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Methicillin-resistant Staphylococcus aureus (MRSA) is a significant causative agent of hospital-
acquired infections. We characterized MRSA isolated from August 2012 to July 2015 from Thammasat 
University Hospital. Genotypic characterization of MRSA SCCmec type II and III isolates were 
scrutinized by whole genome sequencing (WGS). The WGS data revealed that the MRSA SCCmec type 
II isolates belonged to ST764 previously reported mainly in Japan. All of tested isolates contained 
ACME Type II′, SaPIn2, SaPIn3, seb, interrupted SA1320, and had a virulence gene profile similar 
to Japan MRSA ST764. Rigorous surveillance of MRSA strains is imperative in Thailand to arrest its 
potential spread.

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-acquired infection (HA-MRSA) 
worldwide. There have been increasing reports of community-acquired MRSA (CA-MRSA)1 and livestock-
associated MRSA (LA-MRSA)2. The resistance is generally conferred by the acquisition of a SCCmec element, 
which carries mecA, a gene encoding for PBP-2′, a penicillin-binding protein that is not inhibited by most beta-
lactam antibiotics. The SCCmec element may also carry resistance genes to other classes of antibiotics such as 
aminoglycosides and glycopeptide antibiotics3. Many MRSA strains have become global multidrug resistant. 
For instance, MRSA strains isolated from a tertiary hospital in Malaysia showed co-resistance of tetracycline, 
ciprofloxacin and erythromycin4. MRSA-infected patients have a higher mortality rate than those infected with 
susceptible strains. Treatment of MRSA infection relies primarily on vancomycin. Although S. aureus isolates with 
complete resistance to vancomycin (VRSA) are still not common, milder vancomycin resistance phenotypes may 
cause problems in treatment. These include vancomycin-intermediate resistant S. aureus (VISA), heterogeneous 
vancomycin-intermediate resistant S. aureus (hVISA), and even the strains with reduced susceptibility to van-
comycin at the MIC level of 1.5–2.0 µg/ml (vancomycin MIC creep)5–7. Strains with decreased susceptibility to 
vancomycin were reported to be a cause of treatment failure8. We selected the MRSA isolates by various methods. 
Despite the MRSA ST239 SCCmec type III genotype being commonly reported in Thailand, 41% of MRSA in 
Thammasat University Hospital (TUH)9 was SCCmec type II MRSA (unpublished data), which differed from 
other tertiary hospitals in Thailand10,11.

In this study, five isolates of HA-MRSA SCCmec type II and two isolates of SCCmec type III were whole-
genome sequenced. All of the MRSA SCCmec type II isolates belonged to an unexpected MLST type, ST764 
which had been reported mostly in Japan. The MRSA ST764 strains frequently contained ACME type II12. This 
strain was first discovered in a community setting in Japan in 2009 as a variant of ST5 genotype with SCCmec 
type II/spa2/seb2/PVL-13. The ST764 genotype was later reported as a common genotype in many settings in 
Japan, including tertiary hospitals14,15, outpatient departments16, long-term care facilities17 and communities18, 
and this genotype has been increasing16.
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This study reports, for the first time, WGS data of MRSA ST764 SCCmec type II in Thailand, using Illumina 
NextSeq 500 platform. All isolates here were from severe hospital-acquired infection patients with high mortal-
ity. Although these MRSA strains were still susceptible to vancomycin, their MICs of vancomycin were mostly 
at the high end of the susceptible range. The discovery in Thailand of the ST764 genotype, a well-known Japan 
CA-MRSA, indicates the increase in the geographic range of the bacteria beyond East Asia. Since the ST764 
genotype can be community-acquired, this emerging clone poses a significant threat not only to TUH but also 
to the other hospitals in the region. The presence of this MRSA strain warrants vigorous surveillance in hospitals 
and immediate investigation of community transmissions of the strains.

Results
Five isolates of HA-MRSA SCCmec type II [SATU130 (SRA: SRR16971216), SATU131 (SRA: SRR16971215), 
SATU132 (SRA: SRR16971214), SATU134 (SRA: SRR16971213) and SATU136 (SRA: SRR16971212)] and two 
isolates of HA-MRSA SCCmec type III [SATU133 (SRA: SRR17033804) and SATU135 (SRA: SRR17033804) were 
whole-genome sequenced. All isolates were from patients with invasive diseases, including pneumonia, septice-
mia, osteomyelitis and endocarditis as described in Table 1. The majority of the patients were over 60 years old. 
All five SCCmec type II isolates belonged to the ST764 genotype while the SCCmec type III isolates belonged to 
ST22 and ST239. None of the patients was HIV seropositive, but four patients with ST764 infection had diabetes 
with chronic kidney diseases. Only one patient with MRSA ST764 infection survived.

All isolates were resistant to cefpirome and clindamycin yet were susceptible to vancomycin, trimethoprim-
sulfamethoxazole, linezolid, mupirocin and teicoplanin. However, MICs of vancomycin against most ST764 
isolates were relatively high at 1.5–2.0 μg/ml. The MICs of the drugs against each isolate were shown in Table 2.

The isolates were characterized genetically by SCCmec typing, spa typing, MLST, and WGS with the results 
shown in Supplementary Table S1. Isolates belonging to ST239 and ST22 harbored SCCmec type III while all 
ST764 isolates harbored SCCmec type II, similar to previous reports14,19,20.

Characterization of single nucleotide variants (SNVs).  More than 90% of reads were uniquely 
mapped to S. aureus N315 (ASM964v1, GenBank accession: BA000018.3), an ST5 isolate. The mean coverage of 
the sequence was 93% with 72X average depth. A total of 50,021 SNVs were identified based on alignment to the 
reference genome of S. aureus N315. The number of SNVs identified among ST764 isolates ranged from 237 to 
261. The average pairwise SNV distance among ST764 isolates was 49.8.

The maximum likelihood phylogenetic tree of five ST764 isolates, with N315 as the outgroup, was shown in 
Fig. 1. There were two pairs, SATU130–SATU131 and SATU132–SATU136, with the same SNV distances of 11 
(Table 3), suggesting epidemiological linkages between each pair21. SATU130 and SATU131 were isolated from 
the same male surgical ward, 26 days apart, and therefore probably belonged to the same clones. Isolates SATU132 

Table 1.   Profiles of patients whose MRSA isolates were studied by WGS. WGS whole genome sequencing, ST 
sequence type, NA not available, DM diabetes mellitus, CKD chronic kidney disease.

Strain code ST Date of isolation Age Sex Diagnosis Sample type Days to negative culture

Underlying 
diseases

Treatment outcomesDM CKD

SATU130 ST764 10/10/2013 84 M Septicemia Blood 8 Yes Yes Death

SATU131 ST764 5/11/2013 78 M Pneumonia Urine 8 No No Death

SATU132 ST764 9/4/2013 61 M Pneumonia Sputum 19 Yes Yes Success

SATU133 ST239 1/2/2013 18 M Osteomyelitis of left femur Bone 17 No No Success

SATU134 ST764 15/1/2013 80 F Pneumonia Sputum 13 Yes Yes Death

SATU135 ST22 21/2/2015 78 M Pneumonia Sputum NA No No Success

SATU136 ST764 29/1/2014 80 F Endocarditis and septicemia Blood 8 Yes Yes Death

Table 2.   Minimal inhibitory concentrations of antibiotics against the MRSA isolates. VAN vancomycin, CPR 
cefpirome, CLI clindamycin, TMP trimethoprim, SXT trimethoprim-sulfamethoxazole, RIF rifampicin, MUP 
mupirocin, FUS fusidic acid, TEC teicoplanin, LZD linezolid.

Strain code VAN CPR CLI TMP SXT RIF MUP FUS TEC LZD

SATU130 1.5 > 256 > 256 0.5 0.012 0.012 0.094 0.125 0.75 2

SATU131 2 > 256 > 256 0.38 0.012 0.004 0.25 0.094 1 1

SATU132 0.75 > 256 > 256 0.25 0.008 0.008 0.094 0.25 1 1.5

SATU133 2 > 256 > 256 > 32 1 > 32 < 0.064 0.094 1 0.75

SATU134 1.5 > 256 > 256 0.75 0.016 0.008 < 0.064 0.19 0.38 1

SATU135 0.38 > 256 0.125 0.38 0.032 0.008 0.19 0.19 0.5 1.5

SATU136 2 > 256 > 256 0.38 0.012 0.008 0.19 0.125 0.5 1.5
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and SATU136 were from male and female medicine wards, 9 months apart. Moreover, isolate SATU136 did not 
contain seb, while SATU132 did. The epidemiological link between the two isolates was therefore uncertain. 

Al l  f ive  ST764  i s olates  shared  three  de le t ions  (g .ASM964v1 :823521_823580del , 
g .ASM964v1:2068598_2068612del ,  g .ASM964v1:2793533_2793544del)  and four  inser-
tions (g.ASM964v1:8342_8343ins [unknown], g.ASM964v1:941411_941412ins [unknown], 
g.ASM964v1:1104595_1104596ins [unknown], g.ASM964v1:1527689_1527690ins [unknown]), which were 
not present in the ST22 and ST239 isolates. There were some indels found in some but not all ST764 iso-
lates. A deletion (g.ASM964v1:1608977_1609107del) was shared by SATU132 and SATU136 while a deletion 
(g.ASM964v1:383663_383683del) and an insertion (g.ASM964v1:676384_676385ins [unknown]) could be found 
only among isolates SATU130, SATU131, and SATU134, as shown in Fig. 1 and Supplementary Tables S2 and S3.

Characterization of SCCmec‑ACME II′ composite island of ST764.  We investigated the presence of 
various genes and genetic elements previously described in ACME-SCCmec composite island (ACME-SCCmec 
CI)12. All ST764 isolates here contained arcA–D, but not opp3; thus the ACME element was classified as ACME 
II′. They did not harbor any SNV in arcA–D as compared with N315, which was similar to those Japan ST764 
isolates. It should be noted that C4913T mutation in arcB was found in an ST764 isolate in Japan22. ACME-
SCCmec CI was previously classified into five types. The five ST764 isolates harbored cJR1 DNA segment but 
carried neither pUB110 nor ccrC. Thus, these isolates belonged to type A323. The ACME-SCCmec CI type A3 is 
the shortest form of the complex and probably puts less burden on the fitness cost for the bacteria.

The presence of genetic elements specific to ST764.  In order to further evaluate similarity between 
the ST764 isolates in this study and the isolates reported from Japan, we identified other genetic elements previ-
ously described for ST764 in Japan apart from the ACME-SCCmec CI.

The five ST764 isolates contained SaPIn2 and SaPIn3 pathogenic islands. The former exotoxin island, SaPIn2, 
contained set6 to set15. The latter enterotoxin island contained seg, sei, sem, sen, and seo. These isolates did not 
have SAPIn1, evidenced by the absence of tst, sea, sec, sel or sek. Our ST764 isolates did not contain sed, see, seq, 

Figure 1.   An ML phylogenetic tree of five ST764 isolates with N315 (ST5) as the outgroup. The deletions and 
insertions were labeled alongside with the branches shared by all isolates that shared the deletions/insertions 
as indicated with red (common to all isolates), blue and green. The HGVS nomenclature (available from http://​
varno​men.​hgvs.​org/) were used to describe the deletion and insertion events. The “unknown” indicated in the 
nomenclature means unknown inserted sequences.

Table 3.   Number of SNV differences between each pair of isolates.

N315 SATU130 SATU131 SATU132 SATU134 SATU136 SATU133 SATU135

N315

SATU130 261

SATU131 258 11

SATU132 238 67 66

SATU134 258 49 48 64

SATU136 237 62 61 11 59

SATU133 22,720 22,893 22,890 22,880 22,897 22,877

SATU135 31,919 32,087 32,084 32,074 32,093 32,071 35,871

http://varnomen.hgvs.org/
http://varnomen.hgvs.org/
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or sep either. They did not contain exfoliative toxin genes (eta and etb). These ST764 isolates were characterized 
as having cna with pvl-negative but also having lukE-lukD. These isolates contained hla, hld and hlgA-C. Such 
genetic characteristics matched the genetic profile of the ST764 isolates in Japan. The Thai isolates contained 
adhesin genes, icaA, sdrC-E, ebpS, clfA, clfB,—bbp, fnbA and fnbB (partial sequence).

The ST764 isolates in Japan were described as containing three more insertions, SaPInn54-13.5 kb fragment 
containing seb, prophage carrying SA1320 gene, and tet(M)-carrying Tn5251. All except one ST764 here harbored 
seb, which was reported missing in some ST764 isolates in Japan22. All ST764 isolates here harbored the insertion 
in SA1320, tet(M) and Tn5251. The similarity between genetic profiles of the isolates studied here and the MRSA 
ST764 SCCmec type II in Japan suggests that the isolates in Thailand were from the outbreak clone in Japan.

Discussion
HA-MRSA is a global problem, especially in large tertiary hospitals. Previous WGS studies in Thailand focused 
mainly on ST239 SCCmec type III, which was the most common MLST type24–26. It is, therefore, intriguing to find 
that SCCmec type II MRSA was common in TUH, unlike in other tertiary hospitals in Thailand10,11. Moreover, 
all belonged to ST764-MRSA-II and were from patients with severe hospital-acquired invasive diseases. The 
apparently high incidence remains to be confirmed.

ST764-MRSA-II, is a recently recognized genotype, reported as a common MRSA genotype in many settings 
in Japan and might be spreading16. Such hospital settings encompass outpatient departments and healthcare 
professionals27. This spreading may be attributed to the presence of ACME type II, which may provide the 
bacteria a better ability to colonize on skin and mucous membrane which could consequently lead to better 
transmission. It has recently been reported as a common genotype in Shanghai28 and Eastern China29 but not 
yet in Southern China30.

ST764 is a hybrid variant of the globally disseminated ST5 lineage of HA-MRSA, carrying a few virulence 
traits similar to community-acquired MRSA (CA-MRSA). ST764 has evolved via multiple steps, including the 
acquisition of ACME arcA and the staphylococcal enterotoxin B gene (seb) in SaPInn5412.

Here we reported, for the first time, the WGS of the five MRSA SCCmec type II isolates identified from 2013 
to 2015 and demonstrated that all ST764 isolates in this study carried ACME-SCCmec CI type A3 similar to 
some ST764 isolates in Japan23. The ST764 strains from Thailand and those from Japan also shared other genetic 
characteristics, such as the lack of pvl, tst, sec, sel and sep with the presence of SaPIn2, SaPIn3, seb, tet(M)12. This 
implies that the ST764-MRSA-II clone in Thailand was similar to and probably originated from the clone in Japan.

The genetic similarity of ST764-MRSA-II in Thailand to ST764-MRSA-II in Japan suggested a possibility 
that the ST764-MRSA-II strain was brought to Thailand by a healthy carrier, and later was transmitted into the 
hospital settings. There is also a possibility that the ST764-MRSA-II strain may continue to spread wider via 
colonization of healthy carriers.

Analysis of whole genome sequencing data suggested potential transmission between a pair of isolates. The 
isolates had a SNP-distance of 11 and were isolated from the same ward within a month. This finding of MRSA 
genotype ST764-SCCmec type II is the first HA occurrence reported in Southeast Asia. Two isolates of CA ST764-
SCCmec type II from Thai pig farm workers were also reported31. The potential danger of spreading necessitates 
rigorous surveillance of emerging MRSA strains.

Methods
Bacterial strains.  One-hundred and one clinical isolates of MRSA, confirmed by the detection of mecA, 
at TUH from August 2012 to July 20159, were characterized for SCCmec types, pulsed-field gel electropho-
resis (PFGE) patterns, virulence genes patterns, and antibiotic resistance phenotypes. There were 41 samples 
belonging to SCCmec type II that revealed either PFGE pattern A or P. Five isolates with both A- and P-PFGE 
patterns were randomly selected for sequencing, together with two isolates belonging to SCCmec type III. Bac-
terial collection, demographic data, clinical and microbiological data retrieval from Microbiology laboratory, 
Thammasat University Hospital (TUH) were carried out in accordance with relevant guidelines and regulations 
after approval of the Human Research Ethics Committee of Thammasat University (approval no. MTU-EC-
DS-1-193/63 and MTU-EC-DS-4-197/63) and TUH.

Microbiological and clinical data.  Demographic data, clinical and microbiological data were retrieved 
from MRSA-infected patients’ record files from the TUH database. Examples of patients’ clinical data include 
lengths of stay, clinical outcomes and underlying diseases including diabetes mellitus (DM) and chronic kidney 
diseases (CKD). Successful treatment outcomes referred to events when the patients were cured or improved and 
MRSA was eradicated. Outcomes of persistent-MRSA, recurrent-MRSA or death due to MRSA were regarded 
as failure of treatments. The patients who were diagnosed with MRSA infection at an outpatient clinic or within 
48 h of hospitalization without history of exposure to any healthcare facilities during the previous two months 
were defined as community-acquired MRSA infection (CA-MRSA). Hospital-acquired MRSA infection (HA-
MRSA) referred to those patients who became infected after 48 h of hospitalization.

Antimicrobial susceptibility testing.  Minimum inhibitory concentration (MIC) of vancomycin (VAN) 
was carried out by both broth microdilution method32,33 and E-test for determining the high end MICs. Other 
antibiotics including cefpirome (CPR), clindamycin (CLI), trimethoprim (TMP), trimethoprim-sulfamethoxa-
zole (SXT), rifampicin (RIF), mupirocin (MUP), fusidic acid (FUS), teicoplanin (TEC) and linezolid (LZD) were 
tested by E-test (Liofilchem®, Italy).
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PCR detection of S. aureus mecA and pvl genes.  Total DNA was purified from each overnight S. 
aureus culture using Genomic DNA Extraction Mini Kit (RBC Bioscience, New Taipei City, Taiwan). Amplifica-
tion of mecA (5′-TCC AGA TTA CAA CTT CAC CAG G-3′ and 5′-CCA CTT CAT ATC TTG TAA CG-3′)34 
and pvl (5′-ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A-3′ and 5′-GCA TCA AST GTA TTG GAT 
AGC AAA AGC- 3′)35 (Integrated DNA Technologies, Singapore) was carried out using the following condi-
tions. The PCR mixture consisted of 50 μl of 10X PCR buffer, 50 mM MgCl2, 10 mM dNTPs, 100 μM specific 
primer pair and 1.25 U Taq polymerase (RBC Bioscience). Thermo-cycling was conducted in a MyCycler Ther-
mal Cycler (Bio-Rad, Hercules, CA) as follows: 94 °C for 2 min; followed by 30 cycles of 94 °C for 30 s, 51 °C (for 
mecA) or 56 °C (for pvl) for 30 s, and 72 °C for 1 min; with a final elongation step at 72 °C for 5 min. Amplicons 
(162 bp and 433 bp of mecA and pvl, respectively) were analyzed by 1% agarose gel electrophoresis, stained with 
GelStar™ Nucleic Acid Gel Stain (Lonza Rockland, Rockland, ME) and visualized under UV light. S. aureus N315 
and KKU-MS14 strains were used as mecA- and pvl-positive control, respectively.

SCCmec typing.  SCCmec typing was carried out using a multiplex PCR assay. Specific primers for SCCmec 
types I, II, III, and IVc were included (Supplementary Table S4)36. Positive controls, SCCmec type I (613 bp); 
SCCmec type II (398 bp) and SCCmec type III (280 bp), were added.

Whole‑genome sequencing.  DNA purity was assessed using a spectrophotometer, NanoDrop™ 2000 
(Thermo Fisher, USA) and DNA concentration was determined by measuring fluorescence in a fluorometer, 
Qubit™ 3 Fluorometer (Invitrogen™, USA). DNA integrity was visualized by running the isolated samples in 
agarose gel electrophoresis to assess extent of DNA shearing.

A DNA input of 1 ng was used to prepare a 150-base read library, using the Nextera XT DNA Library Prepa-
ration Kit (Illumina, USA). The library preparation protocol includes tagmentation of genomic DNA, library 
amplification, library clean up, library normalization and library pooling. Library denaturation and dilution 
were performed, and then diluted PhiX control V3 was spiked into the libraries to obtain 1% PhiX as an external 
control. The prepared library pool was loaded into the reagent cartridge and then sequenced by 150 bp paired-
end NextSeq 500 sequencing (Illumina, USA). Sequences of the five isolates of HA-MRSA SCCmec type II were 
submitted to SRA. The accession numbers of each isolate were listed as follows. SATU130 (SRA: SRR16971216), 
SATU131 (SRA: SRR16971215), SATU132 (SRA: SRR16971214), SATU134 (SRA: SRR16971213) and SATU136 
(SRA: SRR16971212)] and two isolates of HA-MRSA SCCmec type III [SATU133 (SRA: SRR17033804) and 
SATU135 (SRA: SRR17033804).

Bioinformatic analyses.  The sequencing reads were quality filtered using Trimmomatic version 0.3937 
with the following parameters: LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4:20 MINLEN: 36. The 
quality-passed reads were aligned to the MRSA ST5 N315 reference genome (ASM964v1, GenBank accession: 
BA000018.3) using Burrows-Wheeler Aligner (BWA) version 0.7.1738 with the BWA-MEM algorithm. Sequenc-
ing read duplication was handled by Picard Toolkit version 2.18.27 (available from http://​broad​insti​tute.​github.​
io/​picard/). For each MRSA isolate, variant identification of single nucleotide variants (SNVs) and short inser-
tion-deletions (Indels) was carried out using the HaploytypeCaller module of Genome Analysis Toolkit (GATK) 
version 4.1.4.139. Low quality variants that have read depth lower than 10 were discarded. Variant annotation was 
performed using SnpEff version 4.340. Structural variants (SVs) were identified by running the program Manta41 
on an input BAM file (sorted and mapped reads) that has aligned to the reference sequence. Resulting SV events 
flagged with “IMPRECISE” were discarded. The remaining SV events were confirmed by visualizing them using 
integrative genomics viewer (IGV)42. De novo Genome assembly was done by SPAdes3.9 (available from http://​
cab.​spbu.​ru/​softw​are/​spades/) (Supplementary Fig. S1).

Multilocus sequencing typing (MLST).  MLST was done by identifying the presence of variants located 
in seven housekeeping genes, carbamate kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase (glp), 
guanylate kinase (gmk), phosphate acetyltransferase (pta), triosephosphate isomerase (tpi), and acetyl coenzyme 
A acetyltransferase (yqiL)43. Parts of the assembled contigs from each isolate were aligned with Staphylococ-
cus aureus MLST primers (available from https://​pubml​st.​org/​organ​isms/​staph​yloco​ccus-​aureus/​prime​rs). The 
allelic profiles of our isolates were matched with allele sequences present in the PubMLST database (available 
from https://​pubml​st.​org/)44 (Supplementary Fig. S1).

Spa typing.  The spa sequence types were assigned using spaTyper1.0 (available from https://​cge.​cbs.​dtu.​dk/​
servi​ces/​spaty​per/)45.

Phylogenetic tree construction.  To prepare an input sequence for building a phylogenetic tree, SNVs 
present on Mobile Genetic Element (MGE) were discarded and only homozygous and biallelic SNVs were con-
catenated into the SNV input sequence (in-house script). Multiple sequence alignment of five ST764 isolates 
and N315, representing an outgroup, were tested for recombination signals by using Recombination Detec-
tion Program v4.10 (RDP4)46 that includes seven well-known recombination checking routines, namely RDP, 
GENECONV, Chimera, MaxChi, Bootscan, SiScan, and 3Seq. If more than four utilities reported recombination 
regions, these regions would be removed. These RDP-corrected sequences were used as the input for phyloge-
netic tree construction by the maximum likelihood (ML) method. PhyML version 3.0 was used to construct 
an ML-based phylogeny which can be visualized by the SeaView program47,48. That includes seven well-known 
recombination checking routines, namely RDP, GENECONV, Chimera, MaxChi, Bootscan, SiScan, and 3Seq. If 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://cab.spbu.ru/software/spades/
http://cab.spbu.ru/software/spades/
https://pubmlst.org/organisms/staphylococcus-aureus/primers
https://pubmlst.org/
https://cge.cbs.dtu.dk/services/spatyper/
https://cge.cbs.dtu.dk/services/spatyper/
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more than four utilities reported recombination regions, these regions would be removed. These RDP-corrected 
sequences were used as the input for phylogenetic tree construction by the maximum likelihood (ML) method. 
PhyML version 3.0 was used to construct an ML-based phylogeny which can be visualized by the SeaView 
program49.

ACME/SCCmec type II.  The structure of ACME/SCCmec type II was determined by identification of arcA, 
arcB, arcC, arcD, opp3 and ccrC using the sequence of MRSA USA300, (GenBank Accession: CP000255.1) as 
reference. Identification of pUB110 and cJR1 was done using N315 and NCTC10442 (SCCmec type I, GenBank 
Accession: UHCH01000003.1) as reference, respectively.

Virulence gene identification.  Genes present in three pathogenicity islands (SaPIn1, SaPIn2 and SaPIn3) 
were identified, which are SaPIn1: [tst, sea, sec, sel, sek], SaPIn2: [set6 to set15] and SaPIn3: [seg, sei, sem, sen, seo]. 
The presence of other enterotoxins (seb (AB630021.1), sed, see, sep, seq), exfoliative toxins (eta, etb), leukocidin 
(lukE-lukD), panton-valentine leukocidin (pvl), hemolysins (hla, hld, hlb, hlgA, hlgB and hlgC), and adhesin 
genes (icaA, sdrC-E, ebpS, clfA, clfB, cna, bbp, femA, fnbA and fnbB), were also verified. The SA1320 gene was 
checked for the presence of an insertion in the middle of the genome by blasting the assembled contigs with 
SA1320 sequence of N315.

The following sequences were used as reference: MRSA N315/SCCmec II/ST5/ACMEII (GenBank accession: 
BA000018.3)50, MRSA NN54/SCCmec II/ST764 (GenBank accession: BAFI01000000)12, MRSA PT2/SCCmec 
II/ST5/seb (GenBank accession: AB630021.1)51, MRSA H0 5096_0412/SCCmec IV/ST22 (GenBank accession: 
HE681097)52, JKD6008/SCCmec III/ST239 (GenBank accession: CP002120), and TW20/SCCmec III/ST239 
(GenBank accession: FN433596)53.

The in-house script for converting SNV data in VCF file format to SNV concatenated sequences in fasta file 
format was deposited at https://​github.​com/​vorav​ich1/​TB_​platf​orm/​blob/​5ef4e​d3ddd​93dd2​5df41​8a6fa​63243​
5663f​c6f31/​tb_​conve​rt_​vcf_​to_​fasta_​backb​one.​py.
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