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Bats are the second most diverse mammalian group, playing keystone roles in

ecosystems but also act as reservoir hosts for numerous pathogens. Due to their

colonial habits which implies close contacts between individuals, bats are often

parasitized by multiple species of micro- and macroparasites. The particular ecology,

behavior, and environment of bat species may shape patterns of intra- and interspecific

pathogen transmission, as well as the presence of specific vectorial organisms. This

review synthetizes information on a multi-level parasitic system: bats, bat flies and

their microparasites. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate,

hematophagous ectoparasites of bats consisting of ∼500 described species. Diverse

parasitic organisms have been detected in bat flies including bacteria, blood parasites,

fungi, and viruses, which suggest their vectorial potential. We discuss the ecological

epidemiology of microparasites, their potential physiological effects on both bats and bat

flies, and potential research perspectives in the domain of bat pathogens. For simplicity,

we use the term microparasite throughout this review, yet it remains unclear whether

some bacteria are parasites or symbionts of their bat fly hosts.
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INTRODUCTION

Bats are the second most diverse mammalian group after rodents, with ∼1,390 recognized species
across 227 genera (1). Many bat species play keystone roles in ecosystems, where they are essential
to pollination, seed dispersal, and pest control (2). Several studies have also highlighted their
prominent role as pathogen-reservoirs (3, 4); viruses being the best studied due to their potential
as human pathogens (3, 5–8). Bats host more viruses per species than rodents, making them an
interesting system for both disease ecology and public health research (4, 9).

Bacteria (such as Bartonella spp. and Borrelia spp.) and protozoans (such as Trypanosoma spp.
and Plasmodium spp.) have also been detected in bats (8, 10, 11). In recent years, bat-associated
Bartonella genotypes have been found in humans, indicating the public health importance of this
parasite in bats (12–14). Bartonella and other pathogen transmission from bats to humans may
occur through religious activities in caves, bat consumption or contact with contaminated products
(12, 15). There are documented cases of bat-specific ectoparasites biting humans (16, 17), increasing
the potential of bat-born pathogen transmission. Additionally, bat-associated pathogen, such as
Trypanosoma cruzi genotype has also been found in humans (18).

Bats host numerous ectoparasitic groups, such as bat flies (Diptera: Nycteribiidae and
Streblidae), bugs (Hemiptera: Cimicidae and Polyctenidae), fleas (Siphonaptera: Ischnopsyllidae),
and several bat specialized arachnids, such as mites (Mesostigmata: Spinturnicidae and
Macronyssidae) and ticks (e.g.,Argas spp., Carios spp., Ixodes spp., andOrnithodoros spp.) (19–25).
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Bat flies (Nycteribiidae and Streblidae) are the most
common bat ectoparasites (Figure 1). Both families, along with
Hippoboscidae (louse and ked flies) and Glossinidae (tsetse flies)
belong to the Hippoboscoidea superfamily. Currently 275 species
across 21 genera of nycteribiids and 227 species across 31 genera
of streblids are recognized. Nycteribiids have a higher diversity in
the Eastern Hemisphere, while streblids are mainly found in the
Western Hemisphere (17).

Members of Hippoboscoidea have developed a unique
reproductive strategy. A single larva develops within a
female, feeding on the secretion of the so-called milk glands.
Larviposition occurs at the third instar stage and the larva
immediately pupates. The four families have thus been
previously referred as “Pupipara” (an obsolete clade). This
unique reproductive strategy necessitates milk gland secretion
transfer for larval development (26–28), which may shape the
community of certain bacteria such as Arsenophonus, Bartonella,
orWolbachia by vertical transmission (26, 27, 29, 30). Horizontal
transmission may occur through parasitoids or individuals
contacting contaminated saliva, as in plant consuming insect
communities (31, 32).

Bat flies deposit their larva on substrates such as the host roost
wall. After larviposition, females return to their host. When the
offspring emerge, they actively search for bat hosts. Emergence
time depends on several factors including temperature and host
presence (33, 34). Regarding their reproductive strategy, bat flies
also show strong morphological adaptations to their parasitic
life style. Some species are eyeless or have reduced facets (35).
Nycteribiids are wingless, while most streblid species have partly
or fully developed wings.

Early studies assumed that bat flies show no strong host
specificity (36, 37); nevertheless more comprehensive recent
works showed that the majority of bat fly species exhibit high
specificity to a single or closely related bat species when collection
is controlled and contamination avoided (25, 38–41).

Bats’ ectoparasites may have vectorial potential. For example,
Polychromophilus spp. are transmitted by nycteribiids (42) and
Trypanosoma spp. by cimicids (43). Although, the transmission
route of Bartonella has not been experimentally tested, this
bacteria has been detected in a wide range of bat ectoparasites,
such as bat flies (44–46), tick, and mites (47–51). In a recent
study, ectoparasite burden was shown to positively correlate with
Bartonella infection, suggesting their potential role as vectors
(52). Furthermore, Bartonella was detected in bat flies and their
host in the Madagascan fruit bat (Eidolon dupreanum), but not
in fleas, indicating the potentially crucial role of bat flies in
Bartonella transmission (53). Additionally, ectoparasite and virus
species richness positively correlate, suggesting a vectorial role of
ectoparasites for viruses (54).

In this review we focus on bat flies, the most diverse and
prevalent group of bat ectoparasites. Bat flies are common
on most species and since they are obligate hematophagous
dipterans, they may play an important role in the transmission
and maintenance of bat pathogens. The exact nature of the
interaction between some bacteria and their bat fly hosts is
unknown: Wolbachia and Arsenophonus may act as parasites
and/or as mutualists (55, 56) (we consider them as potential
microparasites in this review).

Here we review the presence of microparasites in bat flies
and their geographical distribution. We consider the following
organisms as microparasites: blood parasites, represented by
Polychromophilus spp. and the extinct genus Vetufebrus sp.
(Haemosporidia: Plasmodiidae); bacteria, such as Arsenophonus
and Providencia (Enterobacteriales: Enterobacteriaceae),
Bartonella (Rhizobiales: Bartonellaceae), Wolbachia and
Rickettsia (Rickettsiales: Anaplasmataceae and Rickettsiaceae);
viruses, such as Kanyawara virus (Mononegavirales:
Rhabdoviridae), Mahlapitsi virus (Reoviridae), Wolkberg
virus and Kaeng Khoi virus (Bunyavirales: Bunyaviridae and
Peribunyaviridae), dengue virus (Flaviviridae); hyperparasites,
such as fungi (Ascomycota: Laboulbeniaceae) and finally
parasitoids (Hymenoptera: Eupelmidae). We test whether
bat host phylogenetic origin effects the presence of different
microparasitic groups of bat flies. We discuss the potential
physiological effects of microparasites on both bats and bat
flies, and future research perspectives related to bat-associated
ectoparasites and microparasites.

MATERIALS AND METHODS

We present microparasite data collected from various literature
source (Supplementary Data Sheet 1). We searched Google
Scholar and ISI Web of Science, using all combinations of
the following terms in English and French: Chiroptera or bat∗;
ectoparasite, bat fly, Nycteribiidae, Streblidae or Hippoboscidae∗;
and pathogen, parasitoid, parasite, microparasite, fungi,
protozoa, haemosporidians, bacteria or virus.

Each bat fly—microparasite association (genus or species,
depending on the taxonomic level provided by the authors) is
an entry of the dataset, and is characterized by its geographical
origin and bat host species.

We use currently valid taxonomical names for both bats
and bat flies in our database (57–59). Statistics are conducted
using R 3.5.1 (60). Bat fly-microparasite networks were visualized
using the R package bipartite (61). Map of reported bat fly-
microparasite associations were made in QGIS 2.16 (62).

RESULTS

Effect of Bat Host Family on Detected
Microparasite Distribution in Bat Flies
Bat flies infected with microparasites were observed on
75 bat species comprising 33 bat genera, with most in
Vespertilionidae (16/505 known species), Phyllostomidae
(21/216), Pteropodidae (13/196), Miniopteridae (10/38, the
highest observed ratio), and Rhinolophidae (8/103). Bat flies
with microparasite observations were also found in only a
few species of Emballonuridae, Hipposideridae, Noctilionidae,
and Mormoopidae.

Microparasite distribution in bat flies is dominated by
bacterial and fungal parasites (Figure 2). Viruses detected in bat
flies are only known from the family Phyllostomidae (n= 2) and
Pteropodidae (n = 4). Blood parasites were mostly in flies from
Miniopteridae (n= 7), but were also found in Pteropodidae (n=
1) and Vespertilionidae (n= 2) (Figure 2).
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FIGURE 1 | Photos showing the morphological differences between (A) a wingless nycteribiid and (B) a streblid bat fly.

FIGURE 2 | Proportion of microparasite groups observed in bat flies collected from different bat host families. Numbers in brackets are sample sizes. Families with

<20 observations are not represented.

Diversity Within Nycteribiidae
and Streblidae
A total of 188 and 101 microparasite observations are reported
in bat fly families Nycteribiidae and Streblidae respectively,
belonging to 27 bat fly genera (Figure 3). The most frequently
reported infected bat fly genera are Penicillidia (n = 67),
Nycteribia (n= 51), Trichobius (n= 44), Eucampsipoda (n= 20),
and Basilia (n= 15); all of themNycteribiidae, with the exception
of the streblid genus Trichobius. Both host fly families displayed
a similar distribution of microparasite taxa (Figure 4).

The most commonly reported microparasites in bat flies are
bacteria (n= 149), followed by fungi (n= 118), blood parasites (n
= 15), viruses (n = 6), and arthropods (n = 1) (Table 1). Within
bacteria, the three most frequently detected microparasites
are Bartonella sp. (Alphaproteobacteria: Bartonellaceae)
(n = 91, 61%), Arsenophonus sp. (Gammaproteobacteria:
Enterobacteriaceae) (n = 30, 20.1%) and Wolbachia sp.
(Alphaproteobacteria: Anaplasmataceae) (n = 8, 5.4%).
All observed fungi are Laboulbeniaceae (Ascomycota:
Laboulbeniales) and belong to three genera, Arthrorhynchus (n=

80, 67.8%), Gloeandromyces (n = 16, 13.6%), and Nycteromyces
(n = 5, 4.2%), as well as 17 (14.4%) unidentified or undescribed
observations. Polychromophilus species (Haemosporida:
Plasmodiidae) represent 93.3% (n = 14) of blood parasite
observations in bat flies. Virus and parasitoid arthropod
represent a much smaller proportion of all microparasitic
observations in bat flies, with only six and one published
record, respectively.

Global Geographical Distribution of Bat
Fly—Microparasite Associations
Bat fly -microparasite associations originated from 61 countries
(Figure 5) with a total of 269 reports (excluding those with
unspecified or unknown geographical locations). Associations
reported from countries were most commonly from Europe (n
= 89, 33%), North America (n = 69, 25.7%), and Africa (n =

61, 22.7%). Observations in Asia (n= 33, 12.3%), South America
(n = 21, 7.8%), and Oceania (n = 5, 1.9%) were represented less
frequently. The highest number of microparasite—bat fly species
associations are reported fromMadagascar (n= 33).
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FIGURE 3 | Association between bat fly genera of Nycteribiidae (N) and Streblidae (S) families and microparasitic groups. The height of the bars represents the relative

abundance of the groups within each network level.

Sampling Effort on Microparasite Diversity
in Bat Flies
We tested the number of published studies by bat fly
genera and number of microparasite associations reported
(including same species associations but different bat hosts
and countries). Spearman rank correlation showed that
sampling effort strongly predicts the number of detected
microparasites in different bat fly genera (n = 27, r = 0.68,
p= 0.0001; Figure 6).

DISCUSSION

Microparasite Diversity in Bat Flies
Based on literature data, we have identified five main groups
of microparasites in parasitic bat flies. Bacteria are the
most frequently observed group in both Nycteribiidae and
Streblidae and within bacteria, Bartonella is the most prevalent
microorganism. Some species of Bartonella are blood-borne
parasites, transmitted by blood-sucking arthropods (104) found
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FIGURE 4 | Microparasite distribution in both bat fly families.

in a wide range of mammalian groups and several arthropod
ectoparasites (14). For example, Bartonella quintana, a louse-
borne parasite, was responsible for trench fever, which affected
over one million soldiers during World War 1 (105). The
presence of identical Bartonella genotypes in bats and bat flies
suggests that bat flies may serve as vectors (44, 53, 80, 81). Host
specific bat flies show higher prevalence but lower diversity of
Bartonella infection than polyxenous species (46). However, the
generally high prevalence and diversity of Bartonella suggests
their long co-evolutionary history with bats.

The second most frequently observed microparasites in bat
flies are fungi. All species recognized here belong to the order
Laboulbeniales. Three genera of Laboulbeniales are known to
parasite bat flies, Arthrorhynchus spp. (the most frequently
reported genus), Gloeandromyces spp., and Nycteromyces spp.
The distribution, specificity and diversity of these microparasites
have recently been uncovered. Locally (e.g., in Europe) these
species show some degree of high specificity (with occasional
“accidental” transfers) (64, 69), although at a larger geographical
scale, they do not show strict specificity to host species or
genera (65).

While blood parasites are frequently found in bats (77,
106–108), observations in bat flies are much less common.
Polychromophilus species are vectored by nycteribiids (102),
and one haemosporidian report is known from a single fossil
streblid specimen but observations from extant streblids are
still missing (109). Other blood parasites, such as Trypanosoma
is transmitted to bats by hemipterans including Cimex species
(42). Trypanosoma cruzi cruzi, the causative agent of Chagas
disease in humans and other mammal species, is transmitted
by triatomine bugs (110). Bat flies have not yet been reported
as vectors of Trypanosoma species. Nevertheless, Glossina tsetse
flies (members of the Hippoboscoidea superfamily along with
bat flies) are known to transmit T. brucei. Therefore, it
remains possible that bat flies transmit other blood parasites
besides Polychromophilus (e.g., trypanosomatids). Additionally,

nycteribiids may serve as vectors in the transmission of
other protozoans, such as Nycteria spp. (Haemosporida:
Plasmodiidae), infecting Afrotropical insectivorous bats; but
their vectorial potential has not yet been clarified (107). More
work is needed to address these questions.

Most of the reports on viruses in bat flies are
relatively recent (87, 92–96). As such, it is possible
that the number of isolated viruses in bat ectoparasites
might thus rise in the future with improvement in
diagnostic methods.

There is only one report of a parasitoid wasp using nycteribiids
as host (88). Parasitoid wasps are extremely diverse groups
with about 100,000 described species. However, host species
information is missing for many species. We expected that other
parasitoids use bat flies as hosts during their development, but
data collection is challenging due to the ecology of these flies.
Furthermore, it has been observed that mite species can have
phoretic relationships with bat flies (111–113), but their effect on
bat flies is not clear. Nonetheless, some phoretic mites which were
previously assumed to have no effect on their invertebrate hosts,
have now been shown to negatively affect their fecundity and/or
survival rate (114, 115).

Studies have previously suggested that microfilaria might
be transmitted by hippoboscid louse flies to their vertebrate
hosts, such as dogs (116). Filarial nematode DNA has also been
observed in streblid bat flies and bat mites (117). It is not clear
if these microfilaria are transmitted by bat flies or if the detected
microfilaria DNA was only present in the last blood meal (117).

Microparasite diversity is similar between nycteribiids
and streblids flies, although nycteribiids have 2.5 times
more reported cases of microparasites. The reason behind
this is more likely due to biased sampling efforts in
different geographical regions. For example, in Europe
where most of the studies were performed, 16 species of
nycteribiids are present, whereas only one streblid species have
been recorded.
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TABLE 1 | Microparasite groups found in bat flies and their associated bat families.

Bat host family N of

observation

N of bat fly species

with microparasites

Microparasites

detected from flies

N of

observation

Location References

Emballonuridae 1 1 Blood parasites 1 Gabon (63)

Hipposideridae 7 6 Bacteria 2 Gabon, Malaysia (30, 44)

Fungi 3 Sri Lanka, Zambia (64–67)

Blood parasites 2 Gabon (63)

Miniopteridae 57 14 Bacteria 21 Hungary, Japan, Madagascar,

Romania

(26, 46, 68)

Fungi 29 Australia, Bulgaria, Croatia, France,

Hungary, India, Kenya, Portugal,

Romania, Slovakia, Spain, Sri Lanka,

Switzerland, Taiwan

(64, 66, 69–76)

Blood parasites 7 Gabon, Madagascar (63, 77, 78)

Mormoopidae 3 2 Bacteria 1 Mexico (44)

Fungi 2 Costa Rica, Panama (79)

Noctilionidae 2 2 Bacteria 2 Dominican Republic, Panama (28, 44)

Phyllostomidae 48 18 Bacteria 18 Brazil, Costa Rica, Dominican

Republic, French Guyana, Mexico,

Panama, Peru

(27, 45, 80, 81)

Fungi 28 Brazil, Costa Rica, Grenada, Panama,

Venezuela

(64, 74, 79, 82–86)

Virus 2 Mexico (87)

Pteropodidae 35 17 Arthropod 1 São Tomé Island (88)

Bacteria 23 China, Gabon, Ghana, Kenya,

Madagascar, Malaysia, Philippines,

Union of the Comoros

(12, 28, 30, 44,

53, 68, 89)

Fungi 6 Egypt, Gabon, Israel, Malaysia, New

Guinea, Sierra Leone

(66, 71, 90, 91)

Blood parasites 1 Gabon (63)

Virus 4 China, South Africa, Uganda (92–96)

Rhinolophidae 21 7 Bacteria 8 China, Hungary, Laos, Philippines,

Romania

(28, 44, 46)

Fungi 13 Croatia, France, Hungary, Italy,

Kenya, Romania, Serbia, Sri Lanka

(64, 66, 67, 97)

Vespertilionidae 58 19 Bacteria 34 Costa Rica, Hungary, Madagascar,

Malaysia, Peru, Romania, Slovenia,

United States

(28, 30, 44, 46,

47, 50, 68, 81, 98)

Fungi 21 Austria, Brazil, Czech Republic,

England, France, India, Italy, Poland,

Portugal, Romania, Spain, Tunisia

(64, 66, 71, 75,

76, 83, 99–101)

Blood parasites 3 England/Scotland, Switzerland (102, 103)

The number of microparasite and host species associations (both bat species and bat fly species) are given, as well as the country of observation. See references and additional details

in Supplementary Data Sheet 1.

Geographical Distribution
All major groups of microparasites have been reported widely,
though our knowledge of the diversity and distribution of
many groups remains scarce. Bacteria such as Bartonella show
a high molecular and geographic diversity in bats and bat
flies, at global and regional scales (44, 46, 118). Six major
bat associated Bartonella clades have been reported so far
from bats and bat flies (118). Clade I, II, IV, and V are
represented in both Old and New World areas while clade
III seems to be restricted to the Old World (Africa, Asia,
and Europe) and clade VI to some parts of the New World
(Central America) (118).

Fungal microparasites (Laboulbeniales) show a rather
divided Eastern (Arthrorhynchus spp.) and Western Hemisphere
(Nycteromyces spp. Gloeandromyces spp.) distribution and
diversity (65). Similar patterns have been demonstrated regarding
nycteribiids (Eastern) and streblids (Western) (17). These
diversity and distribution patterns suggest a long evolutionary
history between bat flies and these fungal microparasites.

It is important to highlight that these distribution patterns
might be strongly influenced by biased sampling efforts
rather than actual geographical patterns. Therefore, the
distribution map helps to recognize well studied areas
on a global scale, however it does not necessarily reflects
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FIGURE 5 | Geographical distribution of reported bat fly—microparasite species associations. Countries are colored according to the number of different described

species associations.

FIGURE 6 | Effect of sampling effort on the number of microparasite associations in different bat fly genera.

actual distributional patterns of these microparasites
detected in bat flies. It is our hope that it will be useful for
further studies.

Effects of Bat Host Ecology
on Microparasites
Previous work showed that viral richness in bats correlates
with IUCN threat status, with near-threatened and vulnerable
hosts having higher viral richness. In addition, population
genetic structure positively correlates with viral richness
(119). Host longevity, reproductive strategy and distribution
pattern may also play an important role in viral richness
(9, 54, 120).

In general, the bat host family does not affect the distribution
of microparasites in their bat flies. The bent-winged bats,
family Miniopteridae, have the highest observed ratio of bat

species infected by bat flies parasitized by microparasites.
Miniopteridae are insectivorous, cave-dwelling species occurring
in dense and multi-species colonies. From a disease ecology
and parasitology point of view, it is a unique family hosting
many highly specific ecto- and endoparasites such as mites,
bat flies and malarial parasites (21, 121, 122). It is still unclear
whether the ecology and/or the immune system of Miniopteridae
species is responsible for such a high parasite diversity
compared to other bat families. Moreover, Miniopteridae is
considered as underrepresented in viral research so more
parasites and pathogens likely remain undiscovered in these
species (123).

Bacteria and fungi are the most abundant group of
microparasites in all bat flies from different host families.
The occurrence of Bartonella infection in bats is associated
with host diet; hematophagous and carnivorous species are
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more frequently infected than species with other diets (124).
Hematophagous and carnivorous bat species also show higher
white-blood cell count, suggesting a higher risk of pathogen
exposure, probably due to the fact that these bat species are
more exposed to vertebrate specific pathogens (125). Therefore,
we might expect a higher microparasite occurrence in bat flies
collected from bat species that feed on vertebrates or blood.
Nevertheless, there are only a few studies that have focused on
microparasites in parasitic bat flies collected from these host
species (44, 80, 87).

Viruses are only known from bat flies infecting the
New World leaf-nosed bats Phyllostomidae and the Old
World fruit bats Pteropodidae, but observations are still
scarce. These observed viruses represent distant groups, such
as Dengue virus (family Flaviviridae) isolated from the
bat flies of the common vampire bat, Desmodus rotundus
(87); Kaeng Khoi virus (Peribunyaviridae), Kanyawara virus
(Rhabdoviridae), Mahlapitsi virus (Reoviridae), and Wolkberg
virus (Bunyaviridae), isolated from Myonycteris and Rousettus
species (92–96).

There are great ecological differences between bat families.
Bat host ecology and physiology, such as roosting habits, body
size, and sex can affect bat fly burden and species richness
(126–129). More studies are again needed to clarify how host
traits affect the distribution of microparasite communities of
bat flies.

Potential Physiological Effects on Flies
and Bats
We still know little about the physiological effects of
microparasites on bat flies and on their bat host. Viruses
such as Lyssavirus spp. are known to cause mortality in bats
(130, 131). The bacterial parasite Borellia sp. (from the relapsing
fever group) has been documented causing fatal borreliosis in a
single bat individual (Pipistrellus sp.) (132). The haemosporidian
parasite Polychromophilus murinus has a well-documented
impact on both bat and bat fly life-history traits (103, 106).
In the Daubenton’s bats (Myotis daubentonii), it has a strong
negative effect on the body condition of subadults (106).
Additionally, it negatively affects the life span of infected
bat flies (103).

The relationship between bat flies and some bacterial species
such as Wolbachia and Arsenophonus has not yet been clarified.
It is suspected that they are either parasitic and/or symbiotic of
bat flies. In some cases, Wolbachia is considered as a nutritional
mutualist, due to its ability to produce vitamin B in certain
hematophagous arthropod species, such as Cimex spp. (133).
Arsenophonus is a highly diverse group of bacteria found mainly
in insects, including bat flies (134–138). Arsenophonus species
have been suggested to be primary or secondary symbionts in
other taxa (134, 138, 139). Here, we categorize Arsenophonus
and Wolbachia as microparasitic organisms in bat flies, since
it is unclear how they affect their hosts (35). Furthermore,
Wolbachia DNA has been also detected in mammalian blood
due to the presence of infected nematodes in host blood (140).
It has been observed once in an avian blood system, with the
strain being more closely related to the arthropod-associated

Wolbachia group (141), and likely having no direct effect on their
vertebrate hosts.

The presence of the fungal parasite Laboulbeniales has an
effect on bat fly mortality in some species (Szentiványi et al.,
Unpublished), as an arthropod specialized microparasite.
Nevertheless, it is unclear if it has any direct or indirect effect on
the bat host.

Additionally, and as mentioned above, the potential effect
of phoretic mite infestation on bat flies has never been tested.
Therefore, it remains possible that these mites have direct
or indirect negative effects on host behavior, survival rate,
and/or fecundity.

Perspectives for Additional Research,
Sampling Effort
Our knowledge of the microparasites of bat flies is strongly
biased by sampling effort, which may also strongly reflect the
currently known geographical distribution patterns of these
parasites. We suggest to balance these biases by increasing
sampling effort in less prospected countries as well as areas
where human exposure to pathogen transmission is more likely
to occur, due to cultural or touristic reasons (e.g., visiting
caves) (15, 142). Additionally, we have little knowledge on
the microparasites of other bat ectoparasitic groups, such
as fleas, bugs, and mites. Future studies should focus on
how microparasite and pathogen communities interact on the
intra- and interspecific levels. For example, Wolbachia infection
is known to inhibit malarial infection in mosquitos (143).
Additionally, it is important to understand how bat host traits
such as sex, geographical distribution and/or host group size
[which are known to shape the distribution of bat fly populations
(17, 128, 129)] may affect the occurrence of microparasitic
communities in these ectoparasites. Lastly, experimental studies
are needed to understand the relationship between bat hosts and
ectoparasites, including the transmission and the distribution
of microparasites.
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