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With an estimated incidence of 490 000 cases in 2016,

multidrug resistant tuberculosis (TB), against which key first-

line anti-tuberculars are less efficacious, presents major

challenges for global health. Poor treatment outcomes coupled

with a yawning treatment gap between those in need of

second-line therapy and those who receive it, underscore the

urgent need for new approaches to tackle the scourge of drug-

resistant TB. Against this background, significant progress has

been made in understanding the complex biology of TB drug

resistance and disease pathogenesis, and in establishing a

pipeline for delivering new drugs and drug combinations. In this

review, we highlight the challenges of drug-resistant TB and the

ways in which new advances could be harnessed to improve

treatment outcomes.
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Introduction
Claiming an estimated 1.7 million lives in 2016, tuber-

culosis (TB) is now the leading cause of death world-

wide from a single infectious agent [1]. Of the 10.4 mil-

lion incident cases of TB in 2016, an estimated 600

000 were rifampicin (RIF)-resistant (RR-TB), of which

490 000 were multidrug-resistant (MDR-TB), defined as

resistant to isoniazid (INH) and RIF, with or without

resistance to other first-line drugs. Extensively drug-

resistant TB (XDR-TB), defined as MDR-TB with

resistance to any fluoroquinolone and at least one of

the second-line injectables, amikacin, capreomycin or

kanamycin, accounted for 6.2% of the estimated
www.sciencedirect.com 
incidence of MDR-TB in 2016. However, the treatment

gap is vast, as evidenced by the fact that the number of

MDR/RR-TB cases started on treatment that year was

less than a quarter of the estimated incidence of

MDR/RR-TB [1]. To further aggravate the problem,

the currently recommended therapeutic regimens for

drug-resistant TB (DR-TB) have poor efficacy and

tolerability. As a result, treatment outcomes are poor,

with success rates of 54% and 30% being reported for

MDR-TB and XDR-TB treatment, respectively, based

on 2014 cohorts [1]. These grim statistics underscore the

urgent need for improved access to both diagnosis and

effective treatment for all forms of DR-TB. In this

article, we provide a brief overview of key challenges

in the diagnosis and clinical management of DR-TB,

and describe how advances in understanding the biology

of TB drug resistance and disease pathogenesis are

being brought to bear on addressing this major global

health challenge.

The complex genetics of TB drug resistance
Mycobacterium tuberculosis (Mtb), the causative agent of

TB, is an obligate pathogen that is thought to have co-

existed with its human host for millions of years [2��]. The

same features of the metabolism and physiology of Mtb

that enable it to persist quiescently for years within the

human host present formidable challenges for effective

chemotherapy [3] (Box 1). For the purposes of this review,

it is important to distinguish drug resistance — the herita-

ble ability of an organism to resist the effects of an

antibiotic to which its parent was susceptible — from

drug tolerance and persistence, which allow transient sur-

vival of an organism at concentrations of an antibiotic that

would otherwise be lethal (Box 1) [4��].

In many bacterial pathogens, horizontal gene transfer

(HGT) plays a major role in the acquisition of drug

resistance determinants. However, HGT is thought to

be negligible in Mtb [2��]; instead, drug resistance is

mediated by single nucleotide polymorphisms (SNPs),

multinucleotide polymorphisms, indels and rearrange-

ments in chromosomal genes that encode drug targets;

enzymes that metabolise prodrugs to their active forms, or

drug efflux systems [5,6,7�] (Table 1). For some TB

drugs, such as RIF [[2��],9], the genotype–phenotype

relationship with respect to resistance is well-established

whereas for others, the association is less clear. Moreover,

in the case of RIF, the range of resistance-conferring

mutations is quite restricted, whereas a much wider range
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Box 1 Drug resistance, drug tolerance and persistence.

Specific features of the tubercle bacillus present challenges for TB

drug efficacy [3,62]. The complex, lipid-rich cell wall forms a barrier

to drug penetration [63] and provides a mechanism to dysregulate

the host immune response [64]. Mtb adapts physiologically to the

various hostile environments encountered during infection [62], and

by entering into states of slow, or no growth, it becomes refractory to

antibiotics that act on cellular processes essential for growth [65].

Efflux systems are also thought to mitigate the efficacy of certain

drugs by lowering their intracellular concentrations [66]. Changes in

Mtb physiology lead to a mixed population of bacilli in a variety of

metabolic states, which complicates drug treatment [50].

Differential responses of a bacterial population to drug treatment can

arise from drug resistance, drug tolerance or persistence; all three

mechanisms are thought to apply in TB. Balaban and colleagues [4��]
have proposed framework for distinguishing these mechanisms on the

basis of MIC and ‘minimum duration of killing’ (MDK) values, where the

MIC99 represents the minimum concentration of drug required to kill

99% of the bacterial population, whereas the MDK99, represents the

minimum time required to kill 99% of a population. Drug resistance is

heritable, and usually occurs as a result of a mutation in the gene

encoding either the target of the drug or the enzyme which activates the

prodrug (Table 1). Resistance results in a net decrease in the effec-

tiveness of a drug, and an observable increase in the MIC99. Cells that

are able to transiently survive exposure to concentrations of an anti-

biotic that would otherwise be lethal display phenotypic drug toler-

ance [4��]. Drug tolerance can occur through a variety of mechanisms

such as slow growth and is a population-wide phenotype. Phenotypi-

cally drug-tolerant populations have similar MICs to those of fully

susceptible populations, but the MDK99 value is significantly higher.

Persistence is similar to phenotypic drug tolerance in that it describes

transient survival in the presence of inhibitory concentrations of anti-

biotic, but is distinct in that only a small percentage of the population

displays this phenotype. Persistence is characterised by bi- or multi-

phasic kill kinetics, where the majority of the population is killed rapidly

by the antibiotic, whereas the persisters are killed much more slowly. In

this case, the MIC99 and MDK99 values are similar to a susceptible

population, but the MDK99.99 value is much higher than for a suscep-

tible population [4��].
of mutations can confer resistance to pyrazinamide (PZA),

being scattered across the entire pncA gene [7�].

Cross-resistance can occur to TB drugs within the same

class as well as between classes. For example, mutations

in gyrA and gyrB can result in cross-resistance to multiple

fluoroquinolones [10]. Likewise, mutations in rpoB that

confer resistance to RIF can result in cross-resistance to

other rifamycins. In a sobering example of cross-resis-

tance with potential implications for the management of

DR-TB, a mutation in a transcriptional regulator, Rv0678,

was shown to result in cross-resistance of Mtb to clofa-

zimine — a leprosy drug used in DR-TB treatment —

and bedaquiline, a drug recently approved for the treat-

ment of MDR-TB [11], through upregulation of a multi-

substrate efflux pump [12�]. Curiously, a markedly higher

prevalence of resistance-associated variants in Rv0678
was found in MDR-TB patients with no evidence of

prior use of clofazimine or bedaquiline than in non-

MDR-TB patients [13] suggesting an association with

prior TB drug exposure. Although the underlying driver/s
Current Opinion in Pharmacology 2018, 42:7–15 
remains unclear, these findings highlight the formidable

range of mechanisms that Mtb can engage to evade drug

pressure which complicates the design new therapeutic

regimens for DR-TB.

Diagnosis of TB drug resistance: from culture
to whole-genome sequencing
Traditionally, drug susceptibility testing (DST) for TB

has been conducted phenotypically using culture-based

methods; however, these have a number of caveats

(Box 2). More recently, molecular diagnostics that detect

mutations associated with resistance to TB drugs have

been implemented in some settings [1]. The major

advantages of these diagnostic modalities are speed of

detection of resistance and ease of use. The two most

widely used molecular tests are the Xpert MTB/RIF

cartridge-based system (Cepheid), and Hain line probe

assay (LPA) (Hain Lifescience). Currently, Xpert MTB/

RIF only detects RIF resistance caused by the most

common mutations in the Rifampicin Resistance Deter-

mining Region (RRDR) of rpoB (Table 1); while rare,

Mtb strains with RIF resistance-conferring mutations

located outside the RRDR have been observed clinically

and would be missed by this test [14]. The Hain LPAs

come in two forms: one for resistance to first-line drugs

(INH and RIF) and another for fluoroquinolones and the

second-line injectable drugs [15]. A new version of Xpert

MTB/RIF that detects common resistance-conferring

mutations to INH, fluoroquinolones and aminoglycosides

has also been developed [16]. While the LPAs can iden-

tify specific mutations, Xpert MTB/RIF infers the pres-

ence of mutations through the absence of the ‘wildtype’

and can give a resistance result in the presence of silent

mutations [17]. These inconsistencies are also evident in

genotypic tests to other first-line drugs and the major

second-line drugs [18].

Given the complex genetics of TB drug resistance, it is

unlikely that a single molecular diagnostic will be able to

cover the full spectrum of mutations associated with the

large number of drugs/drug classes that are used to treat

DR-TB [19�] (Table 1). However, the logical extension of

genotypic DST, enabled by technological advances and

plummeting costs, and informed by whole-genome

sequencing (WGS) of Mtb strain collections [20–23], is

to use WGS for routine diagnosis, drug resistance detec-

tion and strain typing, as implemented recently by Pubic

Health England [24��,25��]. However, questions on

whether and to what extent a genetic variant confers

resistance, and what the clinical relevance might be,

remain open for many new and existing TB drugs and

will need to be addressed in order to realise the potential

of this approach [19�,26]. The rapidly expanding data-

bases that link genetic polymorphisms in Mtb associated

with TB drug resistance with clinical metadata will be

instrumental in this regard (Box 3).
www.sciencedirect.com
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Table 1

Drugs used for the treatment of TB as classified by the WHO [38,51,52] and Mtb genes in which resistance-conferring mutations are commonly observed

Drug Chemical class Mechanism of action Mtb gene/s in which DR-

conferring mutations are

commonly observeda

Included in WHO-endorsed

molecular diagnostics

References

First-line oral drugsb

Isoniazidc Pyridine Inhibition of mycolic acid

synthesis

katG, inhA Yes: MTBDRplus (V1.0 and

V2.0) and Nipro NTM

+ MDRTB

[53–55]

Pyrazinamidec Pyrazine Disruption of energy

homeostasis; inhibition of trans-

translation and coenzyme A

biosynthesis

pncA, rpsA, panD No [7�,53,54]

Ethambutol Ethylenediamine Inhibition of arabinogalactan

biosynthesis

embB, ubiA Yes: embB in MTBDRsl (V1.0

only)

[53–55]

Rifampicin Rifamycin Inhibition of RNA synthesis rpoB Yes: GeneXpert Mtb/RIF,

MTBDRplus (V1.0 and V2.0)

and Nipro NTM + MDRTB

[53–55]

Group A: Fluoroquinolonesd

Levofloxacin Fluoroquinolone Inhibition of DNA synthesis gyrA, gyrB Yes: gyrA MTBDRsl (V1.

0 and V2.0) gyrB in V2.0 only

[53,54,56]

Moxifloxacin Fluoroquinolone Inhibition of DNA synthesis gyrA, gyrB Yes: gyrA MTBDRsl (V1.

0 and V2.0) gyrB in V2.0 only

[53,54,56]

Gatifloxacin Fluoroquinolone Inhibition of DNA synthesis gyrA, gyrB Yes: gyrA MTBDRsl (V1.

0 and V2.0) gyrB in V2.0 only

[53,54,56]

Group B: second-line injectable drugs

Kanamycin Aminoglycoside Inhibition of protein synthesis rrs, eis, whiB7 Yes: rrs in MTBDRsl (V1.

0 and V2.0) eis in V2.0 only.

[53,54,56]

Amikacin Aminoglycoside Inhibition of protein synthesis rrs, eis, whiB7 Yes: rrs in MTBDRsl (V1.

0 and V2.0) eis in V2.0 only.

[53,54,56]

Capreomycin Aminoglycoside Inhibition of protein synthesis rrs, tlyA Yes: rrs MTBDRsl (V1. 0 and

V2.0)

[53,54,56]

Streptomycin Aminoglycoside Inhibition of protein synthesis rpsL, rrs, gidB Yes: rrs MTBDRsl (V1. 0 and

V2.0)

[53,54,56]

Group C: other core second-line agents

Clofazimine Riminophenazine Disruption of energy metabolism Rv0678 No [12�,53,54]
Linezolid Oxazolidinone Inhibition of protein synthesis rrl, rplC No [53,54]

Cycloserine D-Alanine analogue Inhibition of peptidoglycan

biosynthesis

alr, ddl, cycA No [53,54,57]

Terizidone D-Alanine analogue Inhibition of peptidoglycan

biosynthesis

Potentially similar to cycloserine No [53,54]

Ethionamidec Pyridine (thioamide) Inhibition of mycolic acid

biosynthesis

etaA/ethA, ethR, inhA No [53,54]

Prothionamidec Pyridine (thioamide) Inhibition of mycolic acid

biosynthesis

Potentially similar to

ethionamide

No [53,54]
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Table 1 (Continued )

Drug Chemical class Mechanism of action Mtb gene/s in which DR-

conferring mutations are

commonly observeda

Included in WHO-endorsed

molecular diagnostics

References

Group D: Add-on agents (do not form part of the core regimen for MDR-TB)

Pyrazinamidec Pyrazine Disruption of energy

homeostasis; inhibition of trans-

translation and coenzyme A

biosynthesis

pncA, rpsA, panD No [7�,53,54]

Ethambutol Ethylenediamine Inhibition of arabinogalactan

biosynthesis

embB, ubiA Yes: embB in

MTBDRsl (V1.0 only)

[53,54,55]

High-dose isoniazid Pyridine Inhibition of mycolic acid

synthesis

katG, inhA No [53,54]

Bedaquiline Diarylquinoline Inhibition of ATP homeostasis atpE, Rv0678 No [12�,53,54]
Delamanidc Nitroimidazole Complex mechanism, including

inhibition of mycolic acid

biosynthesis

ddn, fdg1 No [53,54]

Amoxicillin and clavulanate Penicillin/b-lactam Inhibition of cell wall

biosynthesis

No [53,54,58]

Para-aminosalicylic acidc Salicylate Inhibition of folic acid and

thymine nucleotide metabolism

thyA, dfrA, folC, ribD No [53,54]

Thioacetazonec Thiosemicarbazone Inhibition of mycolic acid

biosynthesis

Potentially ethA No [53,54,59,60]

Imipenem and cilastatin Carbapenem Inhibition of cell wall

biosynthesis

Potentially Rv2421c-Rv2422 No [53,54,61]

Meropenem and clavulanate Inhibition of cell wall

biosynthesis

Potentially Rv2421c-Rv2422 No [53,54,61]

a See [26] for a list of specific mutations and associated levels of resistance.
b Rifabutin could be considered if the Mtb strain is resistant to RIF but susceptible to rifabutin [51].
c Prodrug.
d TB antibiotic groupings as defined by the WHO policy recommendations in 2016, which focusses on treatment of DR-TB [38,51,52].
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Box 2 Phenotypic drug susceptibility testing.

In culture-based DST, resistance is defined as the ability >5% of the

Mtb population to grow at or above a pre-defined critical concen-

tration (CC) of drug [9]. CC values for individual drugs are recom-

mended by the WHO/Clinical and Laboratory Standards Institute

(CLSI) and were originally defined by the WHO in 1969 as drug

concentrations that were higher than those in which wildtype strains

(‘strains of the human type that have never come into contact with

the drug’) could grow [8,9]. CC values are thus related to the dis-

tribution of MICs for clinical Mtb strains, and the highest MIC for

strains that have no detectable resistance (genotypic or phenotypic,

i.e., wildtype) is defined as the epidemiological cut off (ECOFF)

[9,24��,26]. The ECOFF is the lowest possible CC but, as dis-

cussed below, CCs are sometimes much higher than observed

ECOFFs, which can lead to breakpoint artefacts [9,24��,26].

This complex and outdated definition of phenotypic susceptibility/

resistance for TB is fraught with problems. For most drugs, only a

single CC value is used for DST. This results in the binary classifi-

cation of an Mtb sample as either resistant or susceptible, and

precludes determination of the level of resistance associated with a

particular sample [8]. Consequently, patients infected with Mtb

strains that have low levels of resistance who may benefit from

higher dosage of a drug would not be detected [8]. Moreover,

breakpoint artefacts occur when the CC is higher than the ECOFF

[9,24��]. This results in strains with MIC values that are higher than

the ECOFF but lower than the CC being classified as susceptible,

leading to the inclusion of a likely ineffective drug in a treatment

regimen [9,24��].

Box 3 Databases and online resources for tb drug resistance.

A number of databases that catalogue known drug resistance-con-

ferring mutations in Mtb have been developed. In addition, increased

use of WGS to analyse large panels of drug-susceptible and drug-

resistant strains has led to the development of several tools that can

identify resistance mutations in raw sequencing reads. While some

tools report sensitivity and specificity in terms of detecting drug

resistance, none has yet been endorsed by the WHO for clinical use.

Here, we briefly describe each resource and provide a URL, where

available.

Databases and tools available online

TBDreamDB [67] (https://tbdreamdb.ki.se/Info/Default.aspx) was

developed via a systematic review of literature describing drug

resistance-conferring mutations in Mtb. Information about whether a

particular mutation is observed more often in a DR rather than drug-

susceptible strain is included, along with information describing

which mutations are more commonly observed in association with

resistance to particular drugs.

The ReSeqTB platform [26] (https://platform.reseqtb.org/) was spe-

cifically established to facilitate on-going development of a WHO-

endorsed diagnostic assay for Mtb. The database sources WGS

data, collects associated clinical and phenotypic metadata, and

analyses all data according to a pre-defined pipeline. This database

is actively curated as new information on TB drug resistance muta-

tions becomes available. However, access to the database requires

permission from the developers.

PolyTB [68] (http://pathogenseq.lshtm.ac.uk/polytblive/browser.

php) was developed by Coll and colleagues, after processing raw

WGS data for 1627 Mtb strains from publicly available datasets. The

tool allows for manual searching of SNPs in any Mtb gene, as well as

searching for SNPs in genes of interest such as those associated

with drug resistance. This allows the user to gain a sense of how

many strains within the collection contain a particular resistance

mutation, and provides some information about the strain lineage

and geographical area from which the strain was isolated.

TB Profiler [69�] (http://tbdr.lshtm.ac.uk/), another separate tool

developed Coll and colleagues, allows input of any raw WGS data in

fastq format and provides information about resistance to common

TB drugs as well as the Mtb strain lineage.

The PhyResSE tool [70] (http://phyresse.org/) is another online tool

that allows input of fastq files from Illumina-generated WGS data and

provides information about drug resistance patterns and strain

lineage.

Downloadable tools

Mykrobe Predictor TB [71] supports the input of raw WGS data

generated on an Illumina platform to report mutations associated

with drug resistance in Mtb. The tool can reportedly detect low

frequency populations, which is one of the features that differentiates

it from TBProfiler.

KvarQ [72] is another user-friendly tool that can rapidly detect

mutations associated with drug resistance within raw WGS data.

Information on strain spoligotype and lineage is also provided, and

modules can be modified to detect user-specified mutations.
Heteroresistance — another complicating
factor
Further complicating the diagnosis and management of

DR-TB is the phenomenon of heteroresistance, which

refers to the co-existence of susceptible and resistant

Mtb variants, or of multiple resistant strains with discrete

resistance-conferring mutations, within a single specimen.

Heteroresistance, which can arise as a result of infection

with different strains of Mtb or through mutation within a

clonal Mtb population, is found in 5.38% DR-TB cases,

depending on the setting, the specific drug/s, and the

method used to detect resistance [27�]. Next-generation

WGS has revealed significant levels of micro-heterogeneity

at drug resistance loci within an individual patient

[20,21,28]. Minority variants (<1–5% of the population)

have been shown to change in frequency throughout the

course of infection suggesting that Mtb samples mutational

space until the fixation of a particular mutation eventually

occurs [2��,20]. Further insight has come from recent

studies highlighting the within-host heterogeneity of TB

disease ata lesional level [29��] andthe implications thereof

for the evolution of heteroresistance (Figure 1). By com-

bining serial computed tomography scanning with WGS of

sputum samples, Lui et al. found that anatomically discrete

lesions in a MDR-TB patient showed heterogeneous

responses to treatment which could potentially be

explained by the presence of heterogeneous populations

of Mtb showing different patterns of mutations at drug

resistance loci [30]. Of the various factors that might affect

the dynamics of within-host microevolution of Mtb,
www.sciencedirect.com 
differential lesion penetration by drugs [31��] is likely to

be a particularly important driver of sub-population-spe-

cific drug resistance.

At a practical level, culture of Mtb isolates before DST

can mask heteroresistance within samples; this has
Current Opinion in Pharmacology 2018, 42:7–15
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Figure 1
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Heterogeneity in TB disease impacts the response to treatment. Heterogeneity is evident at multiple levels in TB disease [29��,48,49]. Differences

in host genetics, immune status, co-infections and socioeconomic factors can impact susceptibility to TB infection and progression of disease.

Once an individual becomes infected with Mtb and develops TB disease, the immune response and the response to TB chemotherapy can vary

between TB lesions leading to differences in the kinetics of resolution between lesions, depicted here by different coloured lesions in the lung, and

may result in the development of drug resistance in subpopulations of Mtb within distinct lesions [30].Within granulomas, spatial heterogeneity can

result in drug gradients and metabolic changes in Mtb populations which differentially affect drug efficacy [50] and may result in phenotypic

heterogeneity among populations of bacilli within a granuloma.
important implications for phenotypic testing for drug

resistance [32] (Box 2), and hence, adverse consequences

for patient management, particularly if underlying drug

resistance is not detected by conventional DST [27�].
Thus, the ability to detect minority variants before drug

resistance becomes detectable by conventional DST,

could avoid inappropriate first-line treatment and

improve treatment outcome for DR-TB patients [27�].

Public health consequences of simplified
diagnosis and treatment for a complex
disease
TB is a complex disease with the largest disease burden

located in low resource settings with weak health care

systems and consequently more limited diagnostic and

treatment capacity. For this reason, public health

approaches to TB have incorporated simplified and stan-

dardised diagnostic and treatment algorithms aimed at

care delivery at the non-specialist levels of health care

systems [33]. While these approaches have undoubtedly

contributed to expanded access to care and saved many

lives, resistance has emerged to all anti-TB drugs in

widespread use [34]. Given the complexity of TB disease,

standardised treatment regimens, with standardised dos-

ing, delivered regardless of disease location and severity,

lung pathology and comorbidities such as HIV infection,

have likely contributed to resistance emergence [35,36].

Treatment of DR-TB is even more complex and yet a

similar approach of using standardised regimens based

on resistance testing to a few key drugs is a key

mechanism for expanding access to diagnosis and
Current Opinion in Pharmacology 2018, 42:7–15 
treatment for DR-TB [37��,38]. Currently, the majority

of patients treated for RR-TB are given second-line

regimens based on a single genotypic RIF-resistance

result rather than a full resistance profile for all first-line

and second-line TB drugs [1]. This single genotypic

result assumes that a range of mutations in the RRDR

of rpoB all confer the same degree of resistance to RIF

(Box 2), and overlooks the complexities in interpreting

DST results described above.

These complexities in DST are not evident to most

clinicians receiving a dichotomous resistant/susceptible

result from the laboratory. Clinicians use these dichoto-

mous results (often from a single specimen) to either

prescribe a standardised second-line regimen or, less

often in high-burden settings, design regimens based

on a classification of drugs recommended by the WHO

[38]. On the basis of the complexities of resistance

testing, it may seem desirable to provide considerably

more detail in laboratory reports of resistance testing; for

example, reporting the presence of mutations that may

only have a moderate impact on the drug’s MIC. Recent

moves towards using WGS to provide full resistance

profiles to all available drugs, in high-resource, low-bur-

den settings, go some way towards this end. This notion

aligns with the individualised approach to the manage-

ment of XDR-TB advocated by van Soolingen and col-

leagues [39]. However, for high-burden settings with

limited resources, such an approach risks placing the

diagnosis and treatment of DR-TB in the realm of spe-

cialised medicine, and hindering much needed expanded

access to diagnosis and treatment [37��].
www.sciencedirect.com
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So, given the complexities, should we be aiming to

develop more sophisticated resistance testing approaches

that take into account both genotypic and phenotypic

resistance data [9], in addition to other factors such as

bacillary burden? Such an approach would include deter-

mining the true MIC for drugs tested against the Mtb

strain/s isolated from the patient, and thus guide not only

the inclusion of particular drugs in a regimen, but also

appropriate dosing. To date, available evidence suggests

that low-level drug resistance associated with particular

mutations can be overcome for drugs such as INH [40]

and emerging data suggest that RIF dosages can also be

increased [41]. Ideally, more detailed resistance testing

would also detect heterogeneity directly from biological

specimens, and therefore any underlying drug resistance

that could emerge during treatment. However, to be

feasible in many settings, new diagnostic approaches such

as this would need to be automated and able to be

conducted in, at least, decentralised laboratories.

Advances in developing cheaper and higher throughput

methods for MIC determination [42], for example, hold

promise in this regard.

How do we minimise future resistance
emergence?
While poor adherence by patients has often been cited as

the cause of TB drug resistance, evidence now suggests

that factors such as individual pharmacokinetics [43],

variable penetration of drugs into tuberculous lesions

[31��] and use of standardised regimens in the presence

of undiagnosed drug resistance may be primary drivers

[44,45]. Greater degrees of treatment individualisation

based on microbiological characteristics of the infecting

bacteria (pre-existing resistance, heterogeneity, and

strain type) and clinical characteristics of the patient

might be expected to minimise the risk of further resis-

tance emergence, particularly to new TB drugs and those

in clinical development ([46]; https://www.newtbdrugs.

org/). However, treatment individualisation requires an

understanding of synergies, antagonism and cross-resis-

tance for a wide range of possible combination regimens.

A method developed recently for measuring higher-order

drug interactions in Mtb in vitro, efficiently and at scale

[47], may go some way towards addressing how TB drugs

could be combined to produce shortened regiments that

achieve durable cure and prevent the emergence of

resistance. Ultimately, minimising further resistance

while ensuring universal access to high quality care will

require that innovative approaches that take the com-

plexity of TB disease and drug resistance into account are

developed and trialled in the settings in which they will

be implemented.
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