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The HER2-targeting antibody trastuzumab has shown effectiveness in treating HER2-positive breast and gastric cancers;
however, its responses are limited. Currently, Nrf2 has been deemed as a key transcription factor in promoting cancer
progression and resistance by crosstalk with other proliferative signaling pathways. Brusatol as a novel Nrf2 inhibitor has
been deemed as an efficacious and safe drug candidate in cancer therapy. In this study, we firstly reported that brusatol exerted
the growth-inhibitory effects on HER2-positive cancer cells by regressing Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling
pathways in these cells. More importantly, we found that brusatol synergistically enhanced the antitumor activity of
trastuzumab against HER2-positive SK-OV-3 and BT-474 cells, which may be attributed to the inhibition of Nrf2/HO-1 and
HER2-AKT/ERK1/2 signaling pathways. Furthermore, the synergistic effects were also observed in BT-474 and SK-OV-3 tumor
xenografts. In addition, our results showed that trastuzumab markedly enhanced brusatol-induced ROS accumulation and
apoptosis level, which could further explain the synergistic effects. To conclude, the study provided a new insight on exploring
Nrf2 inhibition in combination with HER2-targeted trastuzumab as a potential clinical treatment regimen in treating HER2-
positive cancers.

1. Introduction

HER2 is an important member of the ErbB family implicated
in several types of human cancer such as breast cancer,
gastric cancer, and ovarian cancer [1–3]. Homodimers or
heterodimers with other ErbB receptors results in phosphor-
ylation of residues in the intracellular domain and then
recruitment of adapter molecules responsible for activation
of PI3K/AKT pathway or ERK1/2 signaling pathways
involved in cancer cell proliferation and survival [4–6]. Tras-
tuzumab, a recombinant HER2-targeted humanized anti-
body, was able to bind to the extracellular domain IV of
HER2 and then result in inhibition of downstream AKT or
ERK1/2 signaling [7, 8]. It has been approved by the US Food
and Drug Administration (FDA) for clinical use for patients
with HER2-overexpressing metastatic breast cancer (MBC)

in 1998. Despite the considerable clinical efficacy, the major-
ity of patients who have an initial response to trastuzumab
therapy developed resistance within one year of treatment
[9, 10]. Hellstrom et al. revealed that ovarian cancer cell lines
from stage III and IV patients with HER2 overexpression
were sensitive to trastuzumab by antibody-dependent cellu-
lar cytotoxicity (ADCC) in vitro [11]. Although the modest
therapeutic effects of trastuzumab on ovarian cancer cells
were observed in preclinical studies, the existing data in
clinical trials point to more effective HER2-directed drug or
regimen [12]. Collectively, there is an urgent need to enhance
the efficacy of trastuzumab in treating HER2-amplified
cancers.

Nuclear factor erythroid 2-related factor 2 (Nrf2) was a
redox-sensitive master regulator of a variety of crucial anti-
oxidant molecules. Kelch-like ECH-associated protein 1
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(Keap1) as a cysteine-rich repressor protein binds to Nrf2.
Under normal conditions, Keap1 retains Nrf2 in the cyto-
plasm and promotes ubiquitination and eventual degradation
of Nrf2 [13, 14]. However, under the stressful condition, the
steady-state level was disrupted and Nrf2 is released from
Keap1 and transferred to the nucleus where it binds to
conserved ARE sequences [14–16]. In the nucleus, Nrf2 upre-
gulates target gene expression by binding to the antioxidant
response element (ARE) of a series of antioxidant enzymes,
such as NAD(P)H: quinine oxidoreductase-1 (NQO1), gluta-
thione S-transferase (GST), and hemeoxygenase-1 (HO-1)
[17]. Enhanced expression of HO-1 contributes to the survival
of cancer cells and inhibits apoptosis [18]. On one hand, Nrf2
transactivates a variety of antioxidant genes involved in defen-
sive and adaptive pathways in response to oxidative stress in
normal cells [19]. On the other hand, Nrf2 was always deemed
as an activator in cancer progression, which promotes the
aberrant proliferation and metastasis of cancer cells [20, 21].
Notably, recent studies also indicated that Nrf2 inhibitors
enhance the sensitivity of cancer cells to chemotherapeutic
drugs [22, 23]. Hou et al. reported that PMF, as a Nrf2 inhib-
itor, could be used as an effective adjuvant sensitizer to
enhance the effects of cisplatin in lung cancer A549 cells and
promotes apoptosis eventually [24]. Arlt et al. also revealed
that inhibition of Nrf2 by the alkaloid trigonelline renders
pancreatic cancer cells more susceptible to apoptosis [25].
Manandhar et al. revealed that Nrf2 inhibition represses
HER2 signaling in ovarian carcinoma cells, suggesting that
Nrf2 modulation might be a therapeutic strategy to limit
tumor growth in ovarian cancers [26]. Bao et al. reported that
the novel Nrf2 target gene, ABCF2, plays a critical role in
cisplatin resistance in ovarian cancer, and targeting Nrf2
signaling may be a potential strategy to improve chemothera-
peutic efficiency in ovarian cancer [27]. Su et al. revealed that
Nrf2 suppressor reversed chemoresistance in CDDP-resistant
cervical cancer cells by inactivating PI3K/AKT pathway [28].
Therefore, these results above suggest that the inhibition of
Nrf2 may enhance the efficacy of chemotherapeutic drugs or
renders cancer cells susceptible to apoptosis.

Brusatol was a quassinoid plant extract from Brucea java-
nica that was usually used in Traditional Chinese Medicine
for treating amoebic dysentery, cancer, and malaria [29,
30]. Recently, brusatol was found to reduce the Nrf2 protein
level by enhancing ubiquitination and degradation of Nrf2 in
a Keap1-independent way [31, 32]. Wu et al. revealed that
brusatol has the capacity to decrease the Nrf2 expression level
and enhanced the cytotoxicity of Taxol [33]. Xiang et al.
showed that brusatol effectively enhances the anticancer
effects of gemcitabine through inhibiting gemcitabine-
induced Nrf2 activation in pancreatic cancers [34]. Also,
brusatol shows the potency on enhancing the toxicity of
irinotecan and inducing cell death in human colon cancer
cells [35]. Collectively, these results suggest that brusatol
may have the potential to be developed into an adjuvant che-
motherapeutic drug against cancer.

Previously, our study revealed that synergistic antitumor
activity of trastuzumab plus nimotuzumab may be attributed
to the inhibition of the crosstalk of HER2-ERK1/2 signaling
pathway and Nrf2-dependent antioxidant responses pathway

[2]. In this study, we are the first to investigate the effects of
Nrf2 inhibition by brusatol in HER2-positive cancers. Results
revealing that brusatol was effective in inhibiting HER2-
positive breast cancer BT-474 and SK-BR-3 cells and ovarian
cancer SK-OV-3 cells. Especially, we also found that HER2-
AKT/ERK1/2 signaling was inhibited, which suggested a
new mechanism of brusatol. As we know, trastuzumab
targeted the extracellular domain of HER2 and inhibited
the activation of HER2-AKT/ERK1/2 signaling pathway.
Therefore, we seek to examine if trastuzumab in combination
with brusatol may exert the synergistic effects on these
HER2-positive cancers. Results revealed that brusatol syner-
gistically enhanced the growth-inhibitory effect of trastuzu-
mab against BT-474 and SK-OV-3 cancer cells in vitro and
in vivo. We observed a significant decrease on the phosphor-
ylation of AKT and ERK1/2 in BT-474 and SK-OV-3 cells
when treated with trastuzumab plus brusatol compared to
either agent alone. Nrf2/HO-1 signaling was also inhibited
more effectively when treated with trastuzumab plus brusatol
that further resulted in significant ROS accumulation and
apoptosis. Furthermore, we found that knockdown of Nrf2
by siRNA enhanced the effects of trastuzumab which also
revealed that brusatol may exert the synergistic effects with
trastuzumab by targeting Nrf2. In summary, these results
above suggested that the therapeutic strategy by combining
trastuzumab with brusatol has a great potential to treat
HER2-positive cancers in clinics.

2. Materials and Methods

2.1. Cell Lines. The human breast cancer cell line BT-474 and
SK-BR-3 and ovarian cancer cell line SK-OV-3 were pur-
chased from the American Type Culture Collection (ATCC).
Cells were cultured with RPMI-1640 or DMEM medium
(Gibco; Thermo Fisher Scientific, Inc.) supplemented with
10% Fetal Bovine Serum (Gibco; Thermo Fisher Scientific,
Inc.) in an incubator at 37°C with 8% CO2.

2.2. Agents. Trastuzumab was purchased from Roche (Basel,
Switzerland). Brusatol was purchased from Yuanye Biotech
Corporation (Shanghai, China). It is over 95% pure deter-
mined by HPLC. The stock solution of brusatol was prepared
by dissolving in DMEM with 0.25% dimethyl sulfoxide
(DMSO). All primary antibodies were purchased from Cell
Signaling Technology (Beverly, MA, USA) including the
antibodies against Nrf2 (1 : 1,000; cat. no. 12721), HO-1
(1 : 1,000; cat. no. 43966), HER2 (1 : 1,000; cat. no. 2242),
phosphorylated (p)-HER2 (1 : 1,000; cat. no. 2243), AKT
(1 : 1,000; cat. no. 9272), p-AKT (1 : 1,000; cat. no. 4060),
ERK1/2 (1 : 1,000; cat. no. 4695), p-ERK1/2 (1 : 1,000; cat.
no. 8544), and β-actin (1 : 2,000; cat. no. 3700). Horseradish
peroxidase-conjugated goat antimouse/rabbit secondary
antibodies were purchased from ProteinTech (1 : 5,000; cat.
no. SA00001-1 or SA00001-2). SiRNA was ordered from
RiboBio (Guangzhou, China).

2.3. Animals. Six-week-old female BALB/c nude mice were
obtained from the Beijing Vital River Laboratory Animal
Technology (Beijing, China). The animal research was
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conducted according to the Principle of Laboratory Animal
Care (NIH Publication No. 85-23, revised in 1985). All exper-
imental protocols were approved by the Animal Experimen-
tation Ethics Committee of Xinxiang Medical University and
all efforts were made to minimize animal suffering and
reduce the number of animals used. Animals were treated
in accordance with the guideline of the Animal Care and
Use Committee of Xinxiang Medical University.

2.4. In Vitro Cytotoxicity Assay. Breast cancer SK-BR-3 and
BT-474 cells and ovarian cancer SK-OV-3 cells were plated
in 96-well plates (5 × 103 cells per well) and incubated with
trastuzumab, brusatol, or trastuzumab in combination with
brusatol for 48 h. Cell viability was then determined by
CCK-8 kit (Dojindo). The percentage of surviving cells was
calculated using the following formula: ½ðA450 of
experiment –A450 of backgroundÞ/ðA450 of control –A450
of backgroundÞ� × 100. Combination index (CI) values were
calculated using the Chou-Talalay method by Compusyn
Software. Drug synergy, addition, and antagonism are
defined by CI values less than 1.0, equal to 1.0, or greater than
1.0, respectively.

2.5. Transfection with Small Interfering RNA. The target
small interfering RNA (siRNA) sequences directed against
human Nrf2 were 5′-GAGAAAGAATTGCCTGTAA-3′
and 5′-TCCCGTTTGTAGATGACAA-3′. A scramble siRNA
was purchased from RiboBio (Guangzhou, China) as control.
Cells were transfected using Lipofectamine 2000 (Invitrogen,
USA) according to the manufacturer’s instructions. The final
concentration of the siRNAs was 20nmol/L.

2.6. Immunoblotting. Firstly, cells were lysed in RIPA lysis
buffer containing 50mmol/L Tris-HCl pH7.4, 150mmol/L
NaCl, 0.1% SDS, 1% NP-40, 0.5% deoxycholic acid sodium
salt (w/v)] supplemented with 2μL/mL protease inhibitor
cocktail (Sigma) and 10μL/mL phosphatase inhibitor cock-
tail (Sigma). The protein concentration of cell lysates was
measured by a QuantiPro BCA protein assay kit (Sigma
Aldrich). After denaturation, total cell lysates were subjected
to SDS–polyacrylamide and immunoblotted with primary
antibodies and HRP-conjugated secondary antibody. After
washing of the membrane, the bands were detected using
the sensitive ECL reagent (Millipore) and visualized using
an ChemiDoc imaging system (Bio-Rad Laboratories, Inc.).

2.7. Reactive Oxygen Species (ROS) Detection. The production
of ROS in solution was routinely detected with 2′, 7′
-dichlorodihydrofluorescein diacetate (DCFH-DA) (Sigma
Aldrich) according to the instruction of supplier. Briefly,
the cells (1 × 105/well) were treated with control IgG, brusa-
tol, trastuzumab, or brusatol plus trastuzumab at 37°C for
24 hours. Then, 1mM DCFH-DA was added to the cells
(final concentration of DCFH-DA will be 10μM). After incu-
bation for 30min, the cells were washed with phosphate
buffer saline (PBS) and collected. Fluorescence signal intensi-
ties indicating ROS levels were recorded by flow cytometer
(BD Biosciences) using excitation and emission spectra of
488/525 nm.

2.8. Apoptosis Analysis. Cells were seeded in 6-well plates at a
density of 3 × 105/well and exposed to different agents. After
incubation for 48 hours, the cells were washed with ice-cold
PBS and incubated with annexin V and propidium iodide
(PI) (Sigma Aldrich) for 15min at room temperature in the
dark. The rate of apoptotic cells was determined by flow
cytometer (BD Biosciences) and analyzed by FlowJo soft-
ware. The percentage of early apoptosis was calculated by
annexin V ð+Þ/PI ð−Þ, while the percentage of late apoptosis
was calculated by annexin V ð+Þ/PI ð+Þ.

2.9. In Vivo Therapy Study. BT-474 or SK-OV-3 cells (5 × 107
per mouse) were inoculated subcutaneously into the right
flank of female BALB/c nude mice. When tumor volumes
reached an average of about 120mm3 approximately on day
10 after inoculation, the mice were randomly divided into
four groups of five mice each. Mice were intraperitoneally
injected with control IgG (15mg/kg for three times every
week), trastuzumab (15mg/kg for three times every week),
brusatol (2mg/kg once daily), or the combination of trastu-
zumab (15mg/kg for three times every week) with brusatol
(2mg/kg once daily) for 1 week. Tumors were measured with
digital calipers, and tumor volumes were calculated by the
formula: volume = ½length × ðwidthÞ2�/2. Mice were eutha-
nized with CO2 asphyxiation.

2.10. Statistical Analysis. Statistical analysis was performed
with the SPSS 20.0 software (SPSS) or Graphpad Prism ver-
sion 5.0 (Graphpad software). Data are shown as mean ±
SD. One-way or two-way ANOVA and Student’s t-test were
used to analyze differences between two experimental
groups. Differences were considered significant at p < 0:05
(∗). Nonlinear regression analyses were used to fit curves.

3. Results

3.1. Brusatol Exhibits Effective Growth-Inhibitory Activity
against HER2-Positive Cancer Cells through Inhibiting
Nrf2/HO-1 Antioxidant Pathway and HER2/AKT/ERK1/2
Signaling Pathway. To investigate the antitumor effects of
brusatol against HER2-positive cancer cells in vitro, we uti-
lized CCK-8 assay to evaluate the activity of brusatol on cell
viability and growth. Results showed that brusatol exhibited
potent inhibitory effects in a dose-dependent manner either
in BT-474, SK-OV-3, or SK-BR-3 cell line which overex-
pressed HER2 (Figure 1(a)).

Furthermore, we also observed that brusatol treatment
caused a marked downregulation of Nrf2 level and regressed
the expression of HO-1, which is a Nrf2-regulated major pro-
tein in cells. Previously, our studies suggested the potential
crosstalk of Nrf2 antioxidant pathway with HER2/ERK1/2
signaling pathway may exist in esophageal and breast cancer
cells [2, 15]. Interestingly, in the study, we also found that
brusatol may exert its antitumor effects through inhibiting
phosphorylation of HER2 and HER2 downstream pathways,
as indicated by the regression of phosphorylated AKT and
ERK1/2 (Figure 1(b)). Collectively, these results suggested a
possible mechanism of brusatol on HER2-positive cancer
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cells, which functions by repressing HER2-AKT/ERK1/2
signaling pathway.

3.2. Trastuzumab and Brusatol Act Synergistically on BT-474
and SK-OV-3 Cancer Cells In Vitro. Although trastuzumab
has shown considerable clinical efficacy in HER2-
overexpressing breast cancers, the overall response rate is still
limited in many breast cancer patients [36]. According to the
results above, brusatol has the potency on inhibiting the
activation of HER2 and HER2 downstream pathway, which
was similar to that of trastuzumab. Therefore, we speculated
that brusatol may have the potential to enhance trastuzumab
efficacy in treating HER2-positive cancers. Results showed
that the inhibitory effect of trastuzumab in combination with
brusatol was significantly greater than that of either agent
alone in both SK-OV-3 and BT-474 cancer cells, while the
combinatorial treatment hardly shows superior activity
compared to brusatol on SK-BR-3 cells (Figure 2(a)). The

combination index (CI) is a mathematical method com-
monly used to measure the pharmacological interaction of
two drugs [9, 37]. As shown in Figure 2(b), the method of
Chou and Talalay analysis showed that the CI for every com-
bination treatment in BT-474 and SK-OV-3 cells was <1,
indicating significant synergistic effects of these combination
treatments. Collectively, it is clear from the results that the
superior effects of trastuzumab plus brusatol were synergistic
on BT-474 and SK-OV-3 cells (Figure 2(b)).

To explain the potential mechanism underlying the
synergistical effect, we examined the inhibitory effects of tras-
tuzumab, brusatol, or trastuzumab plus brusatol on HER2-
AKT/ERK1/2 and Nrf2/HO-1 signaling pathway in BT-474
and SK-OV-3 cell lines. Results showing that trastuzumab
plus brusatol effectively downregulates phosphorylation-
HER2, as well as phosphorylation-ERK1/2 and phospho-
AKT. Meanwhile, Nrf2 and HO-1 level was regressed in the
two HER2-positive cell lines upon treatment with the
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Figure 1: Brusatol regressed the growth of HER2-positive SK-OV-3, BT-474, and SK-BR-3 cells by inhibiting Nrf2/HO-1 and HER2-
AKT/ERK1/2 pathways. (a) BT-474, SK-OV-3, and SK-BR-3 cells were treated with brusatol in a dose range for 2 days. IC50 for BT-474,
SK-OV-3, and SK-BR-3 were 0.7537μM (95% confidence interval [CI], 0.6983–0.8136μM), 0.7610μM (95% CI, 0.6699–0.8646μM),
8.631μM (95% CI, 7.699–9.675μM), respectively. Points, mean of 3 independent CCK-8 assays; bars, SD. (b) BT-474, SK-OV-3, and SK-
BR-3 cells were treated with brusatol at 0, 1, 5, or 10 μM for 24 hours. The changes in Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling
pathways were monitored by western blotting.
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combination therapy (Figures 3(a)–3(d)). These results sug-
gested that brusatol may enhance the antitumor effect of
trastuzumab through inhibiting the Nrf2/HO-1 and HER2-
AKT/ERK1/2 signaling pathway in HER2-positive cancer
cells.

To further verify brusatol regressed HER2-AKT/ERK1/2
signaling by targeting Nrf2, we silenced Nrf2 expression
using siRNA and examined the change of HER2-
AKT/ERK1/2 signaling in SK-OV-3 cells. Immunoblot anal-
ysis showed that Nrf2 knockdown substantially decreased
phospho-HER2 level, as well as phosphorylation-AKT and
phosphor-ERK1/2 level in SK-OV-3 cells (Figure 4(a)).
Subsequently, we tested if Nrf2 inhibition by Nrf2 knock-
down will exert similar synergistic effects as brusatol on
SK-OV-3 cells when cotreated with trastuzumab. In consis-
tent with previous results, data showed that knockdown of
Nrf2 also significantly enhanced the cytotoxic effect of tras-
tuzumab in SK-OV-3 cells (Figure 4(b)). Overall, our
results revealed that Nrf2 inhibition in combination with
trastuzumab may be a promising strategy for treating
HER2-positive cancers.

3.3. Trastuzumab Enhanced Brusatol-Induced Reactive
Oxygen Species (ROS) Accumulation and Apoptosis in BT-
474 and SK-OV-3 Cancer Cells. Nrf2 suppression always
caused elevation of ROS and subsequently resulted in
apoptosis [34, 38, 39]. Next, we examined the level of ROS
accumulation when BT-474 and SK-OV-3 cells were exposed
to brusatol. Results showed that brusatol treatment alone led
to a moderate ROS elevation in BT-474 and SK-OV-3 cells
(Figures 5(a) and 5(b)). Surprisingly, the cotreatment of tras-
tuzumab with brusatol resulted in a significantly greater
increase on ROS accumulation than brusatol or trastuzumab
treatment alone.

As we know, ROS always takes an key role in exerting anti-
tumor effects by activating apoptosis [40]. Thus, we examined
if trastuzumab plus brusatol may potently induce apoptosis by
utilizing FACS assay. Consistent with the results on ROS accu-
mulation, data revealed that the combinatorial treatment more
effectively enhanced apoptosis in both BT-474 and SK-OV-3
cell lines compared to treatment with either trastuzumab or
brusatol treatment alone (Figures 6(a) and 6(b)). Taken
together, these results suggested that the combination of
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Figure 2: Brusatol exhibited antitumor activity in combination with trastuzumab in a synergistic manner on HER2-positive BT-474 and SK-
OV-3 cells. (a) BT-474, SK-OV-3, and SK-BR-3 cells were treated with trastuzumab and brusatol as single agents and in combination with
trastuzumab in a dose range for 2 days. Points, mean of 3 independent CCK-8 assays; bars, SD. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001. (b)
The synergistic effect of trastuzumab in combination with brusatol was evaluated on the growth of BT474, SK-OV-3, or SK-BR-3 cell line.
Combination index (CI) values were calculated at the drug concentration of trastuzumab (12.5 μg/mL) plus brusatol (2.5 μM),
trastuzumab (25 μg/mL) plus brusatol (5 μM), and trastuzumab (50 μg/mL) plus brusatol (10 μM) using the Chou-Talalay method. Drug
synergy, addition, and antagonism are defined by CI values less than 1.0, equal to 1.0, or greater than 1.0, respectively.
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trastuzumab with brusatol markedly promoted ROS accumu-
lation and enhanced apoptosis in both BT-474 and SK-OV-3
cells, which may partly explain the superiority of combinato-
rial treatment.

3.4. Combination Therapy of Trastuzumab and Brusatol Is
Superior to Single-Agent Treatment in HER2-Positive BT-
474 and SK-OV-3 Cancer Cells In Vivo. Next, we examined

the therapeutic efficacy of trastuzumab in combination with
brusatol for nude mice bearing established BT-474 and SK-
OV-3 tumor xenografts. As is shown in Figures 7(a) and
7(b), the antitumor activity of trastuzumab plus brusatol
was significantly greater than that of trastuzumab or brusa-
tol injection alone in SK-OV-3 xenograft tumors. More-
over, the drug combination treatment has not caused
significant body weight loss in SK-OV-3 tumor xenografts
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Figure 3: Trastuzumab plus brusatol potently inhibited the activation of Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. (a, b) BT-474 and
SK-OV-3 cells were treated with trastuzumab or brusatol alone, or their combination for 24 hours. The changes in Nrf2/HO-1 and HER2-
AKT/ERK1/2 signaling pathways were monitored by western blotting. (c, d) Densitometric analysis was performed on the western
blotting. The levels of Nrf2, HO-1, p-HER2, p-AKT, and p-ERK1/2 were quantified by using the software Image J. The data are expressed
as the mean ± SD of three independent experiments. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001.
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(Figure 7(c)). In addition, we also evaluated the antitumor
activity and nonspecific toxicity of trastuzumab plus brusa-
tol in BT-474 xenografts. Results showed trastuzumab in
combination with brusatol effectively regressed tumor
growth and has not caused marked weight loss
(Figures 7(d)–7(f)). Besides these, hematoxylin and eosin
(H&E) staining also showed that no marked liver toxicity
was observed in both BT-474 and SK-OV-3 tumor-
bearing mice upon treatment with trastuzumab plus brusa-
tol (Figures S1 and S2). Overall, these results above revealed
that the combinatorial therapy shows superior antitumor
effects and appear to be well tolerated in HER2-positive
tumor xenografts.

To further explore the mechanism underlying the supe-
rior effects of trastuzumab in combination with brusatol
in vivo, we removed tumors from drug-treated animals
and evaluated the expression of key molecules involved
in multiple signaling pathways utilizing western blot assay.
Results in Figure 8 showed that the combinatorial treat-
ment effectively suppressed the expression of Nrf2 and
HO-1 involved in Nrf2/HO-1 pathway in vivo. Moreover,
data also revealed that phosphorylation levels of HER2,
AKT, and ERK1/2 were also potently inhibited in the
SK-OV-3 tumor xenografts, which were consistent with
the results in vitro. Consequently, these results above sug-
gested that these patients with HER2-positive cancers may

benefit from a combinatorial treatment with trastuzumab
plus brusatol.

4. Discussion

In recent years, Nrf2 has been deemed as an important and
promising target in cancer therapy and many efforts have
been made to seek therapeutic strategies directed to block
the Nrf2 antioxidant pathway [20, 41]. Brusatol, as a unique
Nrf2 inhibitor, has recently been shown to regress tumor
burden through inhibiting Nrf2 signaling in several tumor
models [31, 32, 42]. More importantly, brusatol exhibits the
potential as an adjuvant drug to enhance the efficacy of che-
motherapeutic such as gemcitabine or cisplatin in pancreatic
cancer or lung cancer [31, 34]. In the study, we firstly found
that brusatol was a potent antitumor compound against
HER2-positive cancer cells. Notably, the inhibitory effect of
brusatol on HER2-AKT/ERK1/2 signaling pathway in
HER2-positive cancer cells was identified as a new mecha-
nism, suggesting a therapeutic advantage for the use of brusa-
tol in cancer therapy.

Although clinical benefit has been verified with trastuzu-
mab, many patients with HER2-positive cancers do not
respond to trastuzumab or developed resistance in a period
of trastuzumab therapy. It has been a clinical obstacle con-
cerning with HER2-targeted treatment for a long time.
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Figure 4: Nrf2 inhibition resulted in repression of HER2-AKT/ERK1/2 signaling and sensitizes SK-OV-3 cells to trastuzumab treatment. (a)
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fluorescence intensity upon different treatments relative to control were shown. Data was presented as mean ± SD.
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Figure 6: Trastuzumab in combination with brusatol potently induced apoptosis in BT-474 and SK-OV-3 cancer cells. (a) Induction of
apoptosis of BT-474 cells after control IgG (25 μg/mL), brusatol (5 μM), trastuzumab (25 μg/mL), or the combinatorial treatment for 48 h.
Apoptosis ratios were measured by flow cytometry. Data was shown with mean ± SD of three independent experiments. ∗∗∗ p < 0:001. (b)
Induction of apoptosis of SK-OV-3 cells after control IgG (25 μg/mL), brusatol (5 μM), trastuzumab (25 μg/mL), or the combinatorial
treatment for 48 h. Apoptosis ratios were measured by flow cytometry. Data was shown with mean ± SD of three independent
experiments. ∗∗∗ p < 0:001.
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Therefore, more effective targeted-therapy strategies for
HER2-positive cancers are necessary to overcome the limita-
tion of trastuzumab in efficacy. Harris et al. found that single-
agent trastuzumab results in a limited treatment benefit in
ovarian cancers; however, a combination therapy including
both chemotherapy drugs and HER2-targeted antibody
provides a far better response [43]. Many studies have also
indicated that new combinatorial regimens of trastuzumab

with other antibodies or small-molecule inhibitors may con-
tribute to enhance the efficacy of trastuzumab and overcome
trastuzumab resistance [9, 44, 45]. Recently, Gambardella
et al. showed that Nrf2 activation through RPS6 is related
to resistance to anti-HER2 drugs in HER2-amplified gastric
cancer models [46]. And our previous publication also indi-
cated that nimotuzumab in combination with trastuzumab
exerts synergistic effects on HER2-positive breast cancers

0 3 6 9 12 15 18
0

200
400
600
800

1000
1200

SK-OV-3

Time (days)

Tu
m

or
 si

ze
 (m

m
3 )

⁎⁎⁎

⁎⁎⁎

⁎⁎

Control

Brusatol
Trastuzumab

Trastuzumab+brusatol

(a)

0.0

0.5

1.0

1.5

2.0

Tr
as

tu
zu

m
ab

+b
ru

sa
to

l

Tr
as

tu
zu

m
ab

Br
us

at
ol

Co
nt

ro
l

Tra+BruTrastuzumabBrusatolControl

⁎⁎⁎

⁎⁎⁎

⁎⁎

Tu
m

or
 w

ei
gh

t (
g)

(b)

0 3 6 9 12 15 18
12

16

20

24

Time after treatment (day)

Bo
dy

 w
ei

gh
t (

g)

Control
Brusatol
Trastuzumab
Trastuzumab+brusatol

(c)

Control

Brusatol
Trastuzumab

Trastuzumab+brusatol

0 5 10 15 20
0

250

500

750

1000

1250 BT-474

Time (days)

Tu
m

or
 si

ze
 (m

m
3 )

⁎⁎⁎
⁎⁎

⁎⁎

(d)

0.0

0.5

1.0

1.5

2.0

Tu
m

or
 w

ei
gh

t (
g)

Tr
as

tu
zu

m
ab

+b
ru

sa
to

l

Tr
as

tu
zu

m
ab

Br
us

at
ol

Co
nt

ro
l

Tra+BruTrastuzumabBrusatolControl

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(e)

0 3 6 9 1215 18
12

16

20

24

28

Control
Brusatol
Trastuzumab
Trastuzumab+brusatol

Time after treatment (day)

Bo
dy

 w
ei

gh
t (

g)

(f)

Figure 7: Trastuzumab caused tumor regression in BT-474 and SK-OV-3 xenografts in combination with brusatol. (a) Mean tumor volume
of SK-OV-3 xenografts after injection with control IgG (15mg/kg), trastuzumab (15mg/kg), brusatol (2mg/kg), or trastuzumab (15mg/kg)
plus brusatol (2mg/kg). (b) On day 15 postfirst injection, xenograft tumors from each group were removed and tumor masses were weighed.
(c) Effects of trastuzumab, brusatol or trastzuamb plus brusatol on tumor-bearing mice body weight were determined using SK-OV-3 tumor-
bearing nude mice. Mice were weighed at regular intervals during the whole period to monitor unspecific toxicity. (d) Mean tumor volume of
BT-474 xenografts after injection with control IgG (15mg/kg), trastuzumab (15mg/kg), brusatol (2mg/kg), or trastuzumab (15mg/kg) plus
brusatol (2mg/kg). (e) On day 17 postfirst injection, xenograft tumors from each group were removed and tumor masses were weighed. (f)
Effects of trastuzumab, brusatol or trastzuamb plus brusatol on tumor-bearing mice body weight were determined using BT-474 tumor-
bearing nude mice. Mice were weighed at regular intervals during the whole period to monitor unspecific toxicity. Data are shown asa
mean ± SD. (n = 5 mice, each group); ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001.
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by repressing Nrf2 signaling pathway and induced ROS gen-
eration [2]. Collectively, these evidences suggest that Nrf2
may be a key target in treating HER2-positive cancers. Previ-
ously, many studies have indicated that brusatol could be
developed as a relatively safe and effective anticancer adju-
vant drug by targeting Nrf2 [47–50]. In the present study,
we for the first time found that brusatol synergistically
enhanced the antitumor effects of trastuzumab in HER2-
positive BT-474 and SK-OV-3 cancer cells in vitro and
in vivo. And we also observed that trastuzumab enhanced
brusatol-induced ROS accumulation and promoted apopto-
sis in these cells, which further explained the synergistic
effects. However, we have not observed similar synergistic
effects in SK-BR-3 cancer cells. As we found that there was
no significant difference in HER2 and Nrf2 expression level
among the three cancer cell lines in our preliminary experi-
ment (data not shown), we speculated that Nrf2 signaling
may be not a key signaling in regulating the growth of SK-
BR-3 cancer cells, which may partly explain the different
effects in the three HER2-positive cancer cells. Additionally,
the effects of trastuzumab plus brusatol on trastuzumab-
resistant patients warrants further investigation. Therefore,
brusatol could be used as a potent adjuvant drug for enhanc-

ing the efficacy of HER2-targeted therapeutics in treating
HER2-positive cancers.

Recently, some researchers have indicated that coregula-
tory roles of HER2/HER3, Nrf2, and ROSmay exist in several
types of cancers including breast cancers and ovarian cancer
[26, 51, 52]. In our study, we observed that Nrf2 antioxidant
signaling as well as HER2-AKT/ERK1/2 signaling pathway
was inhibited upon treatment with combinatorial treatment
in HER2-positive BT-474 and SK-OV-3 cells. And knock-
down of Nrf2 resulted in a repression of HER2-AKT/ERK1/2
signaling pathway in SK-OV-3 cells. The results suggested
that dual inhibition of Nrf2/HO-1 and HER2-AKT/ERK1/2
signaling pathways is needed for the optimal antitumor effect
of trastuzumab. Further study will be aimed to explore the
exact regulatory mechanism of HER2-AKT/ERK1/2 pathway
associated with Nrf2 antioxidant response pathway in HER2-
positive cancer cells, which will greatly contribute to develop
new therapeutics and therapy strategy against HER2-positive
cancers.

In summary, our findings highlight the important role of
Nrf2 inhibition against HER2-positive tumors in cancer ther-
apy; especially, brusatol as a novel Nrf2 inhibitor was capable
of sensitizing HER2-positive cancer cells to trastuzumab
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Figure 8: Combinatorial treatment with trastuzumab plus brusatol regressed Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways in SK-
OV-3 tumor xenografts. (a) Tumors removed from SK-OV-3 xenografts upon treatment with control IgG (15mg/kg), trastuzumab
(15mg/kg), brusatol (2mg/kg), or trastuzumab (15mg/kg) plus brusatol (2mg/kg) were then subjected to Western blotting to detect the
change of a series of proteins involved in Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Two representative samples from each treatment
group were shown here. (b) Quantification of Western blotting signal intensity analysis is expressed relative to the β-actin loading control
by using Image J software. Data show the mean ± SD (three independent experiments); ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001.
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in vitro and in vivo, suggesting a great potential of brusatol as
an adjuvant drug in combination with trastuzumab in treat-
ing HER2-positive cancers.
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Figure S1: histological examination was conducted in BT-474
tumor-bearing mice treated with trastuzumab, brusatol, or
trastuzumab plus brusatol. Representative images (magnifi-
cation, ×200) of livers from nude mice (n = 5) after injected
with trastuzumab, brusatol, or trastuzumab plus brusatol
were obtained by staining with hematoxylin and eosin. Scale
bars, 100μm. Figure S2: histological examination was con-
ducted in SK-OV-3 tumor-bearing mice treated with trastu-
zumab, brusatol or trastuzumab plus brusatol. The same
experiment condition with BT-474 tumor-bearing mice was
utilized. (Supplementary Materials)
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