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Abstract
Central sleep apnea is prevalent in patients with heart failure, healthy
individuals at high altitudes, and chronic opiate users and in the initiation of
“mixed” (that is, central plus obstructive apneas). This brief review focuses
on (a) the causes of repetitive, cyclical central apneas as mediated
primarily through enhanced sensitivities in the respiratory control system
and (b) treatment of central sleep apnea through modification of key
components of neurochemical control as opposed to the current universal
use of positive airway pressure.
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Introduction
Central sleep apneas (CSAs) occur when there is a transient 
reduction by the ponto-medullary respiratory rhythm gen-
erator. In contrast, obstructive sleep apnea (OSA) involves  
continuous respiratory efforts made against a closed airway. The 
four major types of sleep apnea are depicted in Figure 1. Heart  
failure patients with left ventricular dysfunction—with or 
without preserved ejection fraction—are the most prevalent 
type of CSA and over one half of these patients show sleep- 
disordered breathing (apnea/hypopnea index [AHI] greater than  
15 events per hour of sleep)1,2. The periodic waxing and  
waning of tidal volume (Vt) followed by apneas of at least  
10 seconds’ duration accompanied by intermittent hypoxemia 
and transient cortical electroencephalography arousal are typi-
cal of non-rapid eye movement (NREM) sleep in congestive  
heart failure (CHF) with periodic cycles of at least 50 seconds. 
CSA and “cluster type” periodic breathing with short periodic 
cycles (10–25 seconds) are common in healthy sojourners dur-
ing NREM sleep at high altitudes (>3000 m, oxygen saturation 
[SaO

2
] of about 90%) and even at more moderate high altitudes 

in susceptible people, especially with prolonged residencies3,4.  
This cluster-type periodic breathing with relatively short cycles 
is also common at sea level in over half of chronic opioid 
users, and the severity of CSA is proportional to opiate dose5. 
A third type of CSAs consists of those immediately preced-
ing an airway obstruction. In the example given here (Figure 1,  
mixed), esophageal pressure is used as a highly sensitive means 
of distinguishing central (no inspiratory effort) from obstruc-
tive (increasing inspiratory effort) apneas. In clinical prac-
tice, less sensitive, indirect measures of inspiratory effort are 
used, thereby likely underestimating the prevalence of mixed 
apneas. Even more difficult detection problems occur in  

attempts to distinguish hypopneas of central versus obstructive 
origin. The measurements of suprasternal pressure or “shape” 
(or both) of the nasal pressure waveform during inspiration have 
shown favorable comparisons with esophageal pressure as a 
marker for increased upper airway resistance6,7 and should be  
explored further for use in the clinical polysomnogram.

Central sleep apnea sequelae
Cyclical CSAs—like their obstructive counterparts—are pro-
inflammatory with substantial long-term deleterious effects dur-
ing wakefulness, including enhanced sympathetic vasomotor 
outflow and vascular endothelial dysfunction, neurocognitive 
deficits, and insulin insensitivity2. Both the repeated arousals 
and especially the chronic intermittent hypoxemia (CIH) attend-
ing cyclical CSA have been implicated. However, when sup-
plemental O

2
 was used to eliminate the intermittent hypoxemia 

accompanying airway obstruction in a sleeping canine model, 
the transient arousals by themselves were not sufficient to 
elicit the significant increase in daytime mean arterial pressure  
observed when both CIH and arousals accompanied the OSA8.

The amount of oxygenated hemoglobin (HbO
2
) desaturation 

for any given apnea length will depend upon the starting (pre-
apneic) position on the sigmoid HbO

2
 dissociation curve, the  

end-expiratory lung volume at which the apnea begins, and the 
individual’s oxygen consumption, cardiac output, and resultant  
arterial-to-venous O

2
 content difference9,10. Importantly, the fast 

reoxygenation phase at apnea termination—as occurs in patients 
with sleep apnea—was found to be especially pro-inflammatory11. 
The molecular basis for the highly inflammatory response 
to intermittent (as opposed to constant) hypoxemia has been 
explained by Semenza and Prabhakar as an upregulation of 

Figure 1. Three common types of cyclical central sleep apneas. The three types are congestive heart failure (CHF), high-altitude/chronic 
opioid use, and mixed-central followed by obstructive apneas. See text for detailed descriptions. EEG, electroencephalography; Pes, 
esophageal pressure; SaO2, arterial oxygenated hemoglobin saturation; Vt, tidal volume. Adapted from12.
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both pro- and anti-oxidant transcription factors, hypoxia-induc-
ible factor (HIF) 1α and 2α in constant hypoxemia but a sup-
pression of the anti-oxidant HIF 2α in intermittent hypoxemia13.  
On the other hand, intermittent hypoxemia induced experimen-
tally at very mild levels and for cycles that are several minutes 
in duration and for very brief periods of daily administration 
elicits a significant plasticity in phrenic motor neurons14. 
This adaptive response to induced mild, brief CIH is in sharp  
contrast to that elicited via repetitive sleep apneas; the latter  
are unlikely to convey any significant beneficial biological benefit.

The amount of sleep apnea that may be “clinically signifi-
cant” remains controversial; correlational studies claim that 
a frequency of as few as 5 to 10 events per hour has significant 
chronic cardiovascular consequences15. However, these claims 
have not been tested via interventional treatments in people with  
these lower levels of AHI. Alternatively, given the relative 
importance of the intermittent hypoxemia insult, it seems appro-
priate to define the severity of sleep-disordered breathing 
by using indices that are based on the degree of intermittent  
hypoxemia incurred2,12.

Mechanisms common to all types of central sleep 
apneas
Removal of the wakefulness drive to breathe
The transient cessation of the medullary respiratory pattern  
generator neurons requires an unmasking of a sensitized apneic 
threshold in NREM sleep, as induced by a transient ventila-
tory overshoot involving both mild to moderate hypocapnia plus  
augmented Vt values. Carotid body denervation studies in rodents 
and canines demonstrate that the carotid bodies are required 
for sensing the low partial pressure of carbon dioxide (PaCO

2
) 

and causing ventilatory instability and cyclical apneas16,17.  
However, studies in the sleeping canine with isolated, per-
fused carotid chemoreceptors also showed that hypocapnia 
induced only at the level of either peripheral or central chem-
oreceptors was insufficient to elicit apnea18,19 and that hypoc-
apnia induced at the level of the isolated, perfused carotid  
chemoreceptor caused a marked inhibitory effect on central CO

2
  

sensitivity. Thus, interdependence of function between periph-
eral and central chemoreceptors was an essential mediator of the 
apnea elicited via transient hypocapnia18–20. Furthermore, vagal 
blockade in sleeping animals showed that inhibitory feedback 
from the lung stretch accompanying transient increases in Vt  
also contributes to the apnea following a ventilatory overshoot21.

These inhibitory effects on breathing are opposed by excita-
tory central short-term potentiation mechanisms which preserve 
ventilatory drive immediately following chemoreceptor-driven 
ventilatory overshoots while awake but apparently not suffi-
ciently to prevent apnea or hypopnea during NREM sleep22,23.  
So clearly, a significant “wakefulness drive” to breathe exists. It 
is manifested in sleep-induced inhibition of medullary inspira-
tory activity as well as withdrawal of tonic hypoglossal neuro-
nal activity24,25 and removing it in NREM sleep also appears to 
compromise the control system’s vigilance in protecting against 
chemo- and mechanoreflex-induced apneas. An additional 
example of an NREM sleep-induced compromise of control  

system vigilance occurs with respiratory compensation for loads 
induced by increased airway resistance which occur immedi-
ately to preserve ventilation during wakefulness but are absent 
in NREM sleep26. Groups of neurons within the ponto-medullary 
axis which might mediate these influences of wakefulness on 
respiratory control have been postulated, although definitive  
evidence on this complex problem remains elusive25.

Two additional mechanisms to enhance post-apneic ventila-
tory overshoots include the following: (a) apneas are com-
monly prolonged until PaCO

2
 rises above its normal pre-apneic,  

eupneic level27; and (b) transient arousals at end apnea are com-
mon and will enhance the magnitude of the transient ventilatory  
overshoot response to chemoreceptor stimulation.

High loop gain
The unmasking of these reflex mechanisms underlies a sleep-
induced central apnea. However, the repeated cyclical occur-
rence of transient ventilatory undershoots (apneas/hypopneas) 
and overshoots requires that respiratory control system “loop 
gain” to be elevated. Loop gain is a dynamic measure of how  
close a physiologic control system is to instability.

     

Loop Gain  controller gain plant gain

VE/ PaCO2 transit timePaCO2
Loop Gain

(> < ) delaylung voleupnea

= ×

   ∆ ∆
= × ⋅   

   

The principal component of a high loop gain is an excessive 
chemosensitivity to CO

2
 both above and below the level of eup-

neic ventilation. This high gain means that both ventilatory 
undershoots in response to a transient hypocapnia and ventila-
tory overshoots in response to a combination of apnea-induced 
hypoxemic and hypercapnic chemoreceptor stimuli are exces-
sive, thereby precipitating the continued breathing periodicity28,29.  
The concept of loop gain and its two principal components— 
controller (CO

2
 chemosensitivity or ΔVE/ΔPaCO

2
 slope) and 

plant (or ΔPaCO
2
/ΔVE) gain—are illustrated in Figure 2. (We 

acknowledge that the concept of loop gain was developed to 
characterize the dynamic behavior of linear “systems…yet 
substantial non-linearities exist in virtually all components of  
the respiratory control system, especially when apnea occurs in 
the hypocapnic range”29. Furthermore, our schematic of loop gain 
in Figure 2 portrays only steady-state conditions for variables 
in the alveolar gas equation. Despite these limitations,  
considerable experimental evidence has accumulated in sleeping  
animals and humans to demonstrate that altering one or more 
components of loop gain elicits predictable influences on  
ventilatory stability/instability. See text and Figure 2.)

Finally, another common feature of all types of central apneas 
is their predominance in NREM sleep and especially in lighter 
sleep stages as well as their relative scarcity in phasic REM 
sleep1. Coincidentally, the apneic threshold which resides within 
2 to 5 mm Hg PaCO

2
 below normal awake levels in healthy  

individuals in NREM is not readily demonstrable in phasic REM  
sleep30. The ventilatory response above eupnea to added CO

2
 

is also blunted in NREM (versus wakefulness) in part due to a 
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Figure 2. Diagram of alveolar gas equation to illustrate the effects of loop gain components on the propensity for central and cyclical 
central sleep apnea. The equation is PaCO2 = V

.
CO2/V

.
A·K, where V

.
CO2 = 250 mL/min. Each example shown is from an experimental study in 

sleeping humans or canines in which the apneic threshold and the slope of the carbon dioxide (CO2) response below eupnea were measured 
during non-rapid eye movement (NREM) sleep by using a mechanical ventilator in the assist-control mode to gradually raise tidal volume (Vt) 
and lower partial pressure of end-tidal carbon dioxide (PetCO2) until apnea occurred. The top panel shows effects of changing “plant” gain 
(ΔPaCO2/ΔV

.
A) with steady-state hyper- or hypo-ventilation along the iso-metabolic hyperbola. The red filled-in areas indicate the magnitude 

of increase in alveolar ventilation needed to reduce PaCO2 sufficiently to reach the apneic threshold. For example, under control conditions 
in NREM sleep (eupneic PaCO2 ~ 45 mm Hg, denoted by X), a transient ventilatory overshoot of about 1 L/min is required to reduce PaCO2 
~ 5 mm Hg to the apneic threshold of 40 mm Hg. With steady-state hyperventilation (for example, oral acetazolamide; PaCO2 30 mm Hg), 
the required ventilatory overshoot to achieve apnea (PaCO2 23 mm Hg) is about twice that of the control; conversely, with steady-state 
hypoventilation (for example, metabolic alkalosis, opiate use; PaCO2 ~ 55 mm Hg), the required ventilatory overshoot to achieve apnea 
(PaCO2 ~ 51 mm Hg) is about one third that of control. Not illustrated here are (a) the effects of transient arousal from sleep, which will increase 
the magnitude of the ventilatory overshoot above eupnea, and (b) the dynamic effects of lung volume on plant gain. For example, at low lung 
volumes, plant gain is raised; thus, the CO2 washout from the alveoli will occur more quickly and will require smaller transient increments in 
ventilation to reach the apneic threshold31. The lower panel shows effects of changing “controller” gain or chemoreceptor sensitivity to PCO2 
(ΔV

.
A/ΔPaCO2) above eupnea (which affects the magnitude of the ventilatory overshoot) and below eupnea (which affects the CO2 “reserve” or 

difference in PaCO2 between eupneic breathing and the apneic threshold). Note the increased chemosensitivities of the CO2 response slopes 
above and below eupnea in congestive heart failure (CHF) and hypoxic environments and the reduced CO2 sensitivity in hyperoxia which is 
further reduced with carotid chemoreceptor denervation (see text). CBX, Carotid Body Denervation; K, constant .863; PaCO2, mmHg arterial 
PCO2; PCO2, partial pressure CO2; V

.
A, alveolar ventilation ; V

.
CO2 ventilation to CO2 production; VE, ventilation.
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truly reduced CO
2
 chemoreceptor sensitivity32 but also to loss 

of tonic neural motor input to pharyngeal dilator muscles result-
ing in increased upper airway resistance33,34. Transient arousal 
at apnea termination temporarily restores this tonic input and 
reduces airway resistance, thereby contributing to ventilatory  
overshoot prior to sleep restoration. Similarly, in REM sleep, 
ventilatory responsiveness to CO

2
 above eupnea is reduced in 

slope and shows an almost random Vt or diaphragmatic elec-
tromyography responses (or both) to increasing PaCO

2
 (with 

or without coincident airway occlusion) rather than an orderly 
dose response as in quiet wakefulness or NREM sleep35.  
Perhaps the erratic, sporadic increases in medullary inspiratory 
neuronal drive as observed during phasic REM in the sleeping 
cat override hypocapnic inhibition or hypercapnic stimulation  
of central respiratory motor output36.

Central sleep apnea in congestive heart failure
The key characteristics of CHF present an almost “perfect storm” 
to promote periodic breathing. We summarize the following  
key contributions:

•   �Controller (and therefore loop) gain is elevated because 
of enhanced carotid chemosensitivity, leading to a 
highly sensitized apneic threshold (within 1 to 2 mm Hg 
of eupneic PaCO

2
) and an enhanced ventilatory over-

shoot to transient reductions in ventilation37. In turn, the 
pioneering work of Schultz et al. in animal models of  
CHF has demonstrated the critical importance of a reduced 
carotid sinus blood flow and shear stress in eliciting the 
enhanced carotid chemosensitivity38,39.

•   �Elevated pulmonary vascular pressures in CHF— 
especially during recumbency with central fluid shifts40 — 
contribute to lung C fiber and ventilatory stimulation, an 
increased CO

2
 response slope sensitivity, and a narrowed 

CO
2
 reserve41. This “extra respiratory stimulus” might 

also prevent mild hypoventilation and CO
2
 retention in  

CHF which normally occurs at sleep onset37.

•   �Patients with CHF commonly have a compromised 
vasodilatory and vasoconstrictive cerebrovascular 
response to transient hypercapnia and hypocapnia, respec-
tively42. This means that medullary CO

2
 and H+ levels 

are less protected and more labile in response to tran-
sient changes in systemic PaCO

2
; thus, the ventilatory 

response slopes to ΔPaCO
2
 above and below eupnea are  

sensitized.

•   �Low cardiac output in CHF means prolonged circulation 
times, thereby prolonging the delivery of altered blood 
gases from lung to carotid body (CB) and prolonging the 
periodic respiratory cycles.

A common misconception particularly with reference to causes 
of periodic breathing in CHF is that a reduced steady-state 
PaCO

2
 will precipitate periodic breathing, presumably because 

the patient’s eupneic PaCO
2
 is moved closer to their apneic  

threshold43,44. This is a misconception because (as shown in  
Figure 2) the position of the apneic threshold relative to  

eupneic PaCO
2
 is labile; that is, the CO

2
 reserve below eup-

nea is determined by the chemosensitivity and slope of the CO
2
 

response45. Importantly, a reduced steady-state PaCO
2
 actually 

reduces plant gain, meaning that a larger transient ventilatory 
response is required to lower PaCO

2
 to reach the apneic threshold  

(Figure 2, top panel). Thus, the reduced steady-state PaCO
2
 is 

an important protector against apnea; alternatively, steady-state 
hypoventilation and hypercapnia elevate plant gain and precipitate 
ventilatory instability45 (also see examples under the “Non-positive 
airway pressure (PAP) treatments of CSA…” section below).

Central sleep apnea in hypoxic environments
Most sojourners with a wide spectrum of hypoxic chemosensi-
tivity experience periodic breathing in hypoxic environments4; 
exceptions include healthy high-altitude natives with markedly 
depressed hypoxic chemosensitivity46. In the sojourner, the devel-
opment of periodic breathing during NREM sleep in hypoxia 
occurs within a few minutes of hypoxic onset as an initial hyper-
ventilation and reduced PaCO

2
 evolve into progressively larger 

hyperpnea/hypopnea oscillations in Vt and then—following  
an augmented inspiration when PaCO

2
 reaches the apneic 

threshold—expiratory time is prolonged and hyperpnea/apnea 
combinations ensue with a cycle period of 20 to 25 seconds. 
Loop gain is increased in hypoxia because chemoreceptor 
CO

2
 sensitivity is increased more than plant gain is reduced  

(Figure 2). Thus, the apneic threshold resides within 1 to 2 
mm Hg of the eupneic PaCO

2
 during NREM sleep, ensuring 

a significant ventilatory undershoot with even small levels of  
transient hypocapnia47. Furthermore, the ventilatory overshoot 
at apnea terminations is amplified because of the synergistic  
stimulatory effects on carotid chemoreceptors of hypoxemia plus 
hypercapnia (that is, asphyxia). Chemoreceptor sensory inputs 
drive both medullary rhythm-generating neurons and arousal- 
producing cortical neurons4,29. These combined oscillating power-
ful drives and inhibitors to breathing likely explain, respectively, 
the abrupt large ventilatory overshoots at apnea termination 
and abrupt ventilatory undershoots at end hyperpnea in hypoxic 
environments, resulting in the cluster-type breathing pattern  
(Figure 1).

Opiate-induced central sleep apnea
Respiratory depression, first with hypoventilation and then  
outright apneas, occurs because of the actions of opioids on mu 
and kappa opioid receptors, and the most profound respira-
tory depression effects occur during a background of anesthe-
sia and NREM sleep5. Opioid receptors located on both the 
rhythm-generating medullary neurons in the pre-Bötzinger and  
RTN/pFRG complexes are inhibited, and both hypoxic and 
hypercapnic ventilatory response sensitivities are depressed 
upon acute intravenous or long-term oral opioid administration. 
Hypoglossal motor neurons are also depressed with high doses  
of opioids and upper airway resistance is increased5,48–51.

The dilemma in understanding the role of an enhanced loop 
gain in opioid-induced periodic breathing is that—unlike those 
cases with CHF or in hypoxia—periodic breathing occurs in the  
face of depressed central respiratory neurons and compro-
mised chemosensitivity. So, although we might expect apnea to 
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occur at sleep onset with opioid use, there is no mechanism for 
repeated cyclical apneas based on the model of increased con-
troller and loop gains. One possibility here is an increased plant 
gain secondary to opioid-induced steady-state hypoventilation 
and CO

2
 retention during sleep with subsequent displacement 

of ventilation and PaCO
2
 down the isometabolic hyperbola  

(Figure 2, top panel). This means that the apneic threshold will 
be reached with extremely small transient increases in alveolar 
ventilation45. The probability of steady-state hypoventilation has 
been documented indirectly in some chronic opioid users dur-
ing wakefulness and sleep52, but more studies quantifying CO

2
 

retention need to be conducted during sleep in order to deter-
mine whether there is a significant potential role for increased 
plant gain. If the higher plant gain was responsible for initiating 
apneas and some periodicity in chronic opioid users, CIH over  
time might be expected to sensitize the peripheral chemorecep-
tors and thereby exacerbate the periodic breathing in a positive  
feed-forward fashion50.

Mixed: central/obstructive apneas
Centrally induced periodicities and apneas occurring in patients 
with underlying collapsible airways will elicit repeated obstruc-
tions at the nadir of an oscillating central respiratory motor 
output during sleep53–55. The neurophysiologic basis for this  
effect of central respiratory motor output on central and obstruc-
tive apnea resides in the influence of efferent central respiratory 
motor output on activation/inhibition of motor neurons serving  
both upper airway pharyngeal dilator musculature and the chest 
wall respiratory pump musculature33. Accordingly, it is com-
mon to see central, obstructive, and mixed apneas in patients 
with CHF, even within the same night, possibly secondary to 
factors such as fluid accumulation around the upper airway and 
changes in head, neck, and body position2,56. Also, predominantly 
patients with OSA acquire CSA as chemoreceptor sensitivity  
increases and central respiratory motor output instability 
occurs during sojourn at high altitudes57. Similarly, a resid-
ual CSA is often unmasked in patients with OSA during the 
early stages of continuous PAP (CPAP) treatment (that is,  
so-called “complex” sleep apnea). An increased prevalence of 
OSA (as well as CSA) in chronic opioid use58 may also reflect  
central instabilities in respiratory motor output superimposed  
on a collapsible airway.

Central sleep apnea treatment via positive airway 
pressure
The use of PAP is routinely the clinician’s first—and often 
only—treatment choice for any type of sleep-disordered breath-
ing. However, evidence to date shows that this is not always 
the best approach for cases of predominant CSA. CPAP treats 
less than half of central apneas effectively and when it is 
applied in large clinical trials in patients with CHF, significant 
reductions in CSA did not appear in most patients until after  
the first several months of treatment. Patient survival was even-
tually compromised in these trials2,56,59. Low adherence to CPAP 
is always a major problem, especially if the failure to use CPAP 
occurs in the early morning hours when REM sleep is prevalent  
and accompanied by high levels of sympathetic nerve activity and 
cardiovascular stress60,61. Theoretically, assisted servo-ventilation 

should be an ideal approach to treat CSA, mixed apnea, and 
OSA because it delivers inspiratory pressure support to increase 
flow rate in the face of hypoventilation, also, it titrates expira-
tory PAP to eliminate airway obstructions2,56. However, to date, 
adaptive servo-ventilation (ASV) produced no survival benefit 
and actually increased mortality in CHF patients with CSA2,56.  
Speculation on the reasons for this ASV failure points to 
potential deleterious effects of PAP on left ventricular func-
tion, especially if the ASV device imposes excessive intratho-
racic pressures in vulnerable patients2. More thorough study 
of the effects of varying levels and types of PAP on left and 
right heart function is clearly indicated! In addition, alternative  
treatments to PAP must be explored.

Non-positive airway pressure treatments of central 
sleep apnea aimed at ameliorating one or more 
components of high loop gain
Congestive heart failure
The use of nocturnal supplemental O

2
 in the mildly hyperoxic 

range addresses the primary problem of excessive chemore-
ceptor sensitivity and has successfully reduced AHI and elimi-
nated CIH in several descriptive studies using relatively small 
numbers of patients with CHF2,62,63. The durations of remain-
ing apneas are lengthened. In select cases of OSA plus CSA,  
supplemental O

2
 is also effective by itself64–66 or in combination  

with CPAP or ASV devices66,67.

Oral acetazolamide will reduce plant gain to varying extents, 
depending upon the magnitude of the coincident reduction in 
PaCO

2
, and eliminate significant amounts of CSA and also 

reduce fluid load and associated airway compression via its  
diuretic actions2,68. Rebreathing added dead space with less than a  
2 mm Hg increase in partial pressure of end-tidal carbon  
dioxide (PetCO

2
) reduces plant gain and markedly lowers CSA, 

transient arousals, and CIH in patients withCHF44,69; even OSA 
is markedly reduced via supplemental CO

2
 in select cases64,70.  

Importantly, augmenting central respiratory motor drive to 
reduce CSA must also weigh the potential negative effects of 
raising chemosensory input on arousals, sleep state, or auto-
nomic cardiovascular regulation (or a combination of these)  
which may occur if the imposed hypercapnia is excessive71.

Exercise training has also been shown to reduce chemosensi-
tivity in animal models and patients with CHF72,73, presumably 
because of the intermittent increase in blood flow and shear stress 
in the carotid bifurcation39. Chronic statin therapy in rodents 
with CHF has also shown promise as a means of reducing  
chemosensitivity and CSA74.

It is clearly time to introduce clinical trials using these non-
PAP approaches—alone or in combination—to reducing loop 
gain2. Hopefully, such trials will also include assessments 
of loop gain components, arousal threshold sensitivity, and  
airway collapsibility so that investigators will have the tools  
to determine the causes of inter-individual variations in response 
to these proposed treatments64,67. To address future potential  
treatments, we note that pharmacologic and even gene trans-
fer approaches are under development in animal models for 

Page 7 of 11

F1000Research 2019, 8(F1000 Faculty Rev):981 Last updated: 28 JUN 2019



reducing carotid chemoreceptor hypersensitivity. Specific  
targets include downregulation of carotid chemoreceptor  
excitatory neurotransmitters or adrenergic receptors as well as 
upregulation of shear stress–sensitive transcription factors to  
enhance carotid sinus blood flow39,75,76.

Hypoxic environments
PAP administered via servo-ventilator or CPAP was not  
consistently effective in reducing CSA in hypoxia57,77. Noctur-
nal administration of supplemental O

2
 sufficient to return SaO

2
 

within 2 to 3% of sea level values eliminated periodic breathing 
at high altitudes almost immediately4,77. Oral acetazolamide  
elicits steady-state hyperventilation and reduces PaCO

2
 and loop 

gain, thereby reducing periodic breathing, in sleeping sojourners, 
whereas adding 1 to 2 mm Hg PaCO

2
—via increased fractional  

inspired carbon dioxide (FiCO
2
)—is sufficient to completely 

eliminate periodic breathing via reduced plant gain3,4. OSA 
patients sojourning at even moderate altitudes experience 
periodic CSA and adding oral acetazolamide to their CPAP 
treatment significantly reduced both central and obstructive  
apneas57. A limited amount of data have shown that these  
various means of reducing sleep-disordered breathing at high 
altitude also substantially reduce periodic transient arousals from 
sleep, increase the time spent in deep sleep, and diminish the 
carryover daytime sequelae of periodic breathing and CIH, such 
as increased systemic blood pressure, fatigue, neurocognitive  
impairment, and hypersomnolence78,79. The effect of prevent-
ing periodic breathing in hypoxia on nocturnal and daytime 
systemic and pulmonary vascular resistance at rest and during  
exercise needs to be addressed.

Chronic opiate use-induced sleep-disordered breathing
The aim here is to treat sleep-induced hypoventilation and 
any associated increase in airway resistance and apneic and 
hypopneic events. Opioid withdrawal or dose reductions in 
chronic users eliminates or significantly lowers the sleep- 
disordered breathing and CIH80. Again, CPAP is not an effec-
tive means of treatment; however, non-invasive positive pressure  
ventilation devices with bilateral pressure support and backup 
respiratory rates should be ideal for this treatment. Accordingly, 
adaptive servo-ventilators were substantially more effective 
than CPAP in reducing sleep-disordered breathing and arousals 

in chronic opioid users with a relatively high adherence rate  
(compared with CPAP) followed over several months48. Increasing 
the (suspected) reduced ventilatory drive and hypoventilation  
during sleep with opiate users might be achieved by reducing 
plant gain via ventilatory stimulation using oral acetazolamide 
or via dead space rebreathing just sufficiently to raise PetCO

2
 

1 to 2 mm Hg. To date, these approaches to raise central  
respiratory motor output during sleep have not been attempted  
in chronic opioid users with CSA.

Summary
CSA either by itself or in combination with obstructive apnea is 
not uncommon among patients with sleep-disordered breath-
ing, especially in heart failure, at high altitudes, and with chronic  
opioid use. The CIH accompanying CSA elicits cardiovascular 
consequences which carry over to the waking state. The under-
lying causes of CSA are complex and not completely under-
stood, although increased loop gain is now well established 
as a common feature. Treating CSA effectively and safely has 
had little success to date, presumably because CPAP has been 
the automatic treatment of choice among sleep medicine clini-
cians. Accordingly, it is time to match treatments with causative 
mechanisms but with the understanding that not all patients  
with CSA will share the same underlying causes.
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