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ARTICLE

ABSTRACT
Institutions have developed diverse approaches that vary in effectiveness and cost to 
improve student performance in introductory science, technology, engineering, and math-
ematics courses. We developed a low-cost, graduate student–led, metacognition-based 
study skills course taught in conjunction with the introductory biology series at Miami 
University. Our approach aimed to improve performance for underachieving students by 
combining an existing framework for the process of learning (the study cycle) with con-
crete tools (outlines and concept maps) that have been shown to encourage deep under-
standing. To assess the effectiveness of our efforts, we asked 1) how effective our voluntary 
recruitment model was at enrolling the target cohort, 2) how the course impacted perfor-
mance on lecture exams, 3) how the course impacted study habits and techniques, and 
4) whether there are particular study habits or techniques that are associated with large 
improvements on exam scores. Voluntary recruitment attracted only 11–17% of our target 
cohort. While focal students improved on lecture exams relative to their peers who did 
not enroll, gains were relatively modest, and not all students improved. Further, although 
students across both semesters of our study reported improved study habits (based on 
pre and post surveys) and on outlines and concept maps (based on retrospectively scored 
assignments), gains were more dramatic in the Fall semester. Multivariate models revealed 
that, while changes in study habits and in the quality of outlines and concept maps were 
weakly associated with change in performance on lecture exams, relationships were only 
significant in the Fall semester and were sometimes counterintuitive. Although benefits of 
the course were offset somewhat by the inefficiency of voluntary recruitment, we demon-
strate the effectiveness our course, which is inexpensive to implement and has advantage 
of providing pedagogical experience to future educators.

INTRODUCTION
For the United States to remain a global leader in science and technology, our educa-
tional system needs to increase the number of graduates in science, technology, engi-
neering, and mathematics (STEM) fields by ∼100,000 per year over the next decade 
(President’s Council of Advisors on Science and Technology [PCAST], 2012). Among 
the most effective and economically feasible methods to overcome this shortage is to 
increase the retention rate of students in STEM majors (PCAST, 2012). Attrition in 
STEM majors is largely a result of poor performance in introductory classes (Chen, 
2013). Many of these performance issues can be attributed to underpreparation for 
college-level classes, as many students have underdeveloped reasoning skills and 
poor study habits (Tomanek and Montplaisir, 2004). Additionally, lacking a sense of 
community in large introductory courses can increase attrition rates (Tinto, 1987; 
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Hoyle and Crawford, 1994), which may have an especially 
large impact on women and minorities, who collectively repre-
sent 70% of college students but only receive 45% of under-
graduate STEM degrees (Chen, 2013).

This bottleneck, where underprepared first-year students are 
particularly at risk for leaving STEM majors due to poor perfor-
mance, is critical to address if we hope to overcome the shortage 
of STEM graduates in the United States. With this goal in mind, 
universities have tried many methods of remediation, including 
encouraging student-led out-of-class study groups, restructur-
ing introductory courses to focus on deep learning strategies, 
supplemental courses, single-session study habits lectures, and 
tutoring, each with varying degrees of success (Fullilove and 
Treisman, 1990; Tekian and Hruska, 2004; DeVoe et al., 2007; 
Deslauriers et  al., 2011; Haak et  al., 2011; Rybczynski and 
Schussler, 2011; Buchwitz et  al., 2012).These interventions 
tend to fall into one of two categories: inexpensive to implement 
with limited effectiveness (DeVoe et al., 2007; Rybczynski and 
Schussler, 2011) or expensive to implement with some measure 
of success at increasing participant performance (Richardson 
and Birge, 2000; Tekian and Hruska, 2004; Preszler, 2006). 
Supplemental courses tend to fall into the latter category, pro-
ducing significant gains in student performance in introductory 
science courses but requiring a large time commitment from 
faculty for development and implementation of the course, as 
well as a substantial financial investment from the sponsoring 
department (Richardson and Birge, 2000; Preszler, 2006).

To mitigate these costs to the host department, we devel-
oped a supplemental course that is both designed and taught by 
graduate students (Sanjeevi, Callahan, and Fernandes, personal 
communication). We recognize that, for many institutions, 
graduate teaching assistants (TAs) may not be available to 
implement a course like this. However, we also believe this 
course could be effectively implemented by an advanced under-
graduate student (T.D.H., personal observations). Indeed, 
undergraduate students have successfully led supplemental 
courses in a variety of STEM disciplines through the peer-led 
team-learning model. This learning model employs an experi-
enced undergraduate student as a facilitator for a small group 
of students and produces marked gains in participant perfor-
mance, retention, and attitude in associated classes (e.g., Lyle 
and Robinson, 2003; Hockings et al., 2008; Loui and Robbins, 
2008; Horwitz et al., 2009; Hughes, 2011). Thus, our course, 
taught by either undergraduate or graduate students, costs less 
than traditional supplemental courses (requiring no faculty 
labor) and has the added benefit of developing the pedagogical 
skills of future educators (Huang et al., 2013).

The strategy emphasized in our course was an adaptation 
of the study cycle (Cook et al., 2013), a metacognition-based 
approach designed to promote learning through a straightfor-
ward series of steps that can be applied iteratively after every 
lecture. In particular, the study cycle stipulates that students 
preview materials before lecture, attend and attentively take 
notes, review notes and concepts before the following lecture, 
study in multiple short (yet intensive) bouts, and then assess 
their knowledge to identify areas in need of improvement. 
While this process provides an extremely attractive framework 
and has been previously show to boost student performance 
(Cook et al., 2013), many students seem to be unfamiliar with 
how to accomplish various stages of the process. For example, 

Cook et al. (2013) reported that, despite emphasis on the need 
for intensive study sessions employing active-learning strate-
gies, only 24% of students reported using intensive study ses-
sions, and self-assessment was absent from their list of com-
monly employed strategies. In the present study, we taught 
students to use outlines during the review phase of the study 
cycle and then to construct concept maps (without their notes) 
as a method to study and also to assess their understanding. 
Thus, we provided not only an effective process by which to 
approach studying but also a set of concrete tools by which to 
accomplish the more challenging steps. We hoped to teach 
students to avoid ineffective study skills, which often lead to 
only a superficial understanding of core concepts (McDermott 
et al., 1994; Tomanek and Montplaisir, 2004). There is sub-
stantial evidence that outlines and concept maps significantly 
enhance student understanding, critical thinking, and exam 
performance (Novak, 1990; Okebukola, 1990; Daley et  al., 
1999; Nesbit and Adesope, 2006).

Work based on previous iterations of our supplemental 
course suggests that it improves performance on lecture exams, 
but that gains in performance are somewhat modest (often 
averaging less than 10% on each exam compared with the 
exam scores of nonparticipants), though this is consistent with 
the results from faculty-led supplemental courses elsewhere 
(Sanjeevi et al., personal communication; Richardson and Birge, 
2000; Preszler, 2006). Further, we have observed that relatively 
few students volunteer to enroll and that not all of these partic-
ipants improve in the associated introductory course (T.D.H., 
personal observations). However, it is not clear whether this is 
because the learning strategies we emphasize are ineffective for 
some students or because students actively resist enrolling or 
implementing the learning strategies we provide (Åkerlind and 
Trevitt, 1999). It is also unclear which elements of the supple-
mental course are most effective at improving participant per-
formance in the lecture course, and whether there are benefits 
to enrollment in addition to increased exam scores, which are 
well-recognized to be imperfect metrics of student learning 
(Scouller, 1998; Rust, 2002; Gibbs et al., 2005). Thus, we con-
ducted the present study to examine 1) how effective our vol-
untary recruitment model was at enrolling the target cohort, 
2) how the course impacted performance on lecture exams, 
3) how the course impacted study habits and techniques 
emphasized in the intervention, and 4) whether there are par-
ticular study habits or techniques that are associated with large 
improvements on exam scores. This information will allow 
instructors in this supplemental course and in similar interven-
tion efforts elsewhere to focus on the most effective methods of 
remediation. Ultimately, successfully implementing these inter-
ventions may have a large impact on the ongoing effort to 
increase student retention in STEM fields.

METHODS
Recruitment
Graduate TAs recruited students for the supplemental course 
(BIO 104) 1 week after the first exam in their introductory biol-
ogy courses (BIO 115 and BIO 116 for Fall 2014 and Spring 
2015, respectively). Recruitment occurred approximately 7 
weeks into the semester and was accomplished by visiting lec-
ture sections and giving a short presentation on the approach 
taken in the supplemental course. In particular, TAs encouraged 
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students earning ≤ 77% on exam 1 (a “C” on the grading scale) 
to enroll in the 8-week pass/fail sprint course for the remainder 
of the semester. The goal was to recruit 100% of this cohort. 
However, enrollment was entirely voluntary; TAs accepted any 
student who indicated interest via email. As such, the analyses 
presented here represent results from a self-selected group (stu-
dents who chose to enroll in BIO 104), as opposed to a ran-
domly selected cohort, and should be viewed in the context of 
this important distinction. However, given that voluntary 
enrollment models have been used at a variety of institutions 
(Belzer et  al., 2003; Preszler, 2006; Bail et  al., 2008; Kibble, 
2009) and that there are potential ethical concerns with using 
students as experimental subjects to test the efficacy of new 
approaches, there is a need to use available data to glean as 
many useful lessons as possible.

Approach in the Sprint Course
Graduate TAs offered two sections of the course for both Fall 
2014 and Spring 2015 semesters. The Fall sections were taught 
by a single TA, who returned in the Spring to teach one section 
and was joined by another TA, who taught the remaining sec-
tion. Overall, BIO 104 used a metacognitive approach aimed at 
using content from the lecture course to help students learn 
how to more effectively engage with the subject matter in intro-
ductory biology. In other words, we focused on teaching study 
habits and skills using lecture content as common ground for 
discussions, as opposed to focusing on reviewing content per 
se. The course focused on two overlapping strategies aimed at 
improving student learning, which we refer to as study habits 
and study techniques. Our approach was an adaptation the 
study cycle, sensu Cook et al. (2013). With regard to study hab-
its, we encouraged students to study early and often, in short 
but intensive bouts, and to regularly review course material. 
We also required students to design a study schedule (i.e., to 
create a set schedule with concrete dates and times dedicated 
to studying biology) and encouraged them to come up with a 
system to hold themselves accountable for these habits (e.g., by 
rewarding themselves for successful completion of study ses-
sions). To encourage this behavior, TAs also provided an elec-
tronic study log (an Excel spreadsheet template) that allowed 
students to keep records on time spent studying, to calculate 
study hours on a weekly basis, and to view plots of their study 
habits over time.

The course introduced study techniques to students under 
the context of Bloom’s taxonomy (Bloom, 1956), which orga-
nizes levels of cognition into a hierarchy, ranging from simple 
recall at the base of the pyramid to application, synthesis, and 
evaluation at the higher levels of the pyramid. Instructors 
stressed that, while students’ previous academic experiences 
may not have required deep learning, college-level science 
courses require deep knowledge and lecture exams reflect this 
expectation through administration of challenging application 
and synthesis questions. TAs then introduced a study system 
emphasizing the use of outlines and concept maps as tools to 
engage the course materials. We stressed that, for this approach 
to promote success, students needed to apply it regularly. We 
strongly recommended that students make an outline after 
every lecture and then make a concept map from memory, 
revisiting their outlines as necessary to fill in gaps and identify 
areas in which further study was needed.

Outlines stressed the identification of the major and minor 
concepts from each lecture and encouraged students to orga-
nize (or reorganize) course content hierarchically. We asked 
students to include all relevant details, including definitions of 
all terms, descriptions of why each topic is important in broader 
contexts (i.e., in relation to previous lectures or topics), and 
examples when appropriate. TAs also strongly encouraged stu-
dents to include diagrams, tables, and figures in their outlines. 
In the context of the study cycle (Cook et al., 2013), outlines 
were meant to review recently introduced materials but also to 
serve as detailed study guides for study sessions immediately 
before exams. However, instructor-led, pre-exam study sessions 
were not a part of the sprint course. Concept maps emphasized 
asking questions to make connections between topics learned 
in lecture (e.g., for a biological process, where does the process 
happen, why does it happen, and what if it does not happen?). 
We suggested that students make concept maps from memory 
after completing outlines and revisit outlines as necessary to fill 
in weak areas. Thus, in the context of the study cycle (Cook 
et al., 2013), concept maps were meant to encourage studying 
and self-assessment. TAs taught students to place major con-
cepts, definitions, and examples in boxes or bubbles (nodes), 
and to use arrows to connect related topics to one another. TAs 
collected one outline and one concept map from each student 
each week, made photocopies for later use in analyses, and 
then allowed students to ask content-based questions about the 
material covered in their outlines and concept maps. This exer-
cise provided limited guided review but primarily reiterated 
how intensive studying brings new questions to light and how 
students can use this approach to identify areas where they are 
struggling (i.e., to assess their knowledge, sensu Cook et al., 
2013).

Concept maps and outlines were evaluated and returned by 
the following week. Both outlines and concept maps were 
graded on 10-point scales consisting of two major categories: 
content (0–5 points) and organization (0–5 points). Content 
assessed whether outlines and concept maps included the 
breadth of material covered in each lecture, including all perti-
nent definitions, examples, and graphs when needed. Content 
also served to evaluate students on their ability to ask appropri-
ate questions to fully develop their ideas. For outlines, organiza-
tion evaluated students’ ability to narrow down ideas hierarchi-
cally from major concepts to specific details. In concept maps, 
organization assessed students’ ability to neatly and efficiently 
link ideas together in a meaningful way. TAs provided recom-
mendations for improvement on all graded assignments.

Data Collection
Students were informed of the data collection and gave consent 
via forms approved by the Miami University Research Ethics 
and Integrity Office (IRB Exemption #01234e to T.D.H. and 
J.J.F.). For data analysis, we scored concept maps and outlines 
in triplicate using the guidelines listed earlier. TAs made three 
copies of the first and last outline and concept map for each 
student and randomly assigned these to a set of three graders 
(graduate TAs who agreed to help as a part of a graduate semi-
nar on pedagogy), such that no grader received the same map 
or outline twice. To foster consistency among graders, we held 
a 1-hour training session in which graders were taught how to 
penalize various commonly encountered problems and were 
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allowed to compare comments on a standardized set of outlines 
and maps. When we were missing either the first or last outline 
or map from any individual student, we took the second assign-
ment or the second-to-last assignment as substitutes. If this was 
not possible, then the student was dropped from the analysis. 
We also bolstered internal consistency among graders via a 
data-cleaning step. Briefly, we examined replicate scores for all 
students and endpoints and highlighted values that were ≥25% 
different from other replicates; for observations falling outside 
this range, a single, haphazardly selected author revisited the 
assignment in question and rescored the endpoint. We scored 
content and organization on the same scale as described earlier, 
because students received feedback throughout the semester in 
this format and used these metrics to gauge their own improve-
ment. We also scored other metrics that we thought might be 
associated with the complexity and quality of concept maps, 
including number of nodes, number of arrows, number of link-
ing words, number of terminal nodes (nodes that do not flow 
into another node), and quality of linking words (ordinal scale 
of 0–3, where 0 indicates absence of linking words altogether 
and ascending scores represent increasing quality of linking 
words). These are also features that have been examined in pre-
vious attempts at assessing the quality of concept maps (Luckie 
et al., 2011).

We used data from pre and post surveys administered to stu-
dents who enrolled in the supplemental course to assess 
whether and how they improved on the study habits we empha-
sized. Full pre and post surveys (included as Supplemental 2 in 
the Supplemental Material) included questions aimed at assess-
ing how many hours per week students spent studying, how far 
in advance students began studying before their most recent 
exam, how often they made outlines, how often they made con-
cept maps, how often they reorganized notes from class, and 
how regularly they reviewed materials. We also collected lec-
ture exam scores for both students who ultimately enrolled in 
BIO 104 and their peers who did not enroll.

Analyses
Analyses were conducted separately for Fall and Spring data 
sets because TAs, students, and lecture materials all varied from 
semester to semester. For this reason, we also elected not to 
explicitly include time (Fall vs. Spring semester) as a factor in 
our analyses, but rather used parallel statistical approaches and 
compared results across semesters qualitatively.

To examine the effectiveness of voluntary recruitment, we 
calculated the number of students in the lecture course falling 
into the target cohort (≤77% on exam 1), the proportion of 
these students who enrolled in the sprint course, and the num-
ber and proportion of students who enrolled in the sprint course 
but were not a part of the target cohort (i.e., enrolled despite 
doing relatively well on the first exam). To elucidate whether 
students who enrolled in BIO 104 (the focal group) improved 
on lecture exams relative to their peers who did not enroll (the 
control group), we used the multivariate analysis of variance 
(MANOVA) approach for repeated measures (O’Brien and Kai-
ser, 1985). For elucidating when the groups diverged, repeat-
ed-measures ANOVAs were followed by planned, linear con-
trasts for each pair of subsequent exams. Effects in the model 
were exam (the repeated measure), treatment (focal vs. con-
trol), lecture section (section A specified as reference level), and 

the interaction of lecture section and treatment; the response 
variable was exam score (% correct). To decrease the probabil-
ity that observed changes in exam scores were simply artifacts 
of initial, pre-enrollment differences in exam scores, we also 
calculated normalized change in exam score (c, sensu Marx and 
Cummings, 2007). Normalized change calculates the ratio of 
actual gains or losses in exam scores to the maximum possible 
gain or loss, based on the pre score. It ranges from −1 to 1, with 
0 indicating equality in exam scores, positive values indicating 
improvement from the pre-exam, and negative values indicat-
ing decreased scores. For each student, we calculated normal-
ized change between exam 1 and each subsequent exam. We 
then used repeated-measures ANOVA to test whether treatment 
(focal vs. control), lecture section, or their interaction impacted 
normalized change over time.

Change in weekly study hours was analyzed using a paired t 
test. All other variables from surveys were scored on ordinal 
scales (1–4). To facilitate interpretation of reported changes in 
these variables, we defined using strategies after every class (4 
on the scale, meaning “used the strategy after every class”) as 
“acceptable,” and all other levels as “unacceptable.” We felt that 
this was appropriate, because the necessity of applying the 
strategies after every class was heavily emphasized during 
every BIO 104 class meeting. After partitioning pre and post 
scores for study habits, we tested for changes using McNemar’s 
tests. Unfortunately, some students failed to fill out either pre or 
post surveys or left questions blank, so we were forced to drop 
these students from the analysis, and present here analyses 
based on the subsets of students for which we had sufficient 
data. To examine whether and how students improved on out-
lines and concept maps, we used average scores from three rep-
licate graders to calculate change for each metric of outline and 
map quality, which we defined as: change = (score on final 
assignment − score on first assignment). Thus, positive values 
indicate increases in scores (i.e., improvement), while negative 
values indicate decreases in scores (i.e., diminishing quality). To 
test the statistical significance of observed changes, we used 
paired t tests.

Finally, we used multivariate regression models to explore 
whether and how changes in self-reported study habits (from 
pre and post surveys) and changes in the quality of outlines and 
concept maps (from retrospectively scored documents) scaled 
with changes in exam scores. The aim of these analyses was to 
use all available data to see whether changes in individual vari-
ables or subsets of variables were associated with an increase in 
performance on lecture exams. During the data-exploration 
phase of the study, we tried a variety of regression approaches, 
including principal components analysis (to address potential 
multicollinearity by combining variables into principal compo-
nents), logistic regression with dummy coding for improvement 
or no improvement for all independent variables (to deal with 
potential nonlinearity and analyze improvement as a binary 
response), and random forest regression. None of these 
approaches fitted the data better than multiple regression with 
backward selection, which we elected to use in our analysis. To 
ensure the absence of severe multicollinearity among indepen-
dent variables, we examined variance inflation factors (VIFs) 
and did not interpret models in which any individual factor had 
a VIF >10 (Hair et al., 1995); this was never the case in final 
models.
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Unfortunately, because surveys were voluntary, not all stu-
dents completed them. Rather than dropping survey data from 
these analyses altogether, we present two separate models for 
each semester, or a total of four models. For each semester, one 
model included both survey data and outline/concept map data 
as predictors, while the other included only outline and map 
variables as predictors and contained a complete sample of BIO 
104 participants. In all cases, we selected initial (full) models to 
maximize predictive power by examining all possible combina-
tions of predictors and selecting the model that maximized 
adjusted R2. We then performed backward, stepwise selection 
to sequentially remove terms with the smallest contribution to 
the model and stopped when all terms were significant at α = 
0.10. The one exception to this method was for the model using 
all of the data from Spring 2015, for which we had sufficient 
survey data from only 17 of the 44 focal students. To avoid 
starting with a full model based on variables with excessive 
missing observations, we instead used forward, stepwise selec-
tion for this model, adding terms sequentially until no addi-
tional variables met the criterion of α = 0.15.

RESULTS
Fall 2014
There were 511 students in the Fall 2014 (BIO 115) data set, 
representing sample sizes of 54 and 457 in the focal and control 
groups, respectively (Table 1). While 307 students fell into the 

target cohort (i.e., scored ≤ 77% on exam 1), only 52 enrolled 
in the sprint course (Table 1). These students were joined by 
two students who joined the sprint course despite scoring 
>77% on exam 1 (Table 1). This means that only 16.94% of the 
target cohort enrolled, but also that only 3.07% of students 
who did enroll were not from the target cohort (Table 1).

Repeated-measures ANOVA revealed that exam scores 
changed over time, exam scores over time differed among lecture 
sections, and scores over time differed among focal and control 
students, but there was no interaction between treatment (focal 
vs. control) and lecture section over time (Table 2 and Figure 1). 
Focal students began with lower scores than their peers who did 
not enroll (exam 1), but this difference disappeared after enroll-
ment in BIO 104; planned contrasts revealed that focal students 
improved relative to control students between exam 1 and exam 
2 (F(1, 504) = 30.51, p < 0.0001; Figure 1) but that relative 
performance did not change between exams 2 and 3 (F(1, 504) 
= 0.09, p = 0.7604; Figure 1) or between exams 3 and 4 (F(1, 
504) = 0.90, p = 0.3444; Figure. 1). We found that normalized 
change in exam score (c) was variable through time and varied 
depending on lecture section, but that there was no effect of 
treatment on normalized exam scores over time, nor was there 
any evidence of a three-way interaction (Table 2 and Figure 1B). 
However, between-subjects tests revealed that, across all pairs of 
exams, normalized change in scores was higher for focal students 
than control students (F(1, 504) = 18.69, p = 0.0001, Figure 1B), 

TABLE 2.  Repeated-measures ANOVA table for exam scores and normalized change in exam scores over time (exam), as well effects of 
treatments (focal vs. control), lecture section, and their interaction over time

Response Source of variation F
Numerator  

df
Denominator  

df pa

Exam score, Fall 2014 Exam 93.19 3 502 <0.0001
Exam × lecture section 14.34 6 1004 <0.0001
Exam × treatment 12.76 3 502 <0.0001
Three-way interaction 0.52 6 1004 0.7886

Exam score, Spring 2015 Exam 9.77 2 534 <0.0001
Exam × lecture section 16.15 4 1068 <0.0001
Exam × treatment 5.62 2 534 0.0038
Three-way interaction 0.43 4 1068 0.7889

Normalized change (c), Fall 2014 Exam 105.99 2 503 <0.0001
Exam × lecture section 14.04 4 1006 <0.0001
Exam × treatment 0.33 2 503 0.7197
Three-way interaction 0.78 4 1006 0.5384

Normalized change (c), Spring 2015 Exam 0.47 1 535 0.4911
Exam × lecture section 21.27 2 535 <0.0001
Exam × treatment 0.34 1 535 0.5604
Three-way interaction 0.56 2 535 0.5704

aBolded p values are significant at α = 0.05.

TABLE 1.  Summarized recruitment data from Fall 2014 and Spring 2015

Semester (lecture)
Lecture 

enrollment
Students in 

target cohort
Number enrolled 

in BIO 104
% of target cohort 

enrolled in BIO 104
Number enrolled in BIO 104 

despite being outside target cohort

Fall 2014 (BIO 115) 511 307 54 16.94 2

Spring 2015 (BIO 116) 550 267 44 11.30 10
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normalized change differed by lecture sec-
tion (F(2, 504) = 9.19, p < 0.0001), but the 
effect of treatment did not vary by lecture 
section (F(2, 504) = 0.47, p = 0.6229).

Students made improvements in some, 
but not all, study habits emphasized in the 
sprint course. Focal students reported an 
increase of 2.46 ± 0.46 (mean ± SE) study 
hours per week, which is more than would 
be expected by chance (paired t test, t36 = 
5.39, p < 0.0001). Students also reported 
increases in outline usage, but relatively 
large numbers of students failed to 
improve study habits to levels defined as 
acceptable. Outline use changed substan-
tially from the beginning to the end of the 
sprint course (McNemar’s χ2 = 7.11, p = 
0.0077; Table 3A), as did the regularity of 
note reorganization (McNemar’s χ2 = 6.67, 
p = 0.0098; Table 3B) and concept map 
usage (McNemar’s χ2 = 5.82, p = 0.0159; 
Table 3C). However, regularity of review-
ing did not change significantly from the 
beginning to the end of the sprint course 
(McNemar’s χ2 = 2.72, p = 0.0990; Table 
3D). The trend was very similar across all 
three study habits for which we detected 
changes; while some students changed 
from unacceptable to acceptable patterns 
of outline use, note reorganization, and 
concept map use, two to three times as 
many students were still not using these 
strategies in an acceptable manner by the 
end of the course, despite heavy emphasis 
(Table 3).

FIGURE 1.  Exam scores (A and C) and normalized change in scores between exam 1 
and subsequent exams (B and D) for focal students (closed circles) and control students 
(open circles) in Fall 2014 (A and B) and Spring 2014 (C and D). Asterisks indicate 
significant planned contrasts for the effects of treatment between each pair of 
subsequent exams (i.e., indicate when treatment × exam interactions occurred). Error 
bars represent ± 1 SE.

TABLE 3.  Two-by-two contingency tables, showing the number of students using study habits in an acceptable (Yes) or unacceptable (No) 
manner from the beginning (week 1; rows), to the end (week 7; columns) of the sprint coursea

Fall 2014 Spring 2015

A. Outline usage Week 7 E. Outline usage Week 7
Acceptable time No Yes Acceptable time No Yes

Week 1
No 33 9

Week 1
No 14 6

Yes 0 1 Yes 0 0

B. Note reorganization Week 7 F. Note reorganization Week 7
Acceptable time No Yes Acceptable time No Yes

Week 1
No 27 13

Week 1
No 11 3

Yes 2 0 Yes 3 3

C. Map usage Week 7 G. Map usage Week 7
Acceptable time No Yes Acceptable time No Yes

Week 1
No 32 10

Week 1
No 17 3

Yes 1 0 Yes 0 0

D. Regular reviewing Week 7 H. Regular reviewing Week 7

  Acceptable time No Yes Acceptable time No Yes

Week 1
No 16 13

Week 1
No 4 10

Yes 5 9 Yes 1 4
aData are from pre and post surveys from Fall 2014 (A–D, left) and Spring 2015 (E–H, right). Bolded items showed significant changes over the course of the semester 
(McNemar’s tests, α = 0.05).
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FIGURE 2.  Change in average scores from three replicate graders for scored components 
of outlines and concept maps. The vertical, dotted line indicates no net change. Error bars 
indicate 95% confidence intervals, while asterisks indicate significance from paired t tests 
at p = 0.05 (*), 0.01 (**), and 0.0001 (***).

variance in change in exam scores and 
included the intercept, lecture section C, 
map organization, map content, number 
of nodes in concept maps, and number of 
arrows in concept maps (Table 4A). With 
the exception of number of nodes, all vari-
ables in this final model were significant at 
α = 0.05 (Table 4A). However, somewhat 
counterintuitively, slopes for lecture sec-
tion, map content, and number of arrows 
in concept maps were negative (Table 
4A). This means that students who were in 
lecture C tended to improve less on exams 
relative to the reference level (section A), 
while among all lecture sections, decreases 
in map content scores and in number of 
nodes were associated with improvement 
on exams.

For the data set including only outline 
and concept map variables (but maximiz-
ing sample size), multivariate regression 
indicated a weak but significant associa-
tion between change in outline and map 
scores and change in exam scores (Table 
4B). The full model after optimization of 
adjusted R2 included the intercept and 
eight predictor variables and explained a 
significant portion of variance in change in 
exam scores (Supplemental Table S1). 
The best model after backward selection 
indicated a significant association with 
change in exam scores and explained 
21.85% of the variance (Table 4B). With 
the exception of the intercept, all predic-
tors in the final model were significant at 
α = 0.05 (Table 4B). However, as we 
found in models including survey data, 
some predictors carried negative slopes. 

Decreases in outline content scores were associated with 
increases in exam scores, and decreases in the number of link-
ing words were associated with increases in exam scores (Table 
4B). Conversely, increases in number of nodes and number of 
terminal nodes were associated with exam score improvement, 
which was consistent with our predictions (Table 4B).

Spring 2015
There were 550 students in the Spring 2015 (BIO 116) data set, 
representing sample sizes of 44 and 506 in the focal and control 
groups, respectively (Table 1). While 267 students fell into the 
target cohort (i.e., scored ≤ 77% on exam 1), only 34 enrolled 
in the sprint course (Table 1). These students were joined by a 
group of 10 students who joined the sprint course despite scor-
ing > 77% on the first exam (Table 1). This means that only 
11.3% of the target cohort enrolled, and that 22.7% of students 
who did enroll were not from the target cohort (Table 1).

Repeated-measures ANOVA revealed that exam scores 
changed over time, that exam scores over time differed among 
lecture sections, that scores over time differed among focal and 
control students, but that there was no interaction between 
treatment (focal vs. control) and lecture section over time 

Students improved on seven of the nine metrics we exam-
ined for the quality of outlines and concept maps (Figure 2). 
Student outlines improved for content scores (t53 = 3.96, p = 
0.0002; Figure 2), but showed only marginal improvement on 
organization (t53 = 1.87, p = 0.0670; Figure 2). In contrast, for 
concept maps, students improved on organization (t53 = 2.89, p 
= 0.0056; Figure 2), but not on content (t53 = 1.05, p = 0.2972; 
Figure 2). With the exception of number of nodes, which did 
not change from the beginning to the end of the intervention 
(t53 = 1.63, p = 0.1087), students improved on all other metrics 
of concept map quality that were analyzed (number of arrows: 
t53 = 3.27, p = 0.0019; number of terminal nodes: t53 = 5.55, p 
< 0.0001; number of linking words: t53 = 4.55, p < 0.0001; 
quality of linking words: t53 = 3.82, p = 0.0004; Figure 2).

For the data set including both study habits and outline and 
concept map variables, multivariate regression identified a sig-
nificant association between the best subset of predictors and 
change in exam scores (Table 4A). The full model after optimi-
zation of adjusted R2 values included an intercept and nine pre-
dictor variables and predicted a significant portion of the vari-
ance in change in exam scores (Supplemental Table S1). After 
backward selection, the best model explained 40.08% of the 
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(Table 2 and Figure 1). The observed trend was similar to the 
trend observed in Fall 2014, in that focal students were initially 
underperforming relative to peers who did not enroll, but this 
difference disappeared following enrollment in BIO 104; 
planned contrasts revealed that focal students improved rela-
tive to their peers who did not enroll between exams 1 and 2 
(F(1, 535) = 6.78, p = 0.0095; Figure 1) but that the trajectories 
for focal and control students between exams 2 and 3 were 
indistinguishable (F(1, 535) = 0.10, p = 0.7523; Figure 1). We 
found that normalized change in exam score (c) was consistent 
through time, varied depending on lecture section, but that 
there was no effect of treatment on normalized exam scores 
over time, nor was there a three-way interaction (Table 2 and 
Figure 1D). However, between-subjects tests revealed that, 
across all pairs of exams, normalized change in scores was 
higher for focal students than control students (F(1, 535) = 
5.49, p = 0.0152, Figure 1D), normalized change differed by 
lecture section (F(2, 535) = 4.22, p = 0.0195), and the effect of 
treatment did not vary by lecture section (F(1, 535) = 0.13, p = 
0.8762).

Students made improvements in some but not all study hab-
its emphasized in the sprint course. Focal students reported an 
increase of 2.42 ± 0.67 (mean ± SE) study hours per week by 
the end of the semester, which was more than would be 
expected by chance alone (t18 = 3.62, p = 0.0200). Students also 
reported increased outline usage, with six students reporting 
using outlines after every lecture, despite not having done so at 
the beginning of the semester (McNemar’s χ2 = 6.0, p = 0.015; 
Table 3E); however, this represents only 30% of the students for 
whom we had survey data. We also detected an increase in 
self-reported regularity of reviewing, with 10 students who 
began the course without regular review reporting reviewing 
after every class by the end of the semester (McNemar’s χ2 = 
7.36, p = 0.0059; Table 3H). However, as was the case with 
outline usage, only a subset of students reported making the 
desired changes, despite this being a central component of our 
strategy. We did not detect substantial changes in note reorga-
nization (McNemar’s χ2 = 0, p = 0.6563; Table 3F) or in use of 
concept maps (McNemar’s χ2 = 9.0, p = 0.1250; Table 3G).

Analysis of outline and map variables for Spring 2015 
revealed that students improved on outlines but not on concept 
maps (Figure 2), which was a direct contrast to the pattern 
observed among Fall BIO 104 students. Student outlines 
improved over the duration of the sprint course both in terms of 
organization (t43 = 3.15, p = 0.0029; Figure 2) and content (t43 
= 4.17, p < 0.0001; Figure 2). Conversely, we did not observe 
changes in scores on concept maps in any metric analyzed 
(Figure 2), including content (t43 = 0.72, p = 0.4747), organiza-
tion (t43 = 0.56, p = 0.5785), number of arrows (t38 = 1.15, p = 
0.2584), number of nodes (t42 = 0.99, p = 0.3270), number of 
terminal nodes (t41 = 1.80, p = 0.0788), number of linking 
words (t41 = −0.11, p = 0.9112), or in quality of linking words 
(t41, p = 0.2438).

For the analysis including all data, multivariate regression 
identified a significant relationship between the best subset 
of predictors and change in exam scores (Table 5). The best 
model after forward, stepwise selection explained 65.14% of 
the variance in change in exam scores and included effects of 
the intercept, number of arrows on concept maps, number of 
linking words on concept maps, and regularity of reviewing; 
all of the predictors in this final model were significantly 
associated with change in exam score (Table 5). However, 
while increases in the number of linking words on concept 
maps were associated with increases on lecture exam perfor-
mance, negative coefficients for number of arrows and for 
regularity of reviewing indicated that decreases in number of 
arrows and in the regularity of review were associated with 
increased exam scores, which was counter to our predictions. 
An important caveat is that this model was based on 
responses from only 17 of the 44 total focal students and 
thus represents only 38.6% of the focal group at large. For 
the analysis including only data from outlines and concept 
maps (and thus maximizing sample size), multivariate 
regressions revealed that both the full (most predictive) 
model after optimization of adjusted R2 and the best model 
after backward elimination failed to predict change in exam 
scores and explained only a small proportion of its variance 
(Supplemental Table S2).

TABLE 4.  Summary of best models for Fall 2014 when survey data were included (A) or excluded (B)a

Variable df β SE β Standardized β t p VIF

A. All data, best model
  Intercept 1 3.35 1.99 0.00 1.69 0.0994 0
  Lecture section (C) 1 −8.00 3.11 −0.41 −0.26 0.0143 1.65
  Map organization 1 5.99 2.22 0.54 2.70 0.0102 2.50
  Map content 1 −3.85 1.71 −0.50 −2.25 0.0303 3.18
  Map number of nodes 1 0.22 0.12 0.47 1.76 0.0863 4.61
  Map number of arrows 1 −0.20 0.10 0.46 −2.06 0.0463 3.18

    Global model statistics: F(5, 38) = 5.08, p = 0.0012, R2 = 0.4008, adjusted R2 = 0.3220
B. Survey data excluded, best model
  Intercept 1 −0.15 1.68 0.00 −0.09 0.9287 0
  Outline content 1 −3.19 1.35 −0.31 −2.36 0.0222 1.05
  Map number of nodes 1 0.42 0.15 0.87 2.76 0.0081 6.25
  Map number of linking words 1 −0.48 0.21 −0.85 −2.32 0.0247 8.55
  Map number of terminal nodes 1 24.30 8.33 0.76 2.92 0.0053 4.34
    Global model statistics: F(4, 49) = 3.42, p = 0.0151, R2 = 0.2185, adjusted R2 = 0.1547

aPredictors that were significant at p ≤ 0.05 are bolded. Overall model statistics are provided below each model.
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DISCUSSION
Many colleges and universities are exploring options to decrease 
attrition rates in introductory STEM courses. Evidence shows 
that supplemental courses can significantly enhance high-risk 
students’ performance and increase their chance of success and 
ultimate retention in STEM; however, many common methods 
of remediation are either costly to implement or have limited 
effectiveness (Maloof and White, 2005; DeVoe et al., 2007; Ryb-
czynski and Schussler, 2011). In this study, we investigated the 
impacts of a supplemental course offered at Miami University. A 
key feature of this supplemental course is that it was taught by 
graduate student TAs and thus was inexpensive for the univer-
sity to implement. Further, it was designed to emphasize outlines 
and concept maps as concrete tools with which to accomplish 
the more demanding steps of the study cycle (i.e., reviewing, 
studying, and self-assessment). Our analyses of this course were 
designed to determine which individual remediation strategies 
were most effective at enhancing student performance in the 
associated introductory biology courses. While the students who 
participated in our supplemental courses were a self-selected 
cohort of the larger body of students who received ≤77% on their 
first lecture exam, we assert that it is still valuable to investigate 
how supplemental instruction influences self-selected groups, 
given that many institutions are relying on or have relied on vol-
untary supplemental instruction (e.g., single-session study hab-
its lectures, tutoring, review sessions, and voluntary recitations) 
to address poor performance in introductory courses (Belzer 
et al., 2003; Preszler, 2006; Bail et al., 2008; Kibble, 2009).

In the broadest sense, the supplemental course was success-
ful. Participant exam scores began significantly below the class 
average and rose to become statistically indistinguishable from 
nonparticipants’ scores on subsequent exams. These results are 
remarkably consistent with previous findings in this course, 
spanning eight semesters (Sanjeevi et al., personal communica-
tion). Interestingly, the gains in participant performance are 
realized by the first exam administered after enrollment in the 
supplemental course, which is the second exam in the introduc-
tory biology course overall. In other words, participant scores 
become statistically indistinguishable from nonparticipant 
scores within only the first few weeks of the supplemental 
course, but there are no additional gains on subsequent exams. 
Analysis of normalized change in scores, which takes into 
account how much students’ scores change relative to the max-
imum possible change, reiterated this interpretation. Focal stu-
dents had larger normalized gains as early as exam 2 and then 
maintained this difference. Thus, it is unlikely that observed 
effects are simply an artifact of focal students starting the 
semester with more room for improvement.

While we do not have the data to measure potential differ-
ences in motivation between our self-selected cohort and their 
peers in the present study, other authors have made estimates. 
For example, Arendale (1997) and Ramirez (1997) established a 
motivational control, consisting of students who expressed inter-
est in supplemental instruction but were unable to enroll in sup-
plemental courses. Arendale (1997) used the percent of students 
earning “A’s” or “B’s” as their metric of performance and found 
that ∼45.1% of the difference in percentages between the control 
and focal group was attributable to differences in motivation. 
Similarly, Ramirez (1997) used final course grades as their met-
ric of performance and found that ∼59% of the difference 
between focal and control students was attributable to motiva-
tional differences. If we assume that 60% of our treatment effect 
is attributable to motivational differences and examine treat-
ment differences in change in scores from exam 1 to exam 2 
(when the treatment effect was most pronounced), the differ-
ence as compared with the control would be reduced from 8.15% 
to 4.89% in Fall 2014 and from 4.90% to 2.94% in Spring 2015. 
Thus, while we do not have the data to quantitatively test for the 
impact of motivation, it does appear that there would be at least 
some residual benefit for our students when we take into account 
motivational effects estimated elsewhere. Furthermore, Sanjeevi 
et  al. (personal communication) used surveys to compare 
changes in attention and persistence for focal and control stu-
dents in a previous iteration of BIO 104 and found that focal 
students gained more over the course of semester in terms of 
both attention and persistence. If our students improved more in 
terms of motivation than their peers who did not enroll, this 
might be one mechanism that can explain how our course 
improves student performance on exams.

It is well recognized that exam grades are not an all-encom-
passing metric of student performance (Scouller, 1998; Rust, 
2002; Gibbs et al., 2005) and may not capture all learning out-
comes of BIO 104. As such, we investigated the impact the sup-
plemental course had on self-reported study habits through pre 
and post surveys, as well as changes in quality of outlines and 
concept maps. The supplemental course instructors empha-
sized the study cycle (Cook et al., 2013) and frequent reviewing 
and reorganization of class notes by creating concept maps and 
outlines. Changes in study habits were strikingly different 
across the two semesters in our study. In the Fall of 2014, stu-
dents reported increased usage of outlines and maps and 
increased regularity of note reorganization, while in the Spring, 
improvements were only reported for outline usage and regu-
larity of reviewing. In agreement with the observation that few 
students reported increases in map usage during the Spring of 
2015, focal students in the Spring cohort did not improve on 

TABLE 5.  Summary of best model Spring 2015 data when survey responses were included (all data)a

Variable df β SE β Standardized β t p VIF
All data, best model
Intercept 1 0.100 0.024 0.000 4.260 0.0009 0
Map number of arrows 1 −0.004 0.001 −1.149 −3.850 0.0020 3.32
Map number of linking words 1 0.004 0.002 0.705 2.530 0.0253 2.90
Regular reviewing 1 −0.125 0.030 −0.798 −4.190 0.0011 1.35
Global model statistics: F(3, 16) = 8.10, p = 0.0027, R2 = 0.6514, adjusted R2 = 0.5170

aPredictors that were significant at p ≤ 0.05 are bolded. Global model statistics are provided at the bottom of the table.
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any metric of concept maps analyzed, with the exception of 
“map organization.” This is in stark contrast to the trend for 
outline and concept map variables in the Fall cohort, in which 
seven of nine metrics were improved. Together, these observa-
tions suggest, perhaps intuitively, that students must regularly 
use outlines and concept maps to improve. Further, it is intrigu-
ing that the general trend was for Fall students to improve more 
dramatically than the Spring cohort on a wider breadth of both 
study habits and metrics associated with outlines and maps. 
The vast majority of biology majors at our institution take BIO 
115 in their first Fall semester, followed by BIO 116 in their 
second semester. Thus, our data reiterate the importance of 
bridge-type courses, offered during the summer or early in the 
first semester, as this is a period when students are experiencing 
new academic challenges and searching for ways to study more 
effectively (Martin and Arendale, 1992; Tinto, 2001).

Although we detected statistically significant improvements 
in study habits across both semesters (Table 3), a striking 
majority of students did not shift into what we considered to be 
acceptable patterns of behavior. For example, while outline 
usage increased across both cohorts, only 23% and 30% of focal 
students were using outlines after every lecture for the Fall and 
Spring cohorts, respectively. Outlines were a centerpiece of the 
study cycle (Cook et al., 2013) as we presented it to students. 
We heavily emphasized making an outline after every class as a 
way to review, study, and self-assess, but it is not clear why such 
a small proportion of students were able or willing to apply 
these stages of the study cycle. Because we used a voluntary 
recruitment strategy, we assumed that motivation was high 
among focal students and that simply introducing the strategies 
to students and providing limited feedback (e.g., returning 
comments on one outline and one concept map per week) 
would be sufficient to spur the necessary behavioral changes. It 
may be that making the requirements in the sprint course more 
rigorous, perhaps by increasing the number of graded outlines 
and concept maps or by changing the course from “Pass/Fail” to 
a more traditional “ABC” grading system would provide the 
incentives necessary to change behaviors. However, this 
approach would require substantially more investment from 
instructors and also run the risk of devaluing what we consider 
to be two central pillars of successful scholarship: strong, inter-
nal motivation to succeed and the desire to learn as opposed to 
earn passing scores. The answers to this issue might be best 
solved on a case-by-case basis, depending on the institution’s 
priorities. For example, focusing on increasing student perfor-
mance and retention in the major seems to favor altering the 
course structure to provide more feedback and greater incentive 
to adopt the emphasized strategies, while trying to provide the 
tools for success to motivated students might favor the supple-
mental course design we present here.

In general, our ability to explain change in exam scores 
using changes in study habits and techniques was limited. 
While we did detect statistically significant associations between 
changes in study habits and techniques and changes in exam 
scores, these relationships were somewhat weak (in terms of 
variance explained), and the identities and signs for individual 
coefficients were inconsistent among semesters. If there were a 
single variable strongly associated with change in exam scores, 
we would have expected for it to remain in best models across 
semesters, for the slope to be substantially larger than other 

significant slopes, and for the sign to remain consistent. This 
was not the case here, as variables remaining in best models 
were largely inconsistent across semesters, and no individual 
coefficients stood out with particularly large slopes. Thus, our 
primary conclusion from this set of analyses is that there is no 
single habit or technique that consistently underlies the impact 
of our course on exam scores, nor is there a consistent subset of 
predictors.

We acknowledge that our multiple regression analyses may 
have lacked the statistical power to isolate subtle impacts of 
individual regression coefficients, if this were the true underly-
ing pattern. We endeavored to reduce technical sources of error 
via training of concept map and outline evaluators, using means 
from triplicate graders and then performing an exhaustive 
data-cleaning step to remove aberrant scores, but it is likely that 
outline and concept map data are highly variable by nature. 
There are many ways to effectively build outlines and concept 
maps, and while their pedagogical merits have been repeatedly 
demonstrated (Novak, 1990; Okebukola, 1990; Daley et  al., 
1999; Nesbit and Adesope, 2006), a major challenge is how to 
score them and provide consistent feedback (Luckie et al., 2011; 
Dowd et  al., 2015). Given that first-year students come from 
diverse backgrounds, enter introductory courses with highly 
variable levels of prior preparation, and vary substantially in 
maturity (Tinto, 2001), it is perhaps expected that different stu-
dents would benefit from supplemental instruction in different 
ways. For example, Haak et  al. (2011) found that increased 
structure and active learning disproportionately benefited 
underrepresented minority (URM) students, which the authors 
attributed to differences in student backgrounds (i.e., while 
non-URM students were accustomed to active learning, URM 
students were not, so there was a disproportionate benefit for 
the latter). A similar mechanism could have been operating 
here, but as opposed to a cohort selected based on predefined 
criteria (e.g., grade point average [GPA] and Scholastic Aptitude 
Test [SAT] Verbal scores; Haak et al., 2011), our cohort self-se-
lected through voluntary recruitment, potentially increasing the 
diversity of student backgrounds relative to a recruitment mech-
anism based on quantitative criteria. To understand how stu-
dents respond to supplemental instruction in the context of vol-
untary recruitment, it may be necessary to differentiate among 
groups of students based on pre-existing metrics indicative of 
prior experience, such as socioeconomic background, ACT 
scores, or high school GPA. In the absence of some ability to 
subdivide students based on their specific needs, it appears 
unlikely that studies with relatively small focal cohorts will have 
the statistical power to isolate individual features associated 
with improvement, particularly if these effects are subtle.

Even though voluntary recruitment approaches are regularly 
used at diverse institutions (Belzer et al., 2003; Bail et al., 2008; 
Kibble, 2009), our data cast some doubt on their ability to effec-
tively attract the students who need them. We found that the 
voluntary enrollment strategy failed to recruit many of the 
high-risk students (those who received a 77% or lower on the 
first exam). Only 17% of high-risk students enrolled in our 
8-week sprint course, suggesting that other recruitment 
methods might be necessary to more effectively help a greater 
number of students. We can only speculate as to the mecha-
nisms preventing efficient recruitment of the target cohort, but 
it is possible that a sense of stigma surrounding the course 
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played a role, as has been reported elsewhere (Somers, 1988). 
Some institutions have addressed this issue by building supple-
mental instruction into the mandatory structure of the lecture 
course (e.g., Preszler, 2009). Other institutions have overcome 
the problem by requiring only at-risk students to participate in 
a remediation program, a strategy that relies on successfully 
identifying at-risk students before they start the introductory 
course, using high school GPA, SAT scores, and socioeconomic 
status as the primary predictors (Hodges and White, 2001; 
Hensen and Shelley, 2003; Lotkowski et al., 2004). This can be 
problematic because it can be difficult to identify the measures 
that best predict performance in introductory biology courses. 
One possible remedy for this challenge would be to conduct 
placement exams before entrance into introductory STEM 
courses. However, such obligate remediation strategies might 
prevent students from coming to the conclusion that they need 
to change their study habits on their own, because they would 
be receiving help from the outset of the introductory courses. 
Without having the opportunity to realize their need for reme-
diation, students might not value the strategies that are being 
taught, which is likely to increase their resistance to the ideas 
(Arendale, 1994). This idea is corroborated by the instructors of 
our supplemental course, who report that students often admit 
that they would not have considered the remediation necessary 
without first struggling on lecture exam 1 (T.D.H. and K.A., per-
sonal observations). Although the use of risk assessment to 
track students into supplemental courses may be difficult to 
effectively implement, it could be that such methods are needed 
to increase the recruitment of high-risk students and ultimately 
necessary to address the attrition issue.

To conclude, our assessment of the influence of a supplemen-
tal course paired with the introductory biology courses at Miami 
University suggests that remediation can be successful with 
graduate student instructors, helping to make such remediation 
sustainable at most institutions due to low cost. Further, we 
believe that our approach could be successfully implemented 
using advanced undergraduate students as instructors, making 
similar solutions available to undergraduate-only departments 
and institutions. Additionally, our analysis of the effects our 
course had on participant study habits and techniques revealed 
that a small portion of participants (23–30%) fully adopted the 
study habits we emphasized and that creating concept maps and 
outlines has a modest effect on lecture course exam scores. How-
ever, we suspect that the modest correlations between concept 
map and outline metrics and exam scores are indicative of the 
different needs and learning styles of individual students. In 
other words, some students might benefit more from the more 
visual construction of a concept map, while others might find 
greater benefit in reorganizing their notes into outlines. These 
results may also be influenced by the difficulty of effectively 
grading these assignments and the large portion of students who 
did not adopt the strategies. Even so, our analyses suggest that 
presenting a variety of research-supported study techniques may 
be the best method to help the largest number of struggling stu-
dents. Finally, our results highlight the challenge of getting stu-
dents the help they need. The voluntary recruitment strategy for 
this study caused this effort to reach only ∼17% of students who 
struggled with the first lecture exam. This shortcoming may be 
addressed by obligatory remediation for at-risk students, though 
it is not clear what effects this strategy will have on student moti-

vation and buy-in regarding the supplemental course. To gain a 
clearer idea of how these various methods affect success and 
long-term retention in STEM majors, future studies should 
examine retention rates among self-selected participants and 
nonparticipants in voluntary enrollment courses and compare 
those results against retention rates from obligatory remediation 
strategies. Despite the difficulties presented by the diversity of 
student backgrounds, needs, and motivations, we demonstrate 
that a graduate student–taught supplemental course that teaches 
a variety of study skills and techniques can effectively enhance 
undergraduate performance in introductory biology courses.
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