
the DOXP pathway, which has only relatively recently
been elucidated, and the canonical mevalonate
pathway found in the eukaryotic cytoplasm is the start-
ing substrates. The former uses pyruvate and
glyceraldehyde-3-phosphate to produce IPP and
DMAPP, while the latter starts with the condensation
of acetyl-CoA and acetoacetyl-CoA to form
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which
is subsequently reduced to mevalonate for the path-
way. This difference means there is essentially no
commonality between the two pathways making
DOXP an ideal target for antibacterials and
antimalarials.

Evidence of active isoprenoid synthesis in the Plas-
modium apicoplast stems from the presence of
transcripts of DOXP reductoisomerase (IspC) and
DOXP synthase (Jomaa et al. 1999) and the detection
of several metabolic intermediates of the DOXP
Phil. Trans. R. Soc. B (2010)
pathway in asynchronous blood-stage cultures (Cas-
sera et al. 2004). In contrast to FASII, the DOXP
pathway for isoprenoid biosynthesis in the apicoplast
appears to be essential to blood-stage parasites as the
antibiotic fosmidomycin, an inhibitor of IspC
(Kuzuyama et al. 1998), is effective in managing the
clinical symptoms of malaria that are associated with
the intra-erythrocytic phase of parasites (Jomaa et al.
1999). It is, however, noteworthy that fosmidomycin
is poorly effective against the coccidians E. tenella
and T. gondii despite the presence of the isoprenoid
genes in these parasites (Clastre et al. 2007). Differ-
ences in the nature of host cell type (Clastre et al.
2007) and the IspC orthologues may underlie the
differences in drug sensitivity.

Interestingly, the effect of fosmidomycin on levels of
DOXP pathway intermediates and metabolites was
found to be most prominent in ring stages followed
by schizonts among the different blood-stage forms
of P. falciparum (Cassera et al. 2004). This probably
forms the rationale for using fosmidomycin in combi-
nation with another drug for better disease control
(Borrmann et al. 2004, 2005). Within the apicoplast,
DMAPP is likely used in the isopentenylation of
tRNAs as four apicoplast-encoded tRNAs (trnWCCA,
trnCGCA, trnLUAA and trnYGUA) are suitable candi-
dates for modification (Ralph et al. 2004). Besides
apicoplast translation, the DOXP pathway also poten-
tially provides precursors for the synthesis of
ubiquinones for the electron transfer system in the
mitochondrion, protein prenylation and the formation
of dolichols for glycosylphosphatidyl inositol
(GPI)-anchors on membrane proteins found on
many Plasmodium surface proteins (Naik et al. 2000;
Ralph et al. 2004). A role for the apicoplast supply of
isoprene tails for mitochondrial ubiquinone is sup-
ported by the decrease in ubiquinone content in
fosmidomycin-treated rings (Cassera et al. 2004).
Paradoxically, inhibition of isoprenoid synthesis in
rings impacted upon dolichol level the greatest in
rings but had no significant effect on trophozoites
(Cassera et al. 2004) despite radiolabelling studies
demonstrating that GPI synthesis mainly takes place
in the latter (Naik et al. 2000).
(c) Iron-sulphur cluster synthesis

Cellular requirements for iron-sulphur clusters are
typically met by the de novo [Fe-S] cluster synthesis
in the mitochondrion. However, the proteome of the
apicoplast includes proteins such as ferredoxin (Fd),
LipA, IspG, IspH and MiaB, all of which require
[Fe-S] clusters, but it seems unlikely that [Fe-S] com-
plex prosthetic groups would be imported from the
mitochondrion across the secretory system in which
the plastid resides (Seeber 2002; Ralph et al. 2004).
Moreover, nuclear-encoded [Fe-S] containing proteins
are almost certainly imported into the apicoplast in an
unfolded state (van Dooren et al. 2002; Tonkin et al.
2008b) and should thus be in the apo-form while in
transit (Seeber 2002). Searches of the apicoplast pro-
teome identify various iron-sulphur cluster
biosynthetic enzymes including SufB or Orf470
encoded by the apicoplast genome and NifU, SufA,
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SufC, SufD and SufS in the parasite’s nuclear genome
(Ellis et al. 2001; Seeber 2002; Ralph et al. 2004).
Although none of the [Fe-S] cluster pathway com-
ponent has yet been shown to be essential for the
maturation of the above-mentioned apicoplast pro-
teins, their roles in other essential processes make it
likely that this metabolism is also indispensable. Sur-
prisingly, there is a general lack of drugs known to
inhibit this pathway, but the parasite’s retention of fer-
redoxin-NADPþ reductase (FNR)/ferredoxin (Fd)
redox system for function suggests that perturbation
of redox poise by pharmacological interference
should kill the parasites (see later section on ‘Powering
the apicoplast’).
(d) Haem synthesis

Like [Fe-S] clusters, haem is an important prosthetic
group on many proteins such as cytochromes. Malaria
parasites are literally drowning in haem released from
the digestion of the haemoglobin they phagocytose
from the host cell. Indeed, this haem has to be neutral-
ized to prevent parasite cell damage and the organism
does not appear to have evolved a mechanism to access
the haem from haemoglobin. Instead, haem from the
degradation of haemoglobin in the food vacuole is
polymerized to the non-toxic hemozoin crystal
(Sullivan et al. 1996) and the parasite has a de novo
haem synthesis pathway. In addition, the parasite
also undergoes extra-erythrocytic stages and hence
will need the ability to meet its own haem require-
ments. The haem biosynthetic pathway is essential
(Surolia & Padmanaban 1992; Ramya et al. 2007)
and unusual as components constituting a complete
pathway are shared between the apicoplast and the
mitochondrion, and haem intermediates are hypoth-
esized to shuttle between the two compartments and
possibly the cytosol (Ralph et al. 2004; van Dooren
et al. 2006). The acquisition of a secondary endosym-
biont probably gave rise to the presence of two haem
biosynthetic pathways in the organism and the unusual
hybrid pathway likely emerged as components were
lost to eliminate redundancy (Ralph et al. 2004).

The unique conjoined haem pathway in Plasmodium
is one of the more bizarre examples of evolutionary
rationalization of redundancy. When the host orig-
inally procured a secondary endosymbiont it would
appear to have found itself in possession of two separ-
ate haem pathways: a canonical Shemin pathway
partitioned across the mitochondrion and the cytosol,
plus an additional, self-contained pathway of cyano-
bacterial type in the endosymbiont (apicoplast).
Rationalization involved loss of the cytosolic com-
ponents of the Shemin-type pathway and substitution
of the equivalent steps from the apicoplast pathway
to create a hybrid pathway that runs cooperatively
between the two endosymbiont organelles. Determin-
ing the localizations of the various enzymes of
the pathway is fundamental to appreciating how the
terminal product haem is used in the parasite.
d-Aminolaevulinic acid (ALA) synthase (PfALAS)
localizes to the mitochondrion (Varadharajan et al.
2002) and kick-starts the pathway to provide ALA.
The pathway then shifts to the apicoplast as
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d-aminolaevulinate dehydratase (PfALAD or HemB
(Sato & Wilson 2002; van Dooren et al. 2002), por-
phobilinogen deaminase (PfPBGD or HemC; Sato
et al. 2004) and uroporphyrinogen III decarboxylase
(UROD or HemE; Nagaraj et al. 2009) localize to
the plastid (Sato et al. 2004). Early reconstructions
of the haem pathway were missing HemD (van
Dooren et al. 2006), but this conundrum was resolved
when PfPBGD was also found to encompass the func-
tion of uroporphyrinogen III synthase (UROS or
HemD; Nagaraj et al. 2008). It is now imperative to
confirm the localization of coproporphyrinogen oxi-
dase (PfCPO or HemF) and protoporphyrinogen
oxidase (PfPPO or HemG) to better examine the
translocation machinery that may be required on the
apicoplast membranes for the transmembrane shut-
tling of coproporphyrinogen III or the subsequent
metabolites. The terminal enzyme catalysing the inser-
tion of the ferrous iron into protoporphyrin IX,
ferrochelatase (HemH), is localized to the mitochon-
drion (van Dooren et al. 2006) despite an earlier
disputable immunofluorescence assay demonstrating
its apicoplast localization (Varadharajan et al. 2004).

Localizations of the above were done in the intra-
erythrocytic stage of the malaria parasite. Surprisingly,
host ALAD was found to be imported into the cytosol
of the parasite (Bonday et al. 2000). In view of the
reduced catalytic efficiencies observed of several of
the Plasmodium enzymes (PfALAD, PfPBGD and
PfUROD) compared with the host orthologues,
Nagaraj et al. (2008) suggested that that the import
of host enzymes might serve to compensate the para-
site’s de novo haem biosynthesis. It would appear
strange for the parasite to back up its system as
proposed but remains a possibility.
4. THE CHLOROPLAST IN DARKNESS: CARBON
SOURCE OF THE APICOPLAST
Apicoplast metabolic pathways involving the biosyn-
theses of fatty acids, isoprenoids, iron-sulphur
clusters and haem must be driven by sources of
carbon and energy. In the absence of photosynthetic
drive to fix carbon, generate ATP and create reducing
power, the apicoplast needs to import these com-
ponents to drive its anabolism. We like to model the
apicoplast on non-photosynthetic plastids of plants
such as leucoplasts, which also lack the ability to fix
carbon and must be ‘fed’ by other parts of the plant.
Non-photosynthetic plastids import fuel using specific
metabolite transporters on the inner envelope of the
plastid known as plastidic phosphate translocators
(pPTs). There are four classes of pPTs: triose
phosphate/phosphate transporters (TPT), phosphoe-
nolpyruvate phosphate/phosphate transporters (PPT),
glucose 6-phosphate/phosphate transporter (GPTs)
and xylulose 5-phosphate/phosphate transporter
(XPTs; Fischer & Weber 2002). pPTs function as
antiporters, where a sugar phosphate is translocated
in exchange for an inorganic phosphate (Fischer
et al. 1997; Fischer & Weber 2002). The TPT, which
exports triose phosphates from the illuminated plastid,
is the major transporter in photosynthetic plastids as
the carbon fluxes it controls affects the rates of



756 L. Lim & G. I. McFadden Review. Apicoplast
intraplastid starch biosynthesis and mobilization
and sucrose biosynthesis occurring in the cytosol
(Schneider et al. 2002).

Generally, the main sources of carbon for making
fatty acids in plastids are acetate from the hydrolysis
of mitochondrial acetyl-CoA, the end product of gly-
colysis pyruvate and glycolytic intermediates like
glucose 6-phosphate (G6P), phosphoenolpyruvate
(PEP), triose phosphates (glyceraldehyde 3-phoshate;
GA3P; dihydroxyacetone; DHAP) and malate
(Neuhaus & Emes 2000; Rawsthorne 2002). The rela-
tive contribution of each precursor to the pathway is
specific to plastid types, tissue types and developmen-
tal stages of the cells (Qi et al. 1994; Neuhaus & Emes
2000). Acetate is probably small enough to enter the
plastid via diffusion (Neuhaus & Emes 2000). The
GPT (Kammerer et al. 1998), PPT (Fischer et al.
1997) and TPT (Fischer et al. 1994) are involved in
the import of G6P, PEP and triose phosphates,
respectively, while malate is taken up via the 2-oxoglu-
tarate/malate translocator (Weber et al. 1995).
Pyruvate may enter from the cytosol through a pyru-
vate transporter that is yet to be characterized or it
can also be produced from PEP by the plastidic pyru-
vate kinase via the intraplastid glycolytic pathway
(Neuhaus & Emes 2000).

Plastidic phosphate translocators are ancient and
the secondary endosymbiont ancestor of the apicoplast
likely had at least one, and perhaps a small suite of
pPTs to manage its relationship with the host. What
can we deduce about the current non-photosynthetic
status of the apicoplast and its pPTs? One way to
double guess the mechanisms that power apicoplasts
is to map out what is required and review the inventory
of carbon and energy-metabolizing enzymes in the
apicoplast proteome. Like most non-photosynthetic
plastids, the apicoplast lacks hexose- or
pentose-processing components (Qi et al. 1994;
Ralph et al. 2004). Therefore, the apicomplexan plas-
tid was hypothesized to import C3 compounds like
triose phosphates and PEP from the cytosol to fuel
its metabolic pathways (Ralph et al. 2004).

Two pPT homologues (PfiTPT and PfoTPT) were
identified in the P. falciparum’s genome (Gardner et al.
2002) and it has been suggested that they are likely to
transport triose phosphates and PEP into the apico-
plast to sustain carbon metabolism (Ralph et al.
2004; Mullin et al. 2006). PfiTPT has a bipartite
leader and is localized in an apicoplast membrane,
probably the innermost apicoplast membrane by
analogy with plant plastid pPTs and the fact that the
N-terminus is processed like stromal apicoplast pro-
teins (Mullin et al. 2006). PfoTPT, on the other
hand, lacks a leader and clearly resides in the outer-
most membrane of the apicoplast (Mullin et al.
2006) as evidenced by its accessibility to protease clea-
vage and antibodies to the termini in free but intact
apicoplasts (Mullin et al. 2006). Considering the lack
of other candidates in the inner pair of apicoplast
membranes, these two transporters PfoTPT and
PfiTPT are postulated to work in tandem to facilitate
the import of triose phosphates and PEP to channel
the substrates into the FASII and isoprenoid biosyn-
thesis pathways but how such substrates cross the
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middle two apicoplast membranes remains unclear
(Mullin et al. 2006; Lim et al. 2009). It is noteworthy
that pPTs are not required to cross the outer plastid
membrane in plants and low specificity pores such as
OEP21 facilitate passage (Bolter et al. 1999), and
such porin-like protein channels may occur in the
intermediate apicoplast membranes, but none have
been identified.

Besides some typical plastid metabolisms in the api-
coplast, the presence of glycolytic components in the
apicoplast stroma is another endorsement of an
engulfed organism within the parasite. However, it is
interesting to question the role the triose phosphate
isomerase (TPI) plays in the apicoplast. If PfiTPT
and PfoTPT were indeed involved in the import of
triose phosphates into the apicoplast, the affinities of
the transporters for GA3P and DHAP probably
differ to favour the translocation of the latter since
the presence of TPI validates its relevance and it prob-
ably converts imported DHAP to GA3P for reaction
with pyruvate to form DOXP for the isoprenoid bio-
synthesis pathway (Ralph et al. 2004). The proposed
flexibilities of PfiTPT and PfoTPT in transporting
DHAP, GA3P and PEP should not be surprising
since the plant pPTs do not seem to have very
restrictive substrate preferences (Fischer et al. 1997).
5. APICOPLAST CARBON SOURCES ACROSS
APICOMPLEXAN PARASITES: BIOINFORMATIC
SURVEY OF PARASITE pPT ORTHOLOGUES
Apicoplasts of the different apicomplexan parasites
perform different metabolic activities. How does
their complement of carbon transporters reflect these
differing requirements? Previous investigation of
T. gondii identified a single pPT homologue (named
TgAPT1; apicoplast phosphate transporter 1) and
localization studies were interpreted as showing that
TgAPT1 resided in multiple apicoplast membranes,
though a mechanism for such an unusual disposition
of a single protein was not afforded (Karnataki et al.
2007a). TgAPT1 is probably the homologue of
PfoTPT and T. gondii appears to lack a PfiTPT hom-
ologue. What pPTs occur in other apicoplasts?
Table 1 shows the pPT orthologues in the various
Plasmodium species, T. gondii, B. bovis, T. parva and
T. annulata. Hits were filtered with an e-value of not
more than 0.01. The orthologues were further selected
based on the number of transmembrane domains pre-
dicted by TMHMM, the presence of a putative TPT
signature which could be a substrate-binding site
(Mullin et al. 2006), and the general conservation of
the sequences with AtTPT.

In general, except for P. chabaudi chabaudi whose
sequencing is not complete, all the other Plasmodium
spp. have two copies of pPT each, with one of them
having a long N-terminal extension. By comparison
with the situation in P. falciparum we assume that the
leader-bearing copies likely reside within the inner-
most apicoplast membrane, whereas those without
leaders would be expected to be lodged in the outer-
most membrane (Mullin et al. 2006; Tonkin et al.
2008b; Lim et al. 2009). In contrast, T. gondii and
the two Theileria species only have a single pPT each.



Table 1. Plastidic phosphate translocator orthologues in

various apicomplexan parasites, including Plasmodium spp.,
T. gondii, B. bovis, T. parva and T. annulata.

organism
GenBank
accession ID

number of
transmembrane
domains
predicted

leader
prediction

P. falciparum XP_001351641 9 no
P. falciparum XP_001351856 7 yes

P. knowlesi XP_002259733 9 no
P. knowlesi XP_002259508 7 yes
P. vivax XP_001613255 7 no
P. vivax XP_001613659 7 yes

P. berghei XP_677571 8 no
P. berghei XP_677003 6 yes
P. chabaudi

chabaudi
XP_745978 8 no

T. gondii ABU49222 6 no

B. bovis ABC25608 10 no
B. bovis XP_001609145 8 no
B. bovis

(BbTPT3)
XP_001610919 5 yes

B. bovis XP_001609146 10 no

T. annulata XP_955232 8 no
T. parva XP_763564 8 no
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The Theileria pPT likely channels starting materials for
the apicoplast IPP biosynthesis as the parasites lack a
FASII pathway (Lizundia et al. 2009). Interestingly,
B. bovis appears to have four copies of pPT in its
genome with one perhaps bearing a bipartite leader
(BbTPT3). It is tantalizing to speculate that each
pPT in B. bovis is responsible for the transport of
sugar phosphates across a particular membrane of
the apicoplast. On the other hand, it remains to be
established if the pPTs in Plasmodium spp., Toxoplasma
and Theileria do indeed span over multiple membranes
as has been argued for T. gondii or whether other, as yet
unidentified proteins like OEP21 on the outer envel-
ope of chloroplast (Bolter et al. 1999), which
transports anions, exist in the parasites to facilitate
the transport of charged substrates like sugar
phosphates across the membranes of the apicoplast.

Intriguingly, genome mining also detected distant
pPT homologues in Cryptosporidium spp. despite the
fact that the apicoplast has been lost in this family of
apicomplexan parasites (Zhu et al. 2000). pPTs are
part of a large family of drug metabolite transporters
that have varied roles in eukaryotic cells and localize
to several different membranes (Martin & Herrmann
1998; Weber et al. 2006). Further experimental work
will hopefully clarify the origins and current functions
of pPTs in apicoplasts.
6. POWERING THE APICOPLAST: ADDRESSING
SOURCES OF REDUCING POWER AND ATP
Like all plastids, the apicoplast needs ATP and redu-
cing equivalents to power its metabolic pathways like
FASII. In the absence of photosynthesis and any plas-
tidic ATP/ADP transporter, the apicoplast has to
generate ATP somehow. In the malaria parasite, the
Phil. Trans. R. Soc. B (2010)
conversion of imported PEP to pyruvate for the
FASII or DOXP pathway seems to be the sole source
of ATP for the apicoplast (Ralph et al. 2004). The
reaction is catalysed by the plastidic pyruvate kinase
(pPK), which is phylogenetically distinct from cytoso-
lic pyruvate kinases and is demonstrated to be an
apicoplast-resident enzyme (pPK; L. Lim, N. J.
Patron & G. I. McFadden, unpublished data; Saito
et al. 2008; Maeda et al. 2009).

To cope with some of the demands for reductants in
the apicoplast, the organelle harbours a plant-type fer-
redoxin-NADPþ reductase (FNR)/ferredoxin (Fd)
redox system, which works in a manner similar to
the non-photosynthetic FNR/Fd systems (Rohrich
et al. 2005; Seeber et al. 2005). In photosynthetic plas-
tids, Fd receives electrons from photosystem I and the
reduced Fd, in turn, is used by FNR to produce
NADPH from NADPþ for the Calvin cycle. In non-
photosynthetic plastids, the ferredoxin redox system
operates in the reverse direction. FNR catalyses elec-
tron transfer from NADPH to Fd, which then acts as
a reductant for various reactions (Rohrich et al.
2005). In the apicoplast we know of at least three com-
ponents that require reduced Fd: lipoic acid synthase
(LipA), which provides the potent antioxidant lipoic
acid to the E2 subunit of the PDH (Foth et al.
2005); and NifU, a protein that provides a scaffold
for [Fe-S] to assemble on during [Fe-S] cluster syn-
thesis; and MiaB, which is probably involved in the
modification of tRNAs for apicoplast translation
(Ralph et al. 2004; Seeber et al. 2005). Reactions cat-
alysed by the isoprenoid biosynthetic enzymes, GcpE
(IspG) and LytB (IspH), also require reduced Fd. In
fact, the FNR/Fd system has been demonstrated to
be a functional electron shuttle system for IspH,
which is the terminal enzyme in the DOXP pathway
catalysing the simultaneous production of IPP and
DMAPP (Rohrich et al. 2005). There is thus a sub-
stantial requirement to generate reduced Fd, so
where does the NADPH that delivers the electrons
to Fd come from?

In plants the pentose phosphate pathway can gener-
ate NADPH, but no pentose phosphate pathway is
apparent in the apicoplast of P. falciparum (Ralph
et al. 2004). Another source of NADPH in plant plas-
tids is part of a plastid glycolytic pathway for
the conversion of GA3P to 1,3-diphosphoglycerate
(1,3-DPGA) by GAPDH but again this option
appears to be lacking in apicoplasts (Ralph et al.
2004). At this stage, our best guess for a source of
reduced cofactor in the apicoplast is to invoke a reverse
direction of the classic redox shuttle that exports redu-
cing power from photosynthetic plastids (Fleige et al.
2007). A reverse triose phosphate/3-phosphoglycerate
(3-PGA) shuttle has been proposed to transfer triose
phosphates from the cytosol to the apicoplast in
exchange for 3-PGA, which effectively results in the
generation of an ATP and NADPH in the apicoplast
by the action of the plastid-localized phosphoglycerate
kinase II and GAPDH, respectively (Ralph et al. 2004;
Fleige et al. 2007). Although GAPDH is localized to
the apicoplast in T. gondii (Fleige et al. 2007), this
enzyme is not clearly localized to the apicoplasts of
other parasites (table 1).
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Alternatively, if NADH can be substituted as a
reductant for NADPH in the apicoplast of the malaria
parasite, the decarboxylation of pyruvate to acetyl-
CoA with the generation of NADH from NADþ by
the PDH complex offers a potential source of reduc-
tant for the organelle. This will, however, cause a
build-up of acetyl-CoA which could limit the effi-
ciency of the FASII pathway. The parasite would
then have to evolve a mechanism to overcome this,
perhaps by extruding the excess acetyl-CoA from the
organelle. If acetyl-CoA were exported from the apico-
plast, it would presumably need transporters. An
attractive, but purely speculative, scenario would be
to export surplus acetyl-CoA to the mitochondrion,
which lacks a PDH to generate acetyl-CoA for its
TCA cycle (Foth et al. 2005). Importing PEP,
converting it to pyruvate, then converting the
pyruvate to acetyl-CoA that was shuttled to the mito-
chondrion would provide a means to resolve the ATP
and NADH deficits in the apicoplast as well as the
presumed acetyl-CoA deficit in the mitochondrion,
but the transport of acetyl-CoA across all those
membranes remains a hurdle for this postulation.

Together with the uniqueness of the plant-type
FNR/Fd redox system in the host cell, its involvement
in a range of pathways in the apicoplast makes it an
attractive drug target (Seeber et al. 2005). Probably,
the system is also ready for rational drug design since
abundant structural information of the individual
FNR and Fd in cyanobacteria and plants are available
(Serre et al. 1996; Binda et al. 1998; Morales et al.
1999). Since the Fd/FNR redox system is involved in
intra-plastid [Fe-S] cluster synthesis, its importance
is further implicated in the insertion of [Fe-S] clusters
in several apicoplast enzymes (Ralph et al. 2004;
Seeber et al. 2005). The functional significance of
the redox pair has also been unequivocally demon-
strated by the elucidation of the molecular
interaction of Fd and FNR in P. falciparum recently
(Kimata-Ariga et al. 2007).
7. INTRACELLULAR ROLE OF THE APICOPLAST:
UNRAVELLING THE ELUSIVE PERMEOME OF
THE ORGANELLE
A potential way to work out the role of the apicoplast
within the parasite is to find out what goes in and out
of the organelle. By focusing on the gatekeepers—the
proteins residing in the apicoplast membranes—we
can hope to get a snapshot of exchange between the
two partners. The first apicoplast membrane proteins
to be identified were PfiTPT and PfoTPT (Mullin
et al. 2006), and several more membrane proteins
have now been uncovered in the apicoplast of
T. gondii, namely the pPT orthologue TgAPT1
(Karnataki et al. 2007a), a membrane protease
TgFtsH1 (Karnataki et al. 2007b), a thioredoxin-like
protein ATrx1 (DeRocher et al. 2008), and apicoplast
protein translocation component TgTic20 (van
Dooren et al. 2008), Tic22 (Kalanon et al. 2009)
and Der1 (Kalanon et al. 2009; Spork et al. 2009).
While we have preconceived notions of the functions
of TgAPT1, TgTic20, Tic22 and Der1, the roles of
TgFtsH1 and ATrx1 are less obvious. With the
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exception of ATrx1, it appears that corresponding
homologues also exist in the genome of P. falciparum
and it seems likely that the apicoplast membrane
complement will be comparable (Karnataki et al.
2007a,b; DeRocher et al. 2008; Lim et al. 2009).

Targeting requirements for apicoplast proteins are
reasonably well understood for Plasmodium and Toxo-
plasma, these being to most tractable systems
experimentally. Initially it was thought that apicoplast
proteins required a bipartite N-terminal leader for tar-
geting but PfoTPT, which lacks a leader and targets to
the outer apicoplast membrane introduced a new
paradigm. Bioinformatic searches against the genomes
of P. falciparum and T. gondii for potential apicoplast
transporters with a bipartite leader were initially limited
to PfiTPT (Ralph et al. 2004). As more membrane
components are revealed in the apicoplasts of Plasmo-
dium and Toxoplasma, a new apicoplast-targeting
pathway independent of an N-terminal bipartite
leader has emerged (Lim et al. 2009). In TgAPT1,
TgFtsH1 and ATrx1, a signal anchor or transmem-
brane domain appears to the common requirement
for targeting to the plastid (Karnataki et al. 2007a,b;
DeRocher et al. 2008; Lim et al. 2009). The recessed
hydrophobic patch supposedly commits each of the
proteins into the endomembrane system in which the
apicoplast is positioned. Beyond the signal anchors,
the three unrelated proteins do not appear to share
any common motif. The targeting requirement is also
consistent in P. falciparum where the first transmem-
brane domain of the leaderless PfoTPT is sufficient
to direct the protein to the ER (L. Lim & G. I.
McFadden 2009, unpublished data). It remains to be
confirmed if an alternate degenerate motif exists for
apicoplast targeting since varying lengths of ATrx1,
TgFtsH1 and TgAPT1 appear to be required for
targeting to the plastid (Karnataki et al. 2007a,b;
DeRocher et al. 2008). If we can determine what
motifs target proteins to the apicoplast membranes,
we will expand our knowledge of the apicoplast per-
meome. Doubtlessly, more candidate proteins are
necessary to be used for sequence comparison,
especially if the new motif is relatively obscure like
the vacuolar transport signal (VTS) or Plasmodium
export element (PEXEL) for trafficking nuclear-
encoded proteins beyond the parasitophorus vacuole
of Plasmodium (Hiller et al. 2004; Marti et al. 2004).

Until the apicoplast proteome is unravelled bio-
chemically, one model for identifying proteins
potentially residing in the apicoplast membranes is
by comparison with plant plastids. One bulk com-
munication of metabolites between the chloroplast
with the rest of the plant cell is the transfer of lipids
into and out of the plastid for intra- and extra-plastidic
membrane biogeneses (Benning et al. 2006). Most gly-
cerolipids made in the ER require fatty acids derived
from the de novo synthesis in chloroplasts, although
exogenous supply can also be used intracellularly
(Ohlrogge & Browse 1995; Koo et al. 2005; Benning
et al. 2006). This scenario is reminiscent of lipid
metabolism in the parasite (Bisanz et al. 2006). Since
the apicoplast is the sole site of lipid biosynthesis in
the parasite, it is likely to export lipids. In chloroplasts,
lipid fluxes between the ER and plastid are facilitated
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by plastid-associated microsomes (PLAMs; Benning
et al. 2006). A few proteins associated with ER–plastid
lipid transfer such as the ATP-binding cassette (ABC)
transporter TGD1 (Xu et al. 2005), and vesicular lipid
trafficking from the inner envelope membrane to the
thylakoid-like VIPP1 (Kroll et al. 2001) are providing
the first sketch of lipid routes in the chloroplast.
Whereas insights into the components involved in
lipid flow into the plastid are progressing well, those
facilitating the export of fatty acids from the chloro-
plast remain somewhat elusive (Benning et al. 2006)
although another ABC transporter in Arabidopsis has
been implicated in the export of wax precursors
(Pighin et al. 2004). Nonetheless, we are optimistic
that breakthroughs made by our plant colleagues will
help shed light on the mechanism of fatty acid flow
to and from the apicoplast.

The apicoplast is also likely to export the IPPs and
DMAPPs as well as fatty acids, but the molecular
machinery to mediate the process is completely
unknown, even in plant plastids. The situation is simi-
lar for transmembrane iron transport in iron-sulphur
biosynthesis within the plastids (Briat et al. 2007).
Several apicoplast proteins like ferredoxin bear iron-
sulphur clusters and they are most likely imported
into the apicoplast in the apo-form (Seeber 2002).
Presence of the [Fe-S] biosynthesis in the apicoplast
negates the need to import the prosthetic groups for
the apicoplast proteins but the suite of Suf proteins
in the organelle would not be able to function without
a supply of iron and remains a complete mystery until
candidate transporters are identified, or the form in
which the iron enters the organelle is known.

The apicoplast membranes should also harbour
components that mediate the exchange of haem inter-
mediates with mitochondrion (figure 2; van Dooren
et al. 2006). In P. falciparum, transporters are presum-
ably necessary to transport d-aminolaevulinic acid out
of the mitochondrion into the plastid and to facilitate
the entry of coproporphyrinogen III from the apico-
plast into the cytosol or mitochondrion (van Dooren
et al. 2006; Nagaraj et al. 2009). Considering the inti-
mate association of the two organelles (Bannister et al.
2000; van Dooren et al. 2006; Okamoto et al. 2009), a
membranous continuum to mediate the metabolite
exchanges between the two cannot be discounted but
there is no evolutionary precedent for such a conti-
nuum. To date, several mitochondrial porphyrin
transporters are identified, including the PBR and
ABCB6 candidate transporters on the outer mito-
chondrial membrane (Verma et al. 1987;
Krishnamurthy et al. 2006) and ANT on the inner
membrane (Azuma et al. 2008). However, no plastid
haem-associated transporters are known, but they
probably exist (van Dooren et al. 2006). On the
other hand, comparative studies with the bacterial
haem transport systems might shed light on apicoplast
mechanisms (Tong & Guo 2009).
8. CONCLUDING REMARKS
Much attention has been centred on the apicoplast
since its identification 13 years ago. This review has
provided glimpses into the various efforts to understand
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the evolutionary origin and metabolic functions of the
plastid. This interesting four-membraned organelle is
not the only feature that makes the apicomplexan para-
site ‘plant-like’. Recently, the presence of AP2
transcription factors (Balaji et al. 2005) and the caroten-
oid biosynthesis pathway (Tonhosolo et al. 2009) have
recalled the endosymbiotic history of the parasite.

As we gain insights of pathways unique to the para-
site, it is imperative to follow up the discovery of new
drug targets and forge on to clinical evaluations.
There is no doubt that transporters on the apicoplasts
should be of high priority. The apicoplast gatekeepers
limit the downstream metabolism and should be ideal
targets for intervention. Our challenge is to explore
and understand how the organelle’s permeome works
so that we can use this knowledge to help the
unfortunate sufferers of apicomplexan diseases.
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