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Targeted therapeutics for the treatment of coronavirus disease 2019 (COVID-19),
especially severe cases, are currently lacking. As macrophages have unique effector
functions as a first-line defense against invading pathogens, we genetically armed human
macrophages with chimeric antigen receptors (CARs) to reprogram their phagocytic
activity against SARS-CoV-2. After investigation of CAR constructs with different
intracellular receptor domains, we found that although cytosolic domains from MERTK
(CARMERTK) did not trigger antigen-specific cellular phagocytosis or killing effects, unlike
those from MEGF10, FcRg and CD3z did, these CARs all mediated similar SARS-CoV-2
clearance in vitro. Notably, we showed that CARMERTK macrophages reduced the virion
load without upregulation of proinflammatory cytokine expression. These results suggest
that CARMERTK drives an ‘immunologically silent’ scavenger effect in macrophages
and pave the way for further investigation of CARs for the treatment of individuals with
COVID-19, particularly those with severe cases at a high risk of hyperinflammation.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has caused a sudden significant increase in
hospitalizations for pneumonia with multiorgan disease and has led to more than 2,000,000 deaths
worldwide. COVID-19 is caused by the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), a novel enveloped RNA betacoronavirus. SARS-CoV-2 infection may be
asymptomatic or cause a wide spectrum of symptoms, ranging from mild symptoms of upper
respiratory tract infection to life-threatening sepsis (1). Manifestations of COVID-19 include
asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure.
Approximately 5% of patients with COVID-19, including 20% of those hospitalized, experience
severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-
19 require supplemental oxygen (1, 2). The case-fatality rate for COVID-19 varies markedly by age,
ranging from 0.3 deaths per 1000 patients among patients aged 5 to 17 years to 304.9 deaths per
org July 2021 | Volume 12 | Article 6691031
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1000 patients among patients aged 85 years or older. Among
patients hospitalized in the intensive care unit, the case fatality
can reach 40% (1).

There are currently 102 SARS-CoV-2 vaccine candidates
already under clinical evaluation and 185 in preclinical
development (3). In the development of an effective vaccine, a
number of challenges must be overcome, such as technical
barriers, the feasibility of large-scale production and regulation,
legal barriers, the potential duration of immunity and thus the
number of vaccine doses needed to confer immunity, and the
antibody-dependent enhancement effect. Moreover, there is
another complicated area to consider: drug development for
COVID-19, especially treatments for patients with severe or late-
stage disease. Dexamethasone therapy was reported to reduce 28-
day mortality in patients requiring supplemental oxygen
compared with usual care (21.6% vs 24.6%; age-adjusted rate
ratio, 0.83 [95% CI, 0.74-0.92]) (4), and remdesivir was reported
to improve the time to recovery (hospital discharge or no
supplemental oxygen required) from 15 to 11 days (5). In a
randomized trial of 103 patients with COVID-19, convalescent
plasma did not shorten the time to recovery (6). Ongoing trials
are testing antiviral therapies, immune modulators, and
anticoagulants [see review (7)]; however, there is no specific
antiviral treatment recommended for COVID-19.

Chimeric antigen receptors (CARs) are synthetic receptors
that redirect T cell activity towards specific targets (8). With the
remarkable success of CAR-engineered T (CAR-T) cells for
treating haematological malignancies, there is a rapid growing
interest in developing other kind of CAR-engineered
lymphocytes, such as CAR-NK for cancer therapy (9). A CAR
construct includes antigen-recognition domains in the form of a
single-chain variable fragment (scFv) or a binding receptor/
ligand in the extracellular domains, a transmembrane domain
providing the scaffold and signaling transduction, and
intracellular domains from the T cell receptor (TCR) and
costimulatory molecules that trigger T cell activation (10).
Based on the longstanding interest in harnessing macrophages
to combat tumor growth (11, 12), human macrophages
engineered with CARs have been developed and characterized
for their antitumor potential. Macrophages, critical effectors of
the innate immune system, are responsible for sensing and
responding to microbial threats and promoting tissue repair.
We therefore hypothesize that CAR macrophages can be used to
combat SARS-CoV-2. However, the hyperinflammatory
macrophage response, which has been found to be damaging
to the host, particularly in severe infections, including SARS-
CoV-2, and cytokine release syndrome (CRS), which is also the
most significant complication associated with CAR-T cell
therapy, raise questions regarding the safety of using CAR
macrophages for virus clearance.

In this report, we developed a series of chimeric antigen
receptors based on recognition of the S protein and tested their
ability to induce phagocytosis of SARS-CoV-2 virions. MER
Proto-Oncogene Tyrosine Kinase (MERTK), which is a member
of the Tyro-Axl-MerTK (TAM) family of protein, is highly
expressed on macrophages and has a number of ligands,
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notably Gas6 and protein S, either as free proteins or attached
to apoptotic cells during MERTK-mediated clearance of
apoptotic cells (13). Interestingly, we reported that one CAR
with the intracellular domain of MERTK did not show a notable
killing effect in antigen-expressing cell-based models compared
with other CARs but did demonstrate antigen-specific clearance
of SARS-CoV-2 virions in vitro without the secretion of
proinflammatory cytokines.
METHODS

Cell Lines and Primary Human Cells
All cell lines were purchased from the American Type Culture
Collection (ATCC; Manassas, VA). The identities of the cell lines
were verified by STR analysis, and the cell lines were confirmed
to be mycoplasma free. 293 and Vero cells were maintained in
DMEM supplemented with 10% fetal bovine serum, and THP-1
cells were maintained in RPMI medium supplemented with 10%
fetal bovine serum. Cell culture media and supplements were
obtained from Life Technologies, Inc. For primary human cells,
the peripheral blood samples were collected from healthy donors.
After sample collection, PBMCs were isolated by density gradient
centrifugation. To develop primary human macrophages, the
monocytes were purified using anti-CD14 magnetic beads
(Miltenyi Biotec, USA) and the purified monocytes were
cultured in RPMI 1640 medium contains 10% Human serum
and 0.05% Glutamine (Sigma, USA) for 7 days at 5% CO2 and
37°C. The primary human macrophages were identified by
morphologic observation and flow cytometric analysis followed
by anti-CD68 staining.

Vector Construction
The sequence encoding the scFv generated from CR3022 was
chemically synthesized. As shown in Figure 1A, synthetic
receptors contained the human CD8a signal peptide followed
by the scFv linked in-frame to the hinge domain of the CD8a
molecule, transmembrane region of the human CD8 molecule,
and intracellular signaling domains of the FCER1G, MEGF10,
MERTK or CD3z molecules. The cDNA sequences containing
the various fusion constructs were cloned into a third-generation
lentiviral vector in which the CMV promoter was replaced with
the EF-1a promoter, the pELNS vector (14). High-titer
replication-defective lentiviruses were produced and
concentrated (14). Lentiviral infection was used to stably
express CAR constructs in THP-1 cells.

FACS-Based Phagocytosis Assay
UTD or CAR-expressing THP-1 cells were cocultured with
GFP+ 293T cells or GFP+ 293T-S (S+) target cells for 4 h at
37°C. The effector-to-target (E:T) ratio was 1:1, and 1 × 105 cells
were used as both effector cells and target cells. After
coculturing, the cells were harvested and stained with an anti-
CD11b APC-Cy7-conjugated antibody (M1/70, BioLegend)
and analyzed by FACS using a FACSCalibur flow cytometer
July 2021 | Volume 12 | Article 669103
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(BD Biosciences). The percentage of phagocytosis was calculated
based on the percent of GFP+ events within the CD11b+

population. Data are represented as the mean ± standard error
of quadruplicate wells.

Flow Cytometry
Cell-surface staining was performed for 45 min at 4°C and was
analyzed using a FACSCalibur flow cytometer (BD Biosciences).
A minimum of 1 × 104 events per sample were examined.

In Vitro Cytotoxicity Assay and Luciferase-
Based Killing Assay
293T and 293T-S cells were used as targets in luciferase-based
killing assays including control (UTD) or CAR macrophages.
The effector-to-target (E:T) ratio was 10:1 for all the groups.
Bioluminescence was measured using a Bio-Tek Synergy H1
microplate reader. The percent specific lysis was calculated on
the basis of the experimental luciferase signal (total flux) relative
to the signal of the target alone, using the following formula:
Frontiers in Immunology | www.frontiersin.org 3
%Specific Lysis = [(Sample signal —; Target alone signal)]/
[Background signal — Target alone signal)] × 100.

SARS-CoV-2 Pseudovirus and Cell
Infection Experiments
The SARS-CoV-2 pseudovirus was constructed based on the
spike genes of the strain Wuhan-Hu-1 (GenBank: MN908947)
using published methods (15). The SARS-CoV-2 spike gene was
chemically synthesized and cloned into a eukaryotic expression
plasmid. 293T cells were first transfected with the S expression
vector and then infected with a VSV pseudotyped virus (G∗DG-
VSV), in which the VSV-G gene was substituted with luciferase
expression cassettes. The culture supernatants were harvested
and filtered at 24 h post infection. The SARS-CoV-2 pseudovirus
could not be neutralized with anti-VSV-G antibodies, and no
G∗DG-VSV was mixed with the SARS-CoV-2 pseudovirus stock.
For cell-based infection assays, target cells were grown in plates
until they reached 50%–75% confluency and then were
inoculated with pseudotyped virus. The transduction efficiency
A B

C D E

FIGURE 1 | Generation and characterization of CAR macrophages. (A) Vector maps of tested CAR designs and schematics showing the structures of CARs used
in the study. Figure created with BioRender. (B) Membrane-bound CAR expression. Forty-eight hours after retroviral transduction, the expression of synthetic
receptors on THP-1 cells was detected by staining with an anti-MYC antibody, followed by flow cytometry analysis. Untransduced THP-1 cells were used as a
negative control. The histograms shown in black correspond to the isotype controls, whereas the red histograms indicate positive fluorescence. (C) FACS-based
phagocytosis of 293T cells or 293T-S target cells by UTD or different CAR macrophages. Statistical significance was calculated with one-way ANOVA with multiple
comparisons. (D) Killing of 293T or 293T-S cells by UTD or anti-S CAR macrophages at 24 h assessed with a luciferase-based assay. (E) Flow cytometry analyses
of CAR macrophages stained with a biotinylated S protein followed by streptavidin-FITC. The histograms shown in black correspond to the use of isotype controls
with streptavidin-FITC, whereas the red histograms indicate positive fluorescence. The results shown represent three (B) independent experiments. Data are the
shown as the mean ± s.d. of four independent biological replicates (C–E). P values were derived by one-way ANOVA followed by Tukey’s posttest (C–E). **p<0.01,
***p<0.001, ****p<0.0001. NS, Not Significant. The circles represent individual data.
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was quantified at 16 h post transduction by measuring firefly
luciferase activity according to the manufacturer ’s
instructions (Promega).

Phagocytosis Assay
In all cases, SARS-CoV-2 S pseudotyped virions were pelleted
(90 min at 14,000 rpm and 4°C), and after removal of the
supernatant, the pellets were resuspended in RPMI medium
and incubated with phagocytes (THP-1 cells or CAR
macrophages) at 37°C for 1.5 h. After allowing time for
phagocytosis, the cells were washed three times with PBS and
incubated with Accutase (Innovative Cell Technologies) for
10 min at 37°C, followed by a final wash in Accutase.
Intracellular staining for the S protein was performed for
60 min on ice after using a fixation/permeabilization kit
(eBioscience) and then analyzed using a FACSCalibur flow
cytometer (BD Biosciences). The phagocytic score was
determined by gating the samples on events representing cells
and was calculated as follows: Percent S protein positive ×
median fluorescence intensity (MFI).

Cytokine Analysis
Cytokine analysis was performed on supernatants derived from
cultures given the indicated treatments using a human cytokine
10-plex panel (Thermo Scientific) per the manufacturer’s
instructions, with the panel results read on a Luminex Analyzer.

Statistical Analysis
Unless otherwise specified, Student’s t test was used to evaluate
the significance of differences between two groups, and ANOVA
was used to evaluate differences among three or more groups.
Differences between samples were considered statistically
significant when P < 0.05.
RESULTS

To program engulfment based on recognition of the SARS-CoV-
2 spike protein, we used a CAR design for the synthetic receptor
strategy in our study. The synthetic receptors were constructed to
contain an scFv derived from an antibody recognizing the virus
spike protein, CR3022, which has been reported to bind with the
receptor-binding domain of the SARS-CoV-2 S glycoprotein
with high affinity, and the CD8 transmembrane domain
present in the aCD19 CAR for T cells (12). For the
cytoplasmic domains, we used the common g subunit of Fc
receptors (CARg) , MEGF10 (CARMEGF10) , MERTK
(CARMERTK) and CD3z (CARz) in our study (Figure 1A).
These cytoplasmic domains are capable of promoting
phagocytosis by macrophages.

Next, we used lentiviral vector technology to express the
fusion constructs in human macrophage THP-1 cells using
clinically validated techniques (16). The cDNA sequences
containing the various fusion constructs were cloned into a
third-generation lentiviral vector in which the CMV promoter
was replaced with the EF-1a promoter (17). An extracellular
Frontiers in Immunology | www.frontiersin.org 4
MYC epitope was cloned into the receptors to permit detection
by flow cytometry. Lentiviral vector supernatants transduced
THP-1 cells with high efficiency (Figure 1B). The phagocytic
potential of human macrophage THP-1 cell lines expressing
different CAR receptors or a truncated CAR receptor (CARD)
lacking the intracellular domain was measured with a cell-based
assay. Consistent with previous reports (11, 12), CAR
macrophages and control untransduced (UTD) macrophages
did not show notable phagocytosis of 293 cells; however,
CARMEGF10, CARg and CARz cells but not CARMERTK, CARD,
or UTD macrophages phagocytosed Spike-bearing 293 cells
in an S-specific manner (Figure 1C). CAR-mediated
macrophage phagocytosis was further confirmed by a
luciferase-based killing assay, and our data showed that
CARMEGF10, CARg and CARz cells eradicated S protein-
expressing 293T cells in an antigen-specific manner
(Figure 1D). Interestingly, CARMERTK and UTD macrophages
showed-no difference in killing effect. Our data further showed
that all synthetic receptors had the ability to bind the S protein
(Figure 1E); therefore, the differences in phagocytosis and the
lytic effect were not due to the affinity for the S protein. To
further support the phagocytosis effect and cell killing effect of
engineered macrophage is CAR dependent, CR3022 scFv were
added to the culture to test the effect of CAR macrophages, our
data showed when use anti-S scFv to block the interaction of S
protein and CAR, the engineered macrophages showed no
phagocytosis or killing effect, suggested that the observation of
phagocytosis is dependent on the CAR receptor (Figures
S1A, B).

Although there is currently no evidence that SARS-CoV-2
can infect THP-1 cells with or without IgGs (18), THP-1 cells
have been shown to support antibody-mediated enhancement of
SARS-CoV infection in previous studies (19). We therefore
sought to determine whether synthetic receptors facilitate the
entry of SARS-COV-2 into macrophages as host cells, as the
extracellular domain of the CAR constructs has the capacity to
directly bind to the S protein. Replication-defective VSV particles
bearing coronavirus S proteins faithfully reflect key aspects of
host cell entry by coronaviruses, including SARS-CoV-2 (20, 21).
We therefore employed VSV pseudotypes bearing SARS-2-S to
study the cell entry of SARS-CoV-2. Our data showed that Vero
E6 cells were susceptible to entry driven by SARS-S (Figure 2A);
however, no evidence of infection was detected in THP-1 cells
with or without synthetic receptors.

Antibody-mediated phagocytosis and internalization of
virions are important mechanisms of antiviral activity
performed by macrophages against pathogens; however, using
the phagocytosis assay developed for SARS-CoV-2, we observed
low levels of phagocytic activity when UTD cells directly
contacted virions. Phagocytic activity was not significantly
increased when CARD cells rather than UTD macrophages
were the phagocytes in the assay, suggesting that the
extracellular domain of the CAR alone is not sufficient to
induce strong virion internalization. CARg, CARMEGF10, and
CARz mediated similar significantly stronger levels of SARS-
CoV-2 phagocytosis by THP-1 cells than CARD (Figure 2B).
July 2021 | Volume 12 | Article 669103
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Unexpectedly, we also observed strong internalization of virions
in CARMERTK cells, which did not show specific phagocytic or
lytic effects on S protein-expressing 293T cells. Moreover, adding
the anti-S scFv significant inhibited the virion internalization
effect, supporting the role of CAR receptor in this process
(Figure S1C). Since all the CARs exhibited the ability to
induce phagocytosis of SARS-CoV-2 virions while there was
no evidence of infection, these experiments strongly suggest the
clearance of SARS-CoV-2 virions of CAR macrophages.

Because the systemic cytokine profiles observed in patients
with severe COVID-19 show similarities to those observed in
patients with macrophage activation syndrome, culture
supernatants from THP-1 cells with different CARs treated
with virions were further analyzed in a multiplex cytokine
assay (Figure 2C). Following SARS-CoV-2 treatment of THP-1
cells, we observed slightly increased secretion of the cytokines IL-
6, IL-8 and TNF-a, but no discernable patterns could be
confidently drawn for GM-CSF, IL-1b, IL-2, IL-4, IL-5, IL-8,
IL-10, and IFN-g. CARD cells showed a cytokine profile similar
to that of UTD macrophages. Notably, we observed not only
strongly increased induction of IL-6, IL-8 and TNF-a but also
induction of IFN-g and IL-10 in SARS-CoV-2-treated CARg and
Frontiers in Immunology | www.frontiersin.org 5
CARz cells. However, for CARMERTK cells, we did not observe
significant changes in cytokines.

We further used a transwell-based coculture model to
evaluate the protective role of CAR macrophages in SARS-
CoV-2 infection (Figure 3A). All the CAR-expressing
macrophages potently inhibited Vero E6 cell infection with the
SARS-CoV-2-S pseudotyped virus. Interestingly, CARD cells
showed no protective effect in the infection assay, although
they had a similar capacity to bind to the S protein, suggesting
that the intracellular signaling domain is necessary for virion
clearance by CAR macrophages (Figure 3B).

The above data demonstrated that CARMERTK cells can direct
anti-virus phagocytic activity without induction of pro-
inflammatory cytokines, we therefore sought to translate this
platform to primary human macrophages. Primary human
macrophages were generated from peripheral blood CD14+
monocytes and then engineered with MERTK CAR or CD3z
CAR, termed as CARMERTK-M cells or CARz-M cells. Similar to
the THP-1 cells, the resultant primary human CARMERTK-M
cells demonstrated no cell killing effect (Figures S2A, B) but a
strong antigen-specific phagocytosis of SARS-COV-2 virions
(Figure S2C), and this process did not induction of pro-
A B

C

FIGURE 2 | CARs mediate phagocytosis of SARS-CoV-2 virions. (A) Different cell lines were inoculated with a SARS-CoV-2 pseudotyped virus. At 16 h post
inoculation, pseudotyped virus entry was analyzed by determining the luciferase activity in cell lysates. Signals obtained for particles bearing no envelope protein were
used for normalization. The average of three independent experiments is shown. Error bars indicate the SEM. (B) The uptake of pseudotyped virions by UTD and
CAR macrophages was analyzed by flow cytometry. Different cell lines were stained with an anti-S primary Ab. The histograms shown in black correspond to the
isotype controls, whereas the red histograms indicate positive fluorescence. Data are reported as the phagocytic score (% positive cells x MFI, right panel). (C) Cell
lines were infected with the SARS-CoV-2 pseudotyped virus or mock infected. Cytokine levels in the supernatants were determined by a multiplex bead array. The
relative level was calculated as the ratio of the infected cells to the mock-infected THP-1 cells. Data are shown as the mean ± s.d. (A–C) of four independent
biological replicates. P values were derived by one-way ANOVA followed by Tukey’s posttest (a–b) or two-way ANOVA followed by the Bonferroni posttest (C);
*p<0.05, ****p<0.0001. NS, Not Significant. The circles represent individual data.
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inflammatory cytokines (Figure S2D). Moreover, adding anti-S
scFv notably inhibit the phagocytosis effect, suggest that the
biological effect of CARMERTK-M cells is antigen dependent.
DISCUSSION

Macrophages, which protect against infections and scavenge
the body’s worn-out or abnormal cells, are known for their
phagocytic activity, antigen presentation capability, and flexible
phenotype. The innate immune response of the pulmonary
parenchyma, which is characterized by the differentiation
of bone marrow-derived monocytes into macrophages, serves
as a first-line defense against invading pathogens in the
lungs (22). In general, monocytes/macrophages are able to
remarkably limit viral replication. The monocyte-enhanced
proinflammatory signaling molecule levels and antiviral
responses provoked during viral infection have been shown
for influenza, herpes, and Zika viruses (23). Moreover, it has
recently been suggested that some COVID-19 patients have
enhanced proinflammatory macrophage activity, which leads to
accelerated production of inflammatory cytokines and
chemokines and has mostly been observed in subjects with a
poor prognosis (24).

To our knowledge, no synthetic cell-based immunotherapy
has been investigated for COVID-19. CAR-expressing T cells
have been demonstrated to be a very effective approach to treat
B-cell cancer patients. Harnessing the power of engineered
macrophages for the development of novel treatments for solid
tumors is of great interest because CAR-T cell therapy is often
hampered by the inability of T cells to penetrate solid tumors and
the inhibitory tumor microenvironment (25). Consistent with a
previous report (11), CAR receptors with cytosolic
immunoreceptor tyrosine-based activation motifs (ITAMs)
were capable of triggering specific engulfment and killing of
antigen-expressing cells by macrophages. These CAR
Frontiers in Immunology | www.frontiersin.org 6
macrophages also showed strong phagocytosis of SARS-COV-2
virions in our data; however, this effect was accompanied by
increased secretion of the proinflammatory cytokines IFN-g,
IL-6, and IL-8. In CAR-T cell therapy, engineered T cell
expansion is usually accompanied by high-grade CRS with
elevated circulating levels of interferon (IFN)-g, granulocyte-
colony stimulating factor (G-CSF), IL-6, IL-8, and IL-10.
Recent reports have demonstrated that host-derived monocyte/
macrophage and CAR-T cell interactions play an important role
in CRS pathophysiology (26). This is of interest because
increased serum levels of similar inflammatory cytokines (27–
29) have been associated with COVID-19 severity and death.
Interestingly, the secretion of IL-6, IL-8, TNF-a, IFN-g and IL-10
was significantly elevated in CARg and CARz cells treated with
SARS-CoV-2 virions, suggesting that these CAR macrophages
may not be suitable for application in severe patients or patients
with late-stage COVID-19.

Previous studies have shown that human immune cells, such
as THP-1 cell lines, are susceptible to SARS-CoV infection (30).
We did not observe any evidence that our SARS-CoV-2
pseudotyped virus infected THP-1 cells. Moreover, the uptake
of virions by THP-1 cells was very low, even with a truncated
CAR with the ability to bind to the S protein, suggesting that
THP-1 cells did not innately engulf the virions. Notably,
CARMERTK, which was regarded as an unsuccessful receptor in
a previous report (11) and showed no cellular killing effect on
target cells when expressed in THP-1 cells in our assay,
demonstrated a virion clearance capacity similar to that of
CARg and CARz. Our data further support that CARMERTK

mediates ‘immunologically silent’ virion removal, which does not
elicit a proinflammatory response.

MER tyrosine kinase (MERTK), together with TRYO3 and
AXL, belongs to the TAM family of receptor tyrosine kinases
(RTKs). These receptors can be activated by a complex ligand
consisting of phosphatidylserine (PtdSer) linked to the RTK by a
vitamin K-dependent protein ligand, Gas6, or Protein S (31),
A B

FIGURE 3 | CARs mediate protection against SARS-CoV-2 infection. (A) The schematic shows the transwell coculture model. Figure created with BioRender.
(B) Different cell cocultures were inoculated with the SARS-CoV-2 pseudotyped virus in the culture plate. At 16 h post inoculation, pseudotyped virus entry was
analyzed by determining the luciferase activity in cell lysates of Vero cells. Signals obtained for particles bearing no envelope protein were used for normalization.
Data are presented as the mean ± s.d. (a–c) of four independent biological replicates. P values were derived by one-way ANOVA followed by Tukey’s posttest.
****p<0.0001. NS, Not Significant. The circles represent individual data (B).
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playing a crucial role in innate immune cells. Gas6 has the
capacity to bind all three receptors, while Protein S is a specific
ligand of MERTK and TYRO3 (32). Apoptotic cells, exosomes,
and cell debris are the main sources of the PtdSer component. In
some cases, the PtdSer component is also provided by patches of
exposed PtdSer on living cells (including T cells) (31). The
activation of members of the TAM family of receptors
generally induces an anti-inflammatory, homeostatic response
in innate immune cells, diminishing excessive inflammation and
autoimmune responses elicited by the ingestion of “self” (31).
However, previous studies also proposed that enveloped viruses
may hijack TAM receptors to facilitate attachment and infection
via a PtdSer-dependent process termed “apoptotic mimicry” and
act as potent TAM agonists, in turn inhibiting the type I IFN
response in target cells (33). In our study, THP-1 cells expressing
the synthetic receptor with the MERTK cytoplasmic domain
were relatively resistant to virus infection but induced notable
virion clearance. It should be noted that our study used very
simple infection models; therefore, the assays lack numerous
physiological and pathological factors, such as IgG or
complement-mediated immune complexes, that may interfere
with the behavior of engineered cells. Of cause, cells expressing
synthetic receptors can be further engineered and developed to
achieve precise control.

In summary, our data reveal that the CAR-based synthetic
approach is applicable for COVID-19 treatment. In addition to
direct virion clearance by CAR macrophages, we found evidence
that MERTK-based CAR receptors did not induce further
upregulation of proinflammatory cytokine levels, thereby
raising the possibility that CAR macrophages may be useful as
potent therapeutics in severe COVID-19.
Frontiers in Immunology | www.frontiersin.org 7
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