
fpsyg-12-624111 February 5, 2021 Time: 17:2 # 1

ORIGINAL RESEARCH
published: 11 February 2021

doi: 10.3389/fpsyg.2021.624111

Edited by:
Bigna Lenggenhager,

University of Zurich, Switzerland

Reviewed by:
howard N. Zelaznik,

Purdue University, United States
Fuat Balcı ,

Koç University, Turkey

*Correspondence:
J. Benjamin Falandays

jfalandays@ucmerced.edu
Michael Spivey

spivey@ucmerced.edu

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 30 October 2020
Accepted: 11 January 2021

Published: 11 February 2021

Citation:
Falandays JB, Spevack S,

Pärnamets P and Spivey M (2021)
Decision-Making

in the Human-Machine Interface.
Front. Psychol. 12:624111.

doi: 10.3389/fpsyg.2021.624111

Decision-Making in the
Human-Machine Interface
J. Benjamin Falandays1* , Samuel Spevack2, Philip Pärnamets3,4 and Michael Spivey1*

1 Department of Cognitive and Information Sciences, University of California, Merced, Merced, CA, United States, 2 Scientist
at Exponent, Menlo Park, CA, United States, 3 Department of Psychology, New York University, New York, NY, United States,
4 Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden

If our choices make us who we are, then what does that mean when these choices
are made in the human-machine interface? Developing a clear understanding of how
human decision making is influenced by automated systems in the environment is
critical because, as human-machine interfaces and assistive robotics become even
more ubiquitous in everyday life, many daily decisions will be an emergent result of
the interactions between the human and the machine – not stemming solely from the
human. For example, choices can be influenced by the relative locations and motor
costs of the response options, as well as by the timing of the response prompts.
In drift diffusion model simulations of response-prompt timing manipulations, we find
that it is only relatively equibiased choices that will be successfully influenced by this
kind of perturbation. However, with drift diffusion model simulations of motor cost
manipulations, we find that even relatively biased choices can still show some influence
of the perturbation. We report the results of a two-alternative forced-choice experiment
with a computer mouse modified to have a subtle velocity bias in a pre-determined
direction for each trial, inducing an increased motor cost to move the cursor away
from the pre-designated target direction. With queries that have each been normed in
advance to be equibiased in people’s preferences, the participant will often begin their
mouse movement before their cognitive choice has been finalized, and the directional
bias in the mouse velocity exerts a small but significant influence on their final choice.
With queries that are not equibiased, a similar influence is observed. By exploring
the synergies that are developed between humans and machines and tracking their
temporal dynamics, this work aims to provide insight into our evolving decisions.

Keywords: mouse tracking, embodied cognition, decision-making, eye tracking, drift diffusion

INTRODUCTION

Human-machine interfaces of various kinds are now ubiquitous in everyday life. For example,
purchasing of products frequently takes place via computer, some restaurants use touch screens for
ordering from the menu, many voting machines are now electronic, and people spend an inordinate
amount of time using their smart phones to interact with their social world (Samaha and Hawi,
2016). In fact, the technology for allowing one’s eye movements to be tracked from a smart phone’s
camera has recently been developed (Valliappan et al., 2020). Clearly, a variety of mundane human
choices and decisions are no longer being made purely inside a human anymore but instead at the
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interface between a human and some form of technology (Clark,
2004). Also, a variety of laboratory human choices and behaviors
are now being studied with human-machine interfaces to uncover
the mechanics of embodied cognition (Pezzulo et al., 2013;
Beckerle et al., 2019). Here, we examine exactly how those choices
and decisions can be influenced by that interface.

Decades ago, Gibson (1979) developed the theoretical
framework of ecological psychology, which holds at its core
the notion that intelligent behavior emerges not from inside
an organism but from the interaction between organism and
environment (see also, Neisser, 1976; Järvilehto, 1998; Turvey
and Shaw, 1999). Thus, the environment surrounding an
organism is partly responsible for that organism’s intelligent
behavior. If one places that same organism in a different
environment, it will produce somewhat different behavior.
Around that same time, philosophers of mind were developing
the theoretical framework of externalism (Putnam, 1974), which
describes mental content as consisting of more than just the
information encoded by an organism’s nervous system but also
information encoded in the relations that the organism builds
with its environment (Clark and Chalmers, 1998; Gallagher,
2017). More recently, cognitive scientists have been developing
the theoretical framework of embodied cognition, which includes
the brain, the body, and its connections with objects and people
in the environment, as the engine of cognitive activity (Barsalou,
1999, 2016; Spivey, 2007; Chemero, 2011). When studying the
generation of intelligent behavior, these theoretical traditions
encourage one to analyze not just the organism itself but instead
the organism-environment system.

When viewed through this theoretical lens, a human reporting
a decision via the use of a machine interface is not making
that decision inside some encapsulated decision-making module
(uninfluenced by context) and then merely recording it (in
unaltered fashion) via the machine interface. It is not the case
that the organism first makes the decision completely on its own
and then reports it via the machine interface. Rather, the dynamic
process by which the human interfaces with that machine can
influence the decision that eventually gets reached. The decision
is not being made by the organism; it is being made by the
organism-environment system.

A concrete demonstration of this comes from a study by
Pärnamets et al. (2015b), where they presented participants
with moral quandaries such as “Is murder ever justifiable?”
and gave them response options on a computer screen such
as “sometimes justifiable” and “never justifiable.” By recording
participants’ eye movements, Pärnamets et al. (2015b) found
that participants often fixated one response option and then the
other response option and then perhaps back again. Importantly,
the amount of time that participants spent looking at their
two response options could be used as an indicator of what
decision they were about to make before they made it. In
Experiment 2, Pärnamets et al. (2015b) further demonstrated
that the computer’s timing of its response prompt could slightly
influence the choice that the participant made in the end.
For each trial, the computer randomly selected a “target”
response. Once the participant had fixated that “target” response
option for at least 750 ms and had also fixated the non-
target response option for at least 250 ms, the computer then

urgently prompted a decision from the participant. Thus, at
a moment in time when the participant was likely to have
been spending more time looking at the “target” response,
the computer interrupted the participant’s deliberation and
demanded a choice. Without that interruption, it is possible that
the participant may have eventually wound up fixating the non-
target response option more and finally choosing it. In a decision
process that wavers between the two options, “leaning” one way
and then the other way, and perhaps back again, this gaze-
contingent response-timing manipulation is able to “catch” that
decision process at a pre-determined state and trigger a choice
based on that state.

In their Experiment 2, Pärnamets et al. (2015b) found
that their gaze-contingent response-timing manipulation caused
participants to choose the computer’s randomly chosen “target”
response option 58% of the time – well above chance. This result
suggests that the 2–3 s that a person spends engaged in a wavering
decision process while deliberating among two moral choices can
be substantively influenced by the manner in which the system
they are interfaced with interacts with them. The decision is
not being made solely by the human; it is being made by the
human-machine interface.

In fact, even with human-human interfaces, this kind of
adventitious influence can happen in a way that alters people’s
decisions, even moral ones. Consider, for example, a woman
who has made a moral commitment to not eating veal anymore,
despite the fact that veal parmigiana is her favorite dish. She sits
down at her favorite Italian restaurant and peruses the menu. Her
eyes flit back and forth between her old favorite, veal parmigiana,
and her new replacement, chicken parmigiana. She wants to
adhere to her new moral code, but the veal is tempting. Just
as her eyes happen to have settled on the veal for about 1 s,
suddenly the waiter walks up and asks what she would like to
order. If the waiter had shown up a second or two later, she
might have managed to settle her eyes, and her mind, back on the
chicken. But, in that moment, her decision is prompted and she
caves, ordering the veal. Everyday scenarios like this are not very
different from the experimental manipulation in the Pärnamets
et al. (2015b) experiment.

However, in the Pärnamets et al. (2015b) experiment, a
concern can be raised about the 16% of trials which were
excluded from the analysis because the gaze-contingent response-
timing manipulation was never triggered [see also Tavares
et al. (2017) and Newell and Le Pelley, 2018]. On those time-
out trials, participants never looked at both response options
for the required amount of time to trigger the experimental
manipulation. On many of those time-out trials, participants
fixated only their internally preferred option and continued to
stare at it until the trial was timed-out at 3 s, and then a decision
was finally prompted. When those trials were included in the
analysis, the overall effect of participants choosing the computer’s
randomly chosen “target” response option was reduced (54%) but
still statistically significant against a chance level of 50%.

Falandays and Spivey (2020) followed up the Pärnamets et al.
(2015b) study with a new set of moral items that were normed
for their population to each be very close to equibiased (e.g.,
near 50/50) in their choices and compared them to non-normed
items that were unlikely to be equibiased. This adjustment
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was meant to address the fact that a subtle influence of gaze
on preferences may be washed out by strong, pre-existing
preferences for one response option relative to the other (a
prediction of the “attentional drift-diffusion model,” discussed in
the next section). With no exclusion of time-out trials, the gaze-
contingent response-timing manipulation replicated Pärnamets
et al. (2015b)’s result, where participants selected the target
response 52% of the time – a small but statistically significant
effect. With the non-normed stimulus items that were unlikely
to be equibiased, no effect was observed.

Ghaffari and Fiedler (2018) replicated and extended the
Pärnamets paradigm from moral choices to other-regarding
choices. Other-regarding choices are common dilemmas that
balance self-interest against the common good. In Ghaffari and
Fiedler’s (2018) experiment, they presented participants with pre-
recorded spoken queries such as, “If I saw a stranger on the street
struggling with her grocery bags, I would help her carry them.”
On the computer screen, participants could choose “Only if I have
time” or “I would usually help.” In their first experiment, they
used a gaze-contingent response-timing manipulation essentially
identical to experiment 3 of Pärnamets et al. (2015b), with
participants allowed to respond before the decision prompt if
they so chose. Ghaffari and Fiedler (2018) found that on 38% of
trials, participants did, in fact, choose to respond before their eye
movements had triggered the gaze-contingent response-timing
manipulation. Moreover, 19% of the trials were time-out trials,
where the participant’s eye movements did not trigger the gaze-
contingent response-timing manipulation over the course of a
full 3 s. This left only 43% of trials to have the gaze-contingent
response-timing manipulation enacted. Among those trials, the
moral-choice trials clearly replicated the findings of Pärnamets
et al. (2015b), but the other-regarding trials did not. However, the
same concern remains, as before, regarding the exclusion of trials
in which the gaze-contingent response-timing manipulation was
not triggered. Analyzing only that subset of trials introduces a
biased selection problem (Newell and Le Pelley, 2018).

Therefore, in Ghaffari and Fiedler (2018) second experiment,
instead of a gaze-contingent response-timing manipulation, the
response options turned on and off on the screen in a manner
that simulated the fixation patterns of previous participants.
The “target” response option, in this case, was the option that
had been chosen by that previous participant. Importantly,
no exclusion of trials was needed in this paradigm. Again,
corroborating the pattern observed by Pärnamets et al. (2015b)
and Ghaffari and Fiedler (2018) found that, in the moral-
choice trials, participants chose the target option more often
(53% of the time). However, with other-regarding trials, no
effect was observed.

With moral-choice items, at least, Ghaffari and Fiedler (2018)
concluded that while the majority of the variance in a decision-
making process may rest in the hands of top-down cognitive
processes, some portion of that variance is controlled by events
that take place in the perception-action cycle of a person
interacting with their environment. Their preferred model for
this combination of top-down and bottom-up influences is the
attention-drift-diffusion model (aDDM) developed by Krajbich
et al. (2010; see also Krajbich, 2019).

THE aDDM: HOW VISUAL ATTENTION
INFLUENCES DECISION-MAKING

The drift diffusion model (DDM) is a standard model for
simulating choices and response times in a two-alternative
forced choice task, which assumes that decisions are made
through the stochastic accumulation of perceptual evidence until
a decision threshold is exceeded (Ratcliff and McKoon, 2008).
The standard DDM represents the relative evidence for one of
two alternatives at time t as x(t) according to the following
equation (Bogacz et al., 2006):

xt+1 = xt + A+W (Eq. 1)

When x is 0, the two options have equal relative evidence,
whereas positive or negative values indicate greater evidence for
one option than the other. The change in evidence over time is the
result of a constant “perceptual evidence” factor, A, plus Gaussian
noise, W. For an initially undecided choice, x = 0 at t = 0,
indicating equal support for each of the two response options.

An arbitrary upper and lower bound are set, such that when
x crosses either boundary, a decision is made in favor of the
corresponding response option. For example, if the reference
option is coded as a +1 and the alternative option is coded
as −1, if x crosses the boundary at −1 the model is treated
as having chosen the alternative option. Due to the presence
of noise, DDMs offer an account for why participants will
sometimes choose response options with lower relative value.
When the magnitude of A is small (one option is only slightly
preferable to the other) and/or W is large, drift due to noise can
dominate the decision.

While the standard DDM is designed to represent perceptual
decisions based on a single stimulus, Krajbich et al. (2010; see
also Pärnamets et al., 2014) adapted this model to the context of
choosing between two displayed stimuli through visual sampling.
Their attention-drift-diffusion-model (aDDM), which provided a
close fit to human data, allowed the rate of evidence accumulation
to vary as a function of the currently fixated option. This
represents a cognitive discounting of the value of currently un-
fixated options. The simple intuition here is that a response
option that is “out of sight” is also (at least partially) “out of
mind.” For this version of the model,

xt+1 =

{
xt + d(Aleft − θAright) +W, left is fixated

xt + d(θAleft − Aright) +W, right is fixated (Eq. 2)

where θ is a value between 0 and 1, which discounts the
value of the currently unfixated option, d represents the rate of
information accumulation, and W represents Gaussian noise.

Given the reasonable assumption that visual attention biases
information accumulation, and that decision outcomes depend
upon accumulated information, it follows that one can influence
decision outcomes by influencing the gaze. Because an advantage
is conferred upon fixated response options, options that
are fixated for longer should be more likely to be chosen.
Importantly, however, this effect is dependent upon both the
magnitude of cognitive discounting on non-fixated options, as
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well as the relative values of the two response options. Examining
Equation 2, we can see that if the value of Aunfixated is large
relative to Afixated , discounting would need to be substantial
(θ near 0) in order for gaze to change the direction in which
preferences evolve. Under normal circumstances, we can assume
that participants at least momentarily fixate, and therefore have
some awareness of, both response options, so we would expect
discounting to be less than complete. As such, the aDDM only
predicts a meaningful role of gaze when the two response options
are roughly equal in value (see also Tavares et al., 2017).

To demonstrate how a human-machine interface may
influence decisions by exploiting the dynamics of visual attention,
in this section we present a simplified simulation of the
experimental task in Pärnamets et al. (2015b), using an adapted
version of the aDDM. To provide a point of comparison, we also
conducted a replication of Pärnamets et al. (2015b) with human
participants, with the only change being that our moral stimuli
were normed to be equibiased in our population (obtaining
50 ± 10% agreement), while our non-moral stimuli were taken
directly from the set used in Pärnamets et al. (2015b) and were
not normed for our population, and therefore were unlikely to
be equibiased1.

Methods
Our adapted version of the aDDM begins with the equation
introduced by Krajbich et al. (2010; Equation 2). In modeling gaze
behavior, we adopted the following simplifying assumptions: (1)
one alternative is fixated at any given time, (2) the first fixation on
any trial is random, (3) there is a minimum fixation length, after
which fixation switches are determined by competition between
current preferences and attentional fatigue, and (4) saccades
are instantaneous. The minimum fixation time was set at 200
timesteps, representing 200 ms, which is approximately the time
required to plan and launch a saccade (Salthouse and Ellis, 1980).
After this period, attentional fatigue f begins to accumulate at a
constant rate df:

ft+1 =

{
0, consecutive fixations < 200 timesteps

ft + df , consecutive fixations >= 200 timesteps (Eq. 3)

Attention, a, was modeled as deviating from the value
of current preferences, toward the alternative option, by the
current magnitude of f until the 0-line is crossed, inducing a
switch in gaze:

at =

{
xt − ft, xt > 0
xt + ft, xt < 0

(Eq. 4)

For the first 200 timesteps of any fixation, a is exactly equal
to x, but after this time, attentional fatigue causes a to move
toward zero. When a crosses the zero-line and changes sign, this
represents an attentional switch, and gaze is directed toward the

1This simulation and replication were previously reported in a conference
proceedings paper (Falandays and Spivey, 2020). The full stimulus selection
procedure is reported below in the “Method” subsection of our current
experiment, but the results of the prior human experiment are only described, for
considerations of space.

previously unfixated option. Because a is coupled to x (attention
is coupled to current preferences), greater magnitudes of x can
offset the decay from f, such that the model looks longer at
options that it “prefers,” despite some attentional fatigue. Similar
attentional parameters are commonly used in dynamical systems
models of bi-stable perceptual phenomena, such as the Necker
cube, to account for perceptual reversals (Ditzinger and Haken,
1995; Fürstenau, 2014). The red lines in Figures 1, 2 show how
attention decays as compared to decision preference (black lines),
leading to gaze-changes (alterations between blue and yellow
regions). Note that, while attentional fatigue can lead to gaze
switches, unless there is a corresponding switch of preferences,
gaze will switch back to the preferred option after the minimum
fixation time (e.g., in Figure 1, the second blue section, a brief
period of fixating the target from∼1400 to 1600 ms).

On each simulated trial, the pre-designated target was
randomly assigned to one of the two response options. Each
trial was run for a maximum of 3000 timesteps, analogous to
the 3 s time limit in the Pärnamets paradigm. We recorded
the number of timesteps spent “fixating” each alternative. If at
least 750 timesteps of gaze accumulated on the target side and
at least 250 timesteps on the alternative side (analogous to the
750 ms/250 ms threshold in the experiment), the trial was ended,
and a positive x value resulted in choosing the reference option
(coded as +1) while a negative x value resulted in choosing
the other option (coded as −1). Figure 1 shows an example
trial where the simulation met the gaze-time thresholds after
2500 timesteps and selected the target option (because x was
>0 at the end of the trial). Figure 2 shows an example trial
where the simulation did not fixate the target for long enough
to satisfy the gaze-contingent response-timing criteria, leading to
a time-out after 3000 ms, after which the simulation selected the
non-target alternative.

Results
This simple model was not intended to precisely characterize
psychometric variables in our population, but rather to show
that drift diffusion models straightforwardly predict the pattern
of results obtained when using biased or equibiased stimuli.
Thus, to avoid overfitting, no parameter tuning was done. The
gaze-bias parameter (θ) was set to 0.5, such that the currently
unfixated option was discounted by half. The rate of information
accumulation (dA) was set to 0.001 and the gaussian noise (W)
was set to a mean of 0 and a standard deviation of 0.01. The
rate of attentional fatigue accumulation (df) was set to 0.0005. To
simulate our normed equibiased stimuli, we set the values of both
options to 0.5. To simulate biased stimuli, we set the values of
one option to 0.8 and the other to 0.2, randomly assigned on each
trial. 50000 simulated trials were run for each set of values. For
each trial, we recorded the choice made by the model (determined
by the sign of x when the trial terminated) as well as whether or
not the trial “timed-out” by reaching 3000 ms without meeting
the gaze-time criteria.

The general behavior of this simulation approximates the
data in Falandays and Spivey (2020) remarkably well, especially
given that we have not systematically explored the parameter
space with this model. The results summarized in Table 1 show
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FIGURE 1 | An example simulate dtrial with no initial preference (Atarget = Aalternative = 0.5) in which the model was trending toward preferring the non-target
alternative, but once it satisfied the gaze-contingent response-timing criteria, it selected the target. Periods of fixating the target are marked in blue, with fixations to
the alternative in yellow. After a minimum fixation time of 200 timesteps, attention begins to decay toward the currently unfixated option (clearly visible between ∼500
and 1400 timesteps), triggering a switch in gaze when crossing the zero-line. Also note how accumulation of preference is biased toward currently fixated options
(e.g., the strong trend toward the alternative option from ∼500 to 1400 ms, while fixating the alternative). For this simulation: d = 0.001, df = 0.0005, and W was
Gaussian noise with mean 0 and s.d. of 0.01.

FIGURE 2 | An example simulated trial with no initial preference (Atarget = Aalternative = 0.5) on which the simulation “timed-out” after 3 s (because cumulative target
fixation time <750 timesteps), then selected the non-target alternative. Periods of fixating the target are marked in blue, with fixations to the alternative in yellow. For
this simulation: d = 0.001, df = 0.0005, and W was Gaussian noise with mean 0 and s.d. of 0.01.

that the differences across equibiased or biased stimuli in the
simulation are in the same direction and have similar magnitudes
to the trends across moral and non-moral stimuli in the human
experiment, despite some differences in absolute values.

Discussion
The results of this simple drift diffusion model provide a
close approximate match to the results obtained from human
participants. The relatively uncertain moral stimuli, exhibiting
minimal intrinsic cognitive bias toward either of the response
options, produced time-out trials less than half of the time,
whereas the intrinsically biased filler stimuli produced time-
out trials more than half of the time. When these time-out
trials were excluded from analysis, both moral and filler stimuli

exhibited strong choice preferences for the pre-designated target
response, just as seen in our human data. However, when
time-out trials were included in the analysis, only the moral
items showed a reliable preference for the pre-designated target
response – again, just as seen in the human data. Thus, results
from the human data (Falandays and Spivey, 2020), and from
this aDDM simulation, demonstrate that the gaze-contingent
response-timing manipulation is most effective with queries that
have relatively equibiased options, and less effective with queries
that have substantial pre-existing biases.

A novel theoretical contribution of this model concerns the
role of attentional fatigue. Given that attentional fatigue can
result in switches of gaze, and gaze discounts non-fixated options,
it follows that attentional fatigue can slow the accumulation
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TABLE 1 | Summary results from the aDDM simulation and human experiment.

Simulation results Human results

Equibiased Biased Moral Non-moral

Prop. timeout trials 40.57% 75.84% 23.59% 64.87%

Prop. target
choices, all trials

56.13% 52.03% 52.3% 49%

Prop. target
choices,
non-timeout trials

79.69% 89.02% 62.67% 65.67%

Prop. target
choices, timeout
trials

21.63% 40.25% 20.18% 40.16%

of evidence toward a higher-valued option. For example, if a
participant prefers option A, and therefore fixates option A,
attentional fatigue may eventually divert their gaze to option
B. Given a minimum fixation time before launching a saccade,
option A will be temporarily cognitively discounted. If the
options are relatively equibiased, temporary gaze switches due
to attentional fatigue may be enough to tip the scales of
evidence/preference toward option B.

THE mDDM: HOW MOTOR COSTS CAN
INFLUENCE DECISION-MAKING

Importantly, from the theoretical position we are advancing here,
visual attention is by no means a privileged influence upon
decision-making. In this section, we address the influence of
an entirely different factor in the decision-making process: the
relative costs, in terms of time and/or effort, associated with
making different response options. Consider the example of
perusing a shelf at the grocery store, looking for ingredients
for a recipe. You may notice that a cheaper, generic brand of
ingredient is positioned on the top-most shelf, and would be a
bit difficult to reach. If you’re in a rush, you instead might choose
to grab the slightly more-expensive version directly in front of
you, even though you know the quality is no better. Marketers
are of course well aware of phenomena such as this, and compete
to put their products in the most visible, convenient locations
(Gidlöf et al., 2017). There is no reason to think that similar
biases couldn’t be implemented in human-machine interfaces,
including the increasingly ubiquitous case of making decisions
with a computer mouse.

A key insight of work using “process-tracing” techniques to
study decision-making – techniques which take many samples of
a behavioral variable over a short period of time, such as motor
movements or gaze position – is that mental representations,
such as attitudes and preferences, do not spring to the mind
as fully formed, discrete entities (Spivey, 2007). Instead, explicit
reports of attitudes are merely the discrete output at the end
of a continuous cognitive process, one that dynamically evolves
on the scale of milliseconds and seconds in decision-making
(Wojnowicz et al., 2009), or over longer periods in development
(Smith and Thelen, 2003). For example, Wojnowicz et al. (2009)

presented participants with various nouns and had them indicate
whether they “like” or “dislike” the presented stimulus, using
their mouse-cursor to select their response. In some cases these
nouns were things that most people uncontroversially like, such
as “sunshine,” or dislike, such as “murderers.” But the key stimuli
probed participants’ implicit biases: they were “white people” and
“black people.” The authors proposed that, if participants had
implicit biases against the latter group, the unfolding movements
toward the chosen response option would show evidence of
some cognitive dissonance, even when the end result of the
decision process was the same for both stimuli (reporting “like”
for both groups). Indeed, the authors found that the trajectories
of the mouse-cursors made relatively straight paths toward “like”
when the stimulus was “white people,” but curved more toward
“dislike,” before eventually landing on “like,” when the stimulus
was “black people.” Beyond the disheartening evidence of implicit
racial biases, this result also shows that multiple, conflicting
attitudes may be simultaneously “competing” for control of the
decision-making process as it unfolds over time.

Response deadline procedures (Dosher, 1976) also provide
some insight into these partially active representations that
are simultaneously active at early moments of the unfolding
decision-making process. For example, McElree et al. (2006)
induced speeded True-False responses to sentences such as
“Water pistols are harmless,” using response deadlines of 300,
500, 700, 900, 1500, and 3000 ms. They found that the short
deadlines elicited a substantial number of incorrect responses
with d-prime increasing non-linearly over time. Similarly, Spivey
et al. (2002) induced speeded sentence completions for fragments
such as “The patient cured. . .” and “The judge sentenced. . .,”
using response deadlines of 300, 600, 900, and 1200 ms. They
found that the short deadlines elicited a greater proportion of
the rare relative clause completion, e.g., “The patient cured by the
doctor was happy.” By contrast, with those sentences, the longer
deadlines elicited almost exclusively the common main clause
completion, e.g., “The patient cured himself ” (Spivey, 2007,
chapter 7). For decades, results like these have suggested that
multiple competing representations are simultaneously partially
active early on during a cognitive process and this activation
pattern evolves into singular decision over the course of several
hundred milliseconds.

The dynamic evolution of decisions on a short time scale is
represented in the DDM as the accumulation of evidence or
preference. This process can of course be willfully biased by the
decision-maker, for example by adopting a liberal or conservative
response criterion under differing task demands. For example,
Kloosterman et al. (2019) found that liberal response criteria are
associated with a suppression of alpha band activity, relative to
conservative criteria, which appears to systematically bias the
direction of evidence accumulation toward a “target present”
response in a go/no-go task (see also: Kloosterman et al., 2020).
But given the logic of the DDM, influencing neural activity
through explicit task demands is only one method of introducing
systematic bias into the decision-making process, and other
mechanisms may be external to the cognitive dynamics of
evidence accumulation entirely. For example, the experimental
manipulation of Pärnamets et al. (2015b) works by using gaze
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to probe the likely balance of evidence over time in the
evidence accumulation process, and requiring a decision when
evidence is expected to favor a pre-chosen “target” option.
Another mechanism would be to introduce asymmetrical costs
in making different response options, which may consciously or
unconsciously factor into response criteria. The grocery store
example mentioned above is one flavor of this: individuals
may systematically discount the value of options that are more
difficult to choose.

There is already some evidence that perceptual decisions can
be influenced by the motor cost of responding. Hagura et al.
(2017) instructed participants to move either a left or a right
lever to indicate the direction of coherent motion using standard
random-dot motion stimuli. During training, the researchers
gradually increased the resistance on one lever relative to the
other, such that one response required more force and thus
became more costly. The authors found that participants then
required greater perceptual evidence before making the more
difficult response. Interestingly, based on a comparison of model
fits, the authors concluded that the motoric cost of action directly
influenced the perceptual stage, rather than influencing the
participants’ response criterions.

The study by Hagura et al. (2017) can be seen as an extension
to the domain of perceptual decision-making of prior work on
motor control by Shadmehr et al. (1993) and Shadmehr and
Mussa-Ivaldi (1994). In this earlier work, participants held a
robotic manipulandum that either displaced the hand from an
equilibrium starting position (Shadmehr et al., 1993) or altered
the forces acting on the hand through some regions of space
during reaching movements (Shadmehr and Mussa-Ivaldi, 1994).
The forces acting to displace the hand constitue a motoric “force
field.” Shadmehr and colleagues found that participants adapted
to the displacing force fields of the robotic manipulandum
through restorative movements, which defined a postural force
field complementary to the one applied by the manipulandum.
Furthermore, Shadmehr and Mussa-Ivaldi (1994) found that
with a substantial amount of training, participants were able
to adapt to the presence of a displacing force field during
reaching movements, achieving movement trajectories similar
to those seen in the absence of a force field prior to training.
However, after some training with the force fields, when these
fields were suddenly removed, participants “over-corrected” in
their movements, applying restorative forces when none were
needed. Based on these results, (Shadmehr and Mussa-Ivaldi,
1994) concluded that participants accomplish this reaching task
by adjusting an internal model of the movement dynamics of the
hand, arm, and shoulder, which predicts the forces that will be
encountered over the course of a movement.

But motor costs need not be explicitly calculated nor implicitly
learned in order to influence the outcome of decisions. Given
the logic of the DDM, it follows that merely increasing the
time it takes to reach one outcome relative to another can also
bias outcomes (under the additional assumption that individuals
continue to accumulate evidence, rather than endogenously
stopping the process). Because noise plays a role in the
accumulation of preference over time, decision outcomes that
take longer to achieve (therefore drawing out the evidence

accumulation process) allow more time for noise to tip the scales
toward alternative outcomes. To show how this may be the case,
in this section we present another variant of the DDM, which
we will call the motor-drift-diffusion-model (mDDM). Using this
model, we consider the case of an individual making a decision
using a mouse cursor, but where a subtle bias in the cursor
operation makes it easier to move in one direction than another.

Methods
The present model made one small change to the standard DDM
(Eq. 1) with the inclusion of a second variable, m, representing
the current position of a mouse cursor (or it could represent a
hand, or an entire body) moving along a single dimension toward
one of two response options. The model was treated as having
made a decision only when m, rather than x (the evidence or
preference variable), reached the upper or lower bound of ±1,
which represents a participant moving the mouse to the left or
right top corner of a screen, and concluding a trial by clicking
one response option. Meanwhile, x was bounded between the
values ±1 and, unlike in the aDDM, x reaching either boundary
had no effect on terminating the trial. This means that the model
could attain maximum preference for one response option, yet
the preference accumulation process would not terminate until
an action threshold was also met.

The position variable m was computed by integrating the
preference variable x at rate d. This results in the m moving
toward the currently preferred response option with a velocity
determined by the magnitude of current preferences. As can be
seen in Figures 3–5, this simple mechanism produces smoothly
changing position curves from the noisy preference signal, which
are reminiscent of the movement trajectories seen in mouse-
tracking studies with similar designs (e.g., Spivey et al., 2005).
As in our previous model, on each simulated trial, one of the
two response options was designated as the “target” option –
the option that the software “wants” the simulated participant
to choose. For simplicity, the target was always designated as +1,
and the alternative was designated as−1. Meanwhile, the relative
values of the target and alternative options were allowed to vary
from trial to trial.

Critically, the m variable was also influenced by a directionally
dependent velocity bias. When x was on the side associated
with the target (i.e., the model currently prefers the target and
therefore is moving toward it), the change in m was equal to
x. On the other hand, when x was closer to the non-target
alternative, the change in m was equal to x multiplied by s, a
velocity squashing factor. Formally stated:

mt+1 =

{
mt + dxt, xt > 0
mt + sdxt, xt < 0

(Eq. 5)

Based on these functions, the magnitude of current
preferences determines the velocity toward the preferred
option (see also, Abrams and Balota, 1991). However, the velocity
is squashed by some proportion for movements in the direction
of the computer’s pre-designated non-target alternative, making
movements toward the non-target slower (see Figure 7; also
see Figure 8 for a schematic illustration of this mechanism for
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FIGURE 3 | A simulated trial with no initial preference for either response option. The evolution of the decision value is driven only by noise, but the velocity
squashing effect makes movements toward the alternative slightly slower. This makes it more likely for noise to result in movements drifting toward the target. For
these simulations, d = 0.001, s = 0.45, and W was Gaussian noise with mean 0 and s.d. of 0.01.

FIGURE 4 | A simulated trial where the target is fully preferable to the alternative. Notice how the black trajectory (representing evolving preference) in this figure and
Figure 5 below reach the boundary at approximately the same time, but the red line (representing the cursor) reaches the boundary faster here than below. For
these simulations, d = 0.001, s = 0.45, and W was Gaussian noise with mean 0 and s.d. of 0.01. For comparison of response times, this figure uses the same x-axis
as Figure 3, but note that this trial ended at ∼1500 timesteps.

the human experiment). Because the relative decision value
variable x is bounded between −1 and +1, velocity is bounded at
d units per time step.

We explored three different sizes of the velocity squashing
effect, s, in the simulation:0.45, 0.66, and 0.90. We also simulated
the case of no effect (or a velocity squashing factor of 1) as
a control. While varying the velocity squashing parameter can
be informative as to the general patterns that occur as the
effect varies in strength, it is important to note that real time
and space do not map clearly onto simulated time and space
in these models, nor are we using a highly realistic model of
movement generation. As such, it is not necessarily the case that
a squashing factor of 0.45 will produce the exact same effects
in the simulation as in the human experiment that follows in
the next section.

To explore how the effect size varies as a function of how
balanced of a stimulus set is used (meaning whether the two
response options in each pair tend to be near equally preferable),
we varied the distribution from which the A parameter was
drawn. Recall that the A parameter determines the preferability of
the target reference option relative to the non-target alternative.

We defined this as a value between −1 and +1, where positive
relative preference value indicate preference for the response
option coded as +1, while negative values indicate preference
for the option coded as −1. On each simulated trial, the value
of A was drawn from a uniform distribution bounded within
some range. We explored ranges from ±0 to ±1 in increments
of 0.2; such as 50/50, 60/40, and up to 100/0. Examples of
simulated trials with no difference in preferability of the options,
maximum preference for the target, and maximum preference for
the alternative are shown in Figures 3–5. For readers interested
to get a greater sense of how the velocity squashing parameter
influences movement dynamics in each of these cases, the
Supplementary Material contains GIF files plotting dynamic
time series for 10 random trials with each of the parameter
settings used for Figures 3–5.

At the start of each simulated trial, either the +1-coded
or−1-coded response option was randomly designated as the
target option. Thus, when the target was the +1 option,
movements in the negative direction were squashed by s, and vice
versa when the −1 option was the target. Each trial proceeded
until m crossed the upper or lower limits of ±1, and the model

Frontiers in Psychology | www.frontiersin.org 8 February 2021 | Volume 12 | Article 624111

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-624111 February 5, 2021 Time: 17:2 # 9

Falandays et al. Decision-Making in the Human-Machine Interface

FIGURE 5 | A simulated trial where the alternative is fully preferable to the target. Notice how the black trajectory in this figure and Figure 4 above reach the
boundary at approximately the same time. However, here the red line lags further behind the black trajectory as a result of the velocity squashing effect, because
movements are toward the alternative. For these simulations, d = 0.001, s = 0.45, and W was Gaussian noise with mean 0 and s.d. of 0.01. For comparison of
response times, this figure uses the same x-axis as Figure 3, but note that this trial ended at ∼2750 timesteps.

FIGURE 6 | The proportion of trials on which the simulation chose the target option as a function of the velocity squashing factor and the width of the distribution
from which preferences, A, were drawn. Each data point is the result of 50,000 simulated trials.

was treated as having chosen the response option with the
corresponding code. For example, when the model crossed the
upper boundary, it was treated as having chosen the +1 coded
option. These choices were then compared against the target
option on that trial and recoded as a target or non-target choice.
In keeping with our previous implementation of the aDDM
presented earlier, the rate of information accumulation d was set
to 0.001, and gaussian noise W was introduced at each time step,
with a mean of 0 and standard deviation of 0.01. The model was

run for 50,000 simulated trials for each combination of stimulus
parameters, and each trial was allowed to proceed until m crossed
the upper or lower boundary.

Results
The primary results of the simulation experiment are shown in
Figure 6. As the figure shows, there is a clear main effect of the
velocity squashing factor, with a greater likelihood of choosing
the pre-designated target option seen when movements away
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FIGURE 7 | Mean response times for the simulation (in timesteps, roughly equivalent to ms) by the size of the velocity-squashing manipulation and whether thee
model chose the target or alternative option. Response times are faster when choosing the target due to the velocity squashing manipulation slowing movements
toward the alternative.

from the target are reduced by a greater proportion (i.e., as
they are multiplied by a smaller squashing factor). Importantly,
the choices are at chance (50%) when the velocity squashing
manipulation is turned off (s = 1, the red line in Figure 6). There
is also an effect of the width of the distribution from which
the relative preferences were drawn – the A parameter in our
model – whereby the effect size of the squashing manipulation
diminishes as the range of A values increases, meaning as stimuli
become more biased with respect to initial preferences. Finally,
there is an interaction between these two parameters such that
the effect of s diminishes more quickly for smaller values of s
(stronger manipulations).

Importantly, motor costs are not calculated and factored into
decisions in this model. Instead, the effect of the manipulation is
attributable to a bias in the accumulation of noise in preference,
as it is mapped onto movements. When noise induces a change
in preferences toward the target option, movements in that
direction are faster, which increases the likelihood of reaching
the target and terminating the trial. This is evident in the
faster response times of the simulation when selecting the target
vs. the alternative (solid vs. dashed lines in Figure 7). The
response times also show a clear effect of the bias in initial
preferences (the width of the distribution from which A is
drawn). When A is small and stimuli are relatively equibiased,
the signal-noise ratio becomes weaker, and when A = 0, the
evolution of preferences is driven entirely by noise. This increases
the mean time required to reach a response, and thereby
increases the opportunity for noise to accrue in movements
toward the target.

Discussion
This simple model demonstrates how, by slowing down
movements away from the target option, our manipulation biases
the effect of drift due to noise in the direction of the target,
resulting in more trials on which the simulation ultimately
chooses the target.

As Figure 6 illustrates, while the effect diminishes in size
as pairs of response options become less equibiased (i.e.,
increasing the range of A), the effect does not disappear
completely even for a subtle velocity squashing effect and
relatively biased stimuli. This result can be contrasted to
the findings of Falandays and Spivey (2020) regarding the
gaze-based timing manipulation, which showed that the effect
may disappear completely when the response options are not
equibiased. The difference between these two manipulations may
be explained by the fact that the gaze-based response-timing
manipulation, used by Pärnamets et al. (2015b) and others,
is imposed only when participants spend time fixating both
response options, whereas the present motoric manipulation
is active on all trials. As such, this velocity bias may be able
to subtly influence decisions even when one response option
is strongly preferred relative to the other. Note, however,
that the strongest effect observed in the simulation, a ∼58%
preference for the pre-designated target, is obtained only with a
perfectly equibiased stimulus and an extreme velocity squashing.
In a human experiment with stimuli that are approximately
equibiased (but not perfectly so) and velocity squashing that is
mild enough to go undetected, the effect may be substantially
smaller than that.
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FIGURE 8 | A schematic of the operation of the velocity-squashing manipulation. The change in x-position for movements away from the target are squashed by a
factor of 0.45 and the cursor is reset to a new position. For example, on this trial, a cursor movement of 10 pixels to the left would result in a displayed movement of
4.5 pixels to the left. Movements toward the targets are unperturbed.

EXPERIMENT: MANIPULATING
DECISIONS WITH MOUSE CURSOR
VELOCITY

We next sought to test the predictions of our mDDM in a human-
subjects experiment. In this experiment, we asked whether a
subtle bias in the movement of a mouse cursor could push
decisions toward a randomly pre-selected option. The present
experiment was a conceptual replication of Pärnamets et al.
(2015b), and used the same stimuli as a recent replication of
that experiment, Falandays and Spivey (2020). On each trial,
participants first heard a moral or non-moral (factual, opinion)
statement or question, then two possible response options
appeared in boxes in the top-left and top-right corners of the
screen, respectively. In those previous experiments, participants
responded after a prompt screen appeared, using one of two key
presses to respond. However, in the current study, participants
responded with the mouse cursor by moving it from a central
starting point near the bottom of the computer screen to click
on their chosen response option at the upper corners of the

computer screen. The response options remained on screen
until one was selected. As before, on each trial, one response
option is randomly pre-designated as the “target” – the option
we are trying to bias their decision toward. Unbeknownst to
the participant, the experiment software acted to subtly decrease
the velocity of the mouse cursor for any movements away from
the target option (or toward the non-target), such that the
mouse moved slightly slower toward one option than toward
the other. Based on the mDDM simulation above, we predicted
that this motoric manipulation would result in participants
choosing the target option slightly more often than chance and
would influence even stimuli for which the response options
were not equibiased.

As we briefly discussed earlier, our velocity squashing
manipulation is similar to the “force fields” used by Shadmehr
et al. (1993) and Shadmehr and Mussa-Ivaldi, 1994 to investigate
human motor control. In light of the adaptation to force fields
observed by Shadmehr and Mussa-Ivaldi (1994), it might be
predicted that human participants could also adapt to our motor
perturbations, resulting in no effect of the manipulation on
choices. However, a key difference between our paradigm and
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that of Shadmehr et al. (1993) and Shadmehr and Mussa-Ivaldi
(1994) as well as that of Hagura et al. (2017) is that the direction
of the force field was randomized across trials, which would
likely preclude a generalized adjustment of an internal model of
reaching dynamics. For this reason, our model did not include
any calculation of motor costs or adaptation on that basis.
Instead, we propose that force-field-like manipulations can also
bias decision-making in the absence of adaptation, simply by
increasing the time it takes to reach one response option relative
to the other, and thereby allowing greater opportunity for noise
to push decisions toward the target option.

Method
Participants
Eighty healthy undergraduate students (61 female, 18 male; age:
mean ± s.d. = 19.3 ± 1.37) were recruited from the subject pool
at the University of California, Merced. Participants provided
informed consent in accordance with IRB protocols and received
course credit for their participation. Participation was restricted
to those who reported being right-handed, having normal
or corrected-to-normal vision and hearing, and not having a
reading disorder or physical disability that would prevent simple
actions with the hands.

Materials
The stimuli consisted of 72 prompts with two response options
per prompt. The stimulus selection procedure is reported in
Falandays and Spivey (2020), and the full set of stimuli is
available on our preregistration page on the Open Science
Framework2. Half of the prompts consisted of a statement
expressing an opinion on some moral or ethical issue (e.g.,
“Murder is sometimes justifiable.” Or “Hunting for sport is
OK if it doesn’t harm the ecosystem”). These stimuli were
normed to generate 50 ± 10% agreement in our population.
Because these stimuli were designed with the explicit goal of
generating uncertainty and conflict in choosing, response options
did not necessarily represent the extreme endpoints of an opinion
spectrum. For example, in response to the statement “Murder
is sometimes justifiable,” the extreme opinion endpoints might
be “Never justifiable” and “Always justifiable,” but in this case
the latter response is expected to be universally undesirable,
and therefore these two options would be unlikely to generate
uncertainty and conflict.

The other half of the prompts were non-moral filler questions
regarding opinions or facts (e.g., “Do people respect selflessness?”
or “Can bacteria live in boiling water?”) on which no norming
was conducted. Response options to these stimuli were always
“Yes” or “No.” As they were in the studies of Pärnamets
et al. (2015b) and Newell and Le Pelley (2018), these non-
moral items are considered “filler” items and are included
mainly to prevent participants from focusing exclusively into a
mindset of moral reasoning. In principle, the filler items may
also show an effect of the gaze-based timing manipulation.
However, given that these stimuli were not normed to be
near 50/50 uncertainty, given that the word length of the

2https://osf.io/z9r47/

response options is much shorter than those in the moral
condition, and given that the response options are identical
for all filler items, we expected these items to be relatively
far from equibiased (represented in the DDM as A > > 0).
In Falandays and Spivey (2020), these items showed no
effect of the gaze-contingent response-timing manipulation
(once time-out trials were included). However, based on our
mDDM simulations above, these items may nonetheless be
susceptible to this computer-mouse velocity manipulation and
may reveal a subtle preference for the pre-designated target
response option.

Stimulus queries were presented auditorily over headphones
at the participants’ preferred volume. Response options consisted
of white text centered in a 300 × 300 pixel white box on a black
background. Boxes were placed in the top left and top right
corners of a 1920 × 1200 pixel screen, with a 30 pixel buffer
between each box and the closest edge of the screen. Text was
displayed in Times New Roman size 70 font.

Procedure
Participants completed the experiment individually in the lab, in
a single session taking approximately 30 min. Participants were
seated in front of a computer and wearing headphones with the
volume set to their most comfortable level. The experiment was
run using the Psychophysics Toolbox package (Brainard, 1997)
in Matlab. On each trial, a white fixation dot was displayed
in the center of the screen while the audio prompt played
over the headphones. During this time, the mouse cursor was
made invisible. Once the auditory prompt finished playing, the
two response options would appear in the top-left and top-
right corners of the screen. Upon completion of the query and
appearance of the response options, the mouse cursor was reset
to the bottom center of the screen, and participants moved the
mouse to click on their choice. Participants had no time limit
to make a selection. The left or right position of each response
option was randomized. On 36 randomly selected trials, the left
option was selected as the target, while the right option was
selected on the remaining 36. After each trial, participants rated
their confidence in their choice as well as their understanding (the
degree to which they read and understood both response options)
on a 1–7 scale.

In order to manipulate the motor cost of responding in an
asymmetric fashion, the computer program made it slightly more
difficult for participants to move the mouse cursor away from the
target than toward it. This was accomplished by doing a fast re-
draw of the mouse cursor position. Every 10 ms, the change in
the x-position was sampled. Changes in the direction away from
the target were squashed by a factor of 0.45, such that the mouse
cursor was repositioned closer to its origin (along the x-axis) than
it had actually traveled. This resulted in a decreased velocity when
moving in one direction, though which direction was impacted
was random across trials.

After completion of the main phase of the experiment,
participants were presented with two free-response questions
designed to probe for detection of the experimental manipulation
in the experiment. The first question asked “What do you
think was being manipulated in this experiment?” The second
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question asked “Did you notice anything unusual about the
functioning of the computer program used in this experiment?”
An experimenter was present to offer participants clarification on
the meanings of the questions, when necessary.

Data and Code Availability
All code and data from this experiment and preceding
simulations are available are available on the Open
Science Framework3.

Results
Our analysis excluded any trial with a response time greater than
2 standard deviations from the mean. 3.6% of trials were excluded
on this basis. After exclusions, the mean overall response time was
4012 ms (SD = 2082 ms). The mean response time by item type
and choice (target vs. alternative) is plotted in Figure 9. Response
times were analyzed using linear mixed effects regression with
the log-transformed response times as the dependent variable.
A backward-fitting procedure was used to select the maximal
random-effects structure justified by the data (Barr et al., 2013).
The full model included item type (moral/normed vs. non-
moral/un-normed), choice (whether the participant clicked the
target or the alternative), and their interaction as fixed effects.
Random-intercepts were included for participants and items, as
well as by-subject random slopes for the effect of item-type.
Model comparison revealed that moral items elicited slower
response times than non-moral items [b = 0.2, SE = 0.04, t = 5.254,
X2(1) = 23.54, p < 0.001], and that response times were slower
when choosing the alternative relative to the target [b = −0.08,
SE = 0.006, t =−14.533, X2(1) = 207.03, p < 0.001]. There was no
interaction between item type and choice.

Figure 10 shows the proportion of trials on which participants
chose the target for each item type. Participants selected the
target option 51.4% of the time overall, 51.06% of the time for
our normed, moral items, and 51.9% of the time for our un-
normed, non-moral items. The data were analyzed using logistic
mixed-effects analysis. Again, a backward-fitting procedure was
used to determine the maximal random-effects structure justified
by the data. The full model included a single fixed effect, the
intercept term. Random intercepts were included for participants
and items, as well as random slopes for the effect of item type
(normed/moral vs. unnormed/non-moral) by-participant. This
analysis revealed a significant effect of adding the intercept term
[α = 0.06, SE = 0.03, z = 2.03, X2(1) = 3.97, p < 0.05] and
no significant effect of item-type, indicating that participants
selected the target option more often than chance, and that this
effect did not differ between moral items and filler items.

The overall mean rating for understanding was 6.52 (on a 1–7
scale; SD = 0.955), indicating that participants were able to read
and understand both response options on most trials. For moral
items, the mean understanding rating was 6.505 (SD = 0.92),
for non-moral items it was 6.504 (SD = 0.99). Again using
mixed effects linear regression, we analyzed the effects of item
type, choice, and their interaction on confidence ratings. The

3https://osf.io/w26k3/

FIGURE 9 | Response times by item type and whether the participant chose
the target response option or the alternative. This plot reveals a main effect of
item type, which is consistent with the fact that the moral stimuli were normed
to be relatively equibiased with respect to initial preferences. There is also an
effect of the velocity squashing manipulation, whereby movements toward the
alternative are made slower than movements toward the target.

FIGURE 10 | Percentage of trials on which participants selected the randomly
pre-selected target option for non-moral (red, left) and moral (blue, right)
statements.

full model included random intercepts for participants, and by-
participant random slopes for the effect of item type. This analysis
indicated no significant main effects or interactions.

The mean confidence rating was 5.28 (SD = 1.68) overall,
4.93 for non-moral items (SD = 1.81), and 5.64 for moral items
(SD = 1.45). Using the same fixed and random-effects structure as
noted above for the understanding ratings, we analyzed the effect
of item type and choice on confidence. This analysis revealed
a significant effect of item-type only, such that confidence was
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higher for moral items than for non-moral items [b = 0.644,
SE = 0.046, t = 14.04, X2(1) = 100.8, p < 0.001].

To probe for detection of the mouse-cursor manipulation, the
answers to the two post-experiment free-response questions were
qualitatively explored. Several participants reported thinking that
the mouse-cursor moved slower than normal in general – and
indeed, the baseline cursor speed was already diminished below
the default computer values (on a 2019 iMac Pro) to require
participants to use overt arm movements rather than slight flicks
of the wrist. However, no participants reported noticing a bias in
the speed of movement toward one side or another.

Discussion
In this experiment, we introduced a subtle, direction-specific bias
in the velocity of the mouse cursor while participants decided
which of two equidistant response options to click on. Although
the effect is small, our results show that this manipulation was
sufficient to bias decisions toward a randomly pre-determined
target option, indicating that even moral decisions are sensitive
to irrelevant influences on the motor system. Furthermore, no
participants reported noticing this directional bias in cursor gain,
so it is certainly possible that the strength of the manipulation
could be increased further before becoming reliably detectable.

Response times also show the predicted effect of slower
responses when choosing the non-target option, given the nature
of the velocity squashing manipulation. The fact that response
times were longer for the normed, moral stimuli is consistent
with these stimuli being more equibiased than the un-normed,
non-moral stimuli, and therefore requiring greater deliberation
time. However, it should be noted that, in our experimental
design, actual preferences cannot be assessed independently of
the effect of the manipulation. This points to a potential weakness
of our design, in that the statistical average of preferences in
our population was used as a proxy for individual preferences.
This leaves open the possibility that our normed stimuli were
not actually less biased than the un-normed stimuli (although the
results of Falandays and Spivey, 2020, and the main effect of item
type on RTs are inconsistent with this possibility).

One notable finding was the presence of an effect of the
manipulation on choices in both the moral stimuli, which
had been normed such that response options themselves were
relatively equibiased, and the non-moral stimuli, which had
not been normed. Falandays and Spivey (2020), and our
aDDM simulation above, suggest that – with Pärnamets et al.
(2015b) gaze-contingent response-timing manipulation – only
equibiased items (those where A≈ 0) may be influenced
by the manipulation. However, our mDDM presented above
straightforwardly accounts for the presence of an effect in both
biased (those where A > > 0) and equibiased queries, in light of
the motoric manipulation used here. While the gaze-contingent
response-timing manipulation is only imposed when participants
fixate both response options for a sufficient amount of time,
which may not occur when response options are not equibiased,
this motoric manipulation is imposed on all trials, leading to
detectable effects even with a relatively weak velocity squashing
factor and a relatively biased stimulus set. The more surprising
finding that the normed stimuli did not show a stronger effect

of the manipulation indicates either that our normed stimuli
were not substantially less biased than our un-normed stimuli,
or, more likely, that our experimental manipulation was rather
subtle in practice, compared to the same velocity squashing
factor in simulated space (see Figures 6, 7). This issue will
need to be addressed by a follow-up study using a stronger
velocity-squashing manipulation, with the predicted outcomes
being a greater proportion of target choices and a greater
difference in response times between target-choice trials and
alternative-choice trials. It is also worth reiterating that our moral
and non-moral stimuli differed in textual complexity, length, and
other psycholinguistic dimensions. While this was a purposeful
choice (Falandays and Spivey, 2020), future work will also need
to account for the role of these differences in determining effect
sizes in each stimulus condition.

GENERAL DISCUSSION

For decades, pollsters and psychologists have known that the way
a question is worded can have a subtle but detectable influence
on the response it induces (Schwarz, 1999). Once people make a
choice (which is unavoidably biased by the way the question was
delivered), their preferences tend to shift in favor of their chosen
alternative (Sharot et al., 2010). In fact, even when those final
choices are misrepresented in a sleight-of-hand, people will often
fail to notice the misrepresentation and happily defend those
choices as if they were actually their own (Pärnamets et al., 2015a;
Strandberg et al., 2018).

Recent experiments that recorded eye movements during
moral decision-making further show that a response can be
manipulated by the timing and delivery of the response prompt.
Inducing a response while the eyes are revealing a (potentially
temporary) bias toward a particular option can have a subtle but
detectable influence on choice (Pärnamets et al., 2015b; Ghaffari
and Fiedler, 2018; Falandays and Spivey, 2020). In addition to that
kind of timing perturbation, a motor movement perturbation can
also influence choice, either through learning about movement
costs (Hagura et al., 2017), or through “online” perturbations
such as our velocity squashing manipulation. The present
experiment and simulations suggest that the timing manipulation
may depend significantly on the intrinsic preference among the
choices being relatively equibiased, whereas a motor movement
manipulation may be able to exert its subtle influence even on
choices that start out far from equilibrium.

Although the effect on choice in our human experiment is
small, the results of both the human and simulation experiments
suggest that it is robust even with queries that are far from
equilibrium. This finding shows that our decisions can be slightly
influenced by even small biases present in the interface to a
decision, even when those decisions deal with complex and
personal issues like morality. If a bias of 1–2% above chance seems
negligible at first, one need only consider the countless number of
micro-decisions that most of us make each day with the help of
a technological interface, and it quickly becomes apparent that
these small nudges could add up to a massive difference over a
relatively short period of time. The mouse cursor manipulation
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we used in our experiment was apparently undetected by any
of our participants and is something that could be established
on any website or phone application with nothing more than a
few lines of code.

Furthermore, the points we are making should not be taken as
applying strictly to decisions made using a mouse cursor or even a
screen-based interface of any kind. Rather, it is the case that every
decision occurs in the context of some constraints, whether it be
a time pressure, a difference in the location of options or effort
required to select them, or a bias in the accumulation of noise
in preferences onto motor output. However, the degree to which
these influences on our decisions can be controlled is certainly
much greater in the case of human-machine interactions. As
such, we hope these results will encourage our readers to
understand the interface of a decision as being a potentially
critical constituent of the decision itself, rather than a separate
step that takes place after cognition has done its work.

Given the small size of this motoric influence on choice, if
one was imagining that machine interfaces could be designed to
substantially manipulate a specific decision by a specific person –
for the common good or for selfish reasons – these results
do not provide much support for that approach. Encouraging
humans to support the common good, even when it means some
degree of self-sacrifice, will still require training those humans
to have good moral reasoning skills. There is no quick fix for
that. Rather than interpreting these findings as evidence for a
dystopian future where some particular high-stakes decision will
be reliably manipulated by a smart phone that tracks a politician’s
eye movements, there is a more realistic and scientific way to
interpret these results.

At a theoretical level, it should be clear that these results
simply could not happen so systematically if moral decisions were
generated exclusively inside a neural module dedicated to moral
reasoning – or even a network of such modules (e.g., Casebeer
and Churchland, 2003). Instead, the evidence suggests that moral
decisions (and potentially any difficult dilemma) emerge as a
result of a human interfacing with their environment. While the
majority of the statistical variance in those decisions is indeed
determined by the human’s intrinsic preferences (Ghaffari and
Fiedler, 2018), some portion of that variance is also determined
by adventitious biases that take place in the interface itself. With
human-machine interfaces becoming so ubiquitous, many of our
everyday decisions – and some of our high-stakes decisions – are
emergent results of this interaction between human and machine.

Our results can be situated within the vast literature on
embodied cognition, which focuses on the important roles of
the body, action, and motor systems of the brain in cognition
more generally (Barsalou, 1999; Anderson, 2003; Clark, 2008;
Shapiro, 2019). Work on decision-making in this framework
has emphasized the role of “irrelevant” sensory information on
judgments, such as the way that holding a heavier clipboard
results in increased assessments of the importance of decisions
(Jostmann et al., 2009), or the way that exposure to bad smells
or disgusting rooms increases judgments of moral disgust with
respect to crimes (Schnall et al., 2008; see also: Prinz, 2007).

Thus, as urged by Gibson (1979) and others, the domain of
analysis when studying the human mind should not be solely

the human organism itself but, instead, the entire organism-
environment system. A human’s cognitive operations, their moral
choices, their sense of self, perhaps even their consciousness, may
be processes that are generated by the interaction of physical
material both inside the skull and outside the skull (O’Regan
and Noë, 2001; Clark, 2004; Aspell et al., 2009; Kirchhoff and
Kiverstein, 2020; Spivey, 2020).
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