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Abstract: Horizontal gene transfer (HGT) plays an important role for evolutionary innovations within
prokaryotic communities and is a crucial event for their survival. Several computational approaches
have arisen to identify HGT events in recipient genomes. However, this has been proven to be a
complex task due to the generation of a great number of false positives and the prediction disagreement
among the existing methods. Phylogenetic reconstruction methods turned out to be the most reliable
ones, but they are not extensible to all genes/species and are computationally demanding when dealing
with large datasets. In contrast, the so-called surrogate methods that use heuristic solutions either
based on nucleotide composition patterns or phyletic distribution of BLAST hits can be applied easily
to the genomic scale, but they fail in identifying common HGT events. Here, we present ShadowCaster,
a hybrid approach that sequentially combines nucleotide composition-based predictions by support
vector machines (SVMs) under the shadow of phylogenetic models independent of tree reconstruction,
to improve the detection of HGT events in prokaryotes. ShadowCaster successfully predicted close
and distant HGT events in both artificial and bacterial genomes. ShadowCaster detected HGT related
to heavy metal resistance in the genome of Rhodanobacter denitrificans with higher accuracy than the
most popular state-of-the-art computational approaches, encompassing most of the predicted cases
made by other methods. ShadowCaster is released at the GitHub platform as an open-source software
under the GPLv3 license.
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1. Introduction

Lateral or horizontal gene transfer (HGT) plays an important role in the genome evolution and
ecological innovation of prokaryotic communities. Microbial communities can be considered as
complex biological systems where its individuals exchange genes by HGT events. HGTs in bacteria
and archaea communities occur more frequently between closely related species than in distant
lineages [1]. Some lineage-specific genes, i.e., genes found in one particular taxonomic group and that
arise from close HGT events, are usually lost quickly if they result in reduced fitness. By contrast, other
lineage-specific genes are retained for longer periods of time if they provide selective advantages for
survival in the recipient lineage, especially when environmental conditions do not change much [2].
Rates of HGT events involving genes critical for survival, growth, and reproduction are particularly
high among members of microbial communities that need a quick adaptation to complex environments
such as contaminated soil or water [3]. Detecting HGT has been a major focus of attention to better
understand microbial evolution. However, it has proven to be a complex and challenging task.

HGT detection tools can be divided into two main classes: parametric and phylogenetic methods.
Parametric methods search for sections of a putative recipient genome that greatly differ from the mean
nucleotide composition based on metrics such as oligonucleotide frequencies, guanine and cytosine
(GC)content or codon usage. Genes exhibiting highly compositional fluctuations from the genomic
mean are called atypical or alien genes and their origin is expected to be exogenous. Phylogenetic
methods integrate information from multiple genomes and find evolutionary incongruencies while
reconciling gene trees with the reference species tree [4]. Both parametric and phylogenetic methods
are based on the hypothesis that acquired genes bring “perturbations” to the recipient genome, and that
such perturbing signal stands out from the background noise (fluctuations in the recipient genome
that arise from other scenarios rather than from HGT events), regardless the age of the event.

To date, there is no unique method capable of detecting all the HGT events of different ages in a
recipient genome because each of the methods have their own advantages and limitations. Phylogenetic
methods are best at identifying ancient HGT events, providing a large number of orthologs and the
generation of a reliable species tree [5,6]. Evolutionary processes other than HGT, i.e., gene duplication
and differential gene loss, can also explain incongruences between genes and species trees, which
hinder the performance of phylogenetic methods [7,8]. Parametric methods deal best with recent
HGT events that result in noticeable perturbations to the recipient genome mean nucleotidic signature.
Over time, however, gene amelioration dilutes the signal of HGT events due to the quick loss of
nucleotide compositional differences which drastically reduces the detection power of parametric
methods [9]. In the presence of gene amelioration, the parametric method′s predictions become
inaccurate and should be validated by phylogenetic approaches to reduce both false positive and
negative predictions [10,11]. Nevertheless, explicit phylogenetic methods (tree building-based) are not
practical at the large scale, e.g., comprising entire gene repertoires, because they are computationally
expensive and time consuming [12]. In this sense, several methods with rather implicit phylogenetic
approaches have arisen. These methods are mainly based on phyletic distribution derived from BLAST
searches in order to speed up atypical gene detection in multiple genomes/taxa since they bypass gene
tree reconstruction, e.g., DarkHorse [13], HGTector [14] and HGT-Finder [12].

Table 1 shows the state-of-the-art of HGT detection methods that rely on different information
sources and when applied to the same dataset often generate partially overlapping predictions.
Discrepancies among tools might be resolved by combining parametric and phylogenetic methods.
It is still unclear what could be the best way to combine different methods without increasing the false
discovery rate (FDR) [4,15].



Genes 2020, 11, 756 3 of 12

Table 1. State-of-the-art computational approaches for horizontal gene transfer detection with emphasis
in prokaryotic genomes.

Classification Implementation Methodological Highlights Application
Domain Reference

Parametric methods

Nucleotide
composition

Alien Hunter
(http://www.sanger.ac.uk/
science/tools/alien-hunter)

Uses Interpolated Variable Order
Motifs (IVOMs) coupled to a

Hidden Markov Model (HMM) to
detect alien (atypical genes).

bacterial
genomes [16]

No implementation available

Detects atypical genes based on
k-mer (k = 8) frequencies using a
one-class support vector machine

(SVM).

viral, archaeal
and bacterial

genomes
[17]

No implementation available

Combines two compositional
features using a Kullback–Leibler
divergence metric to improve the

detection of atypical genes.

artificial
genomes [6]

GOHTAM (http://gohtam.
rpbs.univ-paris-diderot.fr/)

Uses a Jensen-Shannon divergence
metric from window or gene-based

signature data to detect
atypical genes.

prokaryotic
and eukaryotic

genomes
[18]

No implementation available
Detects atypical genes based on the

selection of nine compositional
features using a SVM.

bacterial
genomes [19]

Nucleotide
composition plus
information from

the genomic
context

No implementation available

Implements a multiple-threshold
approach to detect atypical genes
from compositional features and
genomic context information to

reduce the chance of
misclassification.

artificial
genomes [20]

Implicit phylogenetic methods

Phyletic
distributions

based on BLAST
searches

DarkHorse
(http://darkhorse.ucsd.edu/)

Calculates a lineage probability
index from BLAST searches to

predict atypical genes.

prokaryotic
and eukaryotic

genomes.
[13]

HGTFinder (http://cys.bios.
niu.edu/HGTFinder/
HGTFinder.tar.gz)

Calculates a horizontal transfer
index from BLAST searches to

predict atypical genes.

prokaryotic
and eukaryotic

genomes.
[12]

HGTector (https://github.com/
DittmarLab/HGTector)

Establishes statistical thresholds to
detect genes that do not adhere to a

priori defined hierarchical
evolutionary categories inferred

from BLAST searches.

artificial,
prokaryotic and

eukaryotic
genomes.

[14]

Hybrid methods

Nucleotide
composition

complemented
with an implicit

phylogenetic
model

ShadowCaster See further prokaryotic
genomes This work

Here, we developed an open-source software called ShadowCaster that consists of the sequential
incorporation of parametric and phylogenetic information to improve the detection of HGT events in
prokaryotes. ShadowCaster firstly employs a One-class support vector machine (SVM) classifier based
on two compositional features to identify putative atypical genes within the genome of the recipient
species. ShadowCaster then estimates a Bayesian likelihood, inferred from an implicit phylogenetic
model built by aggregating the proteomes of closely and distantly related taxa to the recipient species
to construct a phylogenetic shadow. ShadowCaster finally decides, based on the Bayesian likelihood,
whether the predicted atypical genes in the recipient species were vertically or horizontally acquired.
To carry this out, two inheritance models—vertical and horizontal inheritance—are interrogated to see
which one best explains the acquisition of an atypical gene in the recipient genome. In a pure vertical

http://www.sanger.ac.uk/science/tools/alien-hunter
http://www.sanger.ac.uk/science/tools/alien-hunter
http://gohtam.rpbs.univ-paris-diderot.fr/
http://gohtam.rpbs.univ-paris-diderot.fr/
http://darkhorse.ucsd.edu/
http://cys.bios.niu.edu/HGTFinder/HGTFinder.tar.gz
http://cys.bios.niu.edu/HGTFinder/HGTFinder.tar.gz
http://cys.bios.niu.edu/HGTFinder/HGTFinder.tar.gz
https://github.com/DittmarLab/HGTector
https://github.com/DittmarLab/HGTector
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inheritance model, the number of orthologs shared by the species in the phylogenetic shadow serves
as a proxy of the phylogenetic distance among species. Closely related species are supposed to share
more orthologs (with higher sequence similarity) than the distantly related ones. As a result, a shared
orthology probability distribution can be drawn as a curve on top of the phylogenetic shadow. In
plain words, ShadowCaster detects HGT events as violations to the pure vertical inheritance model.
These are cases in which an atypically conserved gene is present in a pair of species with a shared low
orthology probability that is not able to explain such high sequence conservation.

We applied ShadowCaster to predict genome-wide close and distant HGT events in artificial and
bacterial genomes. The hybrid nature of ShadowCaster allowed for the prediction of new HGT events
in real-world data and demonstrated its improved performance compared to pure parametric methods
and to those based on phyletic frameworks. In addition, ShadowCaster predictions showed the highest
agreement with those obtained by other methods.

2. Design and Implementation

ShadowCaster is an open-source software capable of detecting HGT events in prokaryotes by
performing three major tasks: (i) atypical genes identification by One-class SVM, (ii) phylogenetic
shadowing model construction, and (iii) per gene likelihood calculation expressing how likely an
atypical gene has been vertically inherited. There are two main components in ShadowCaster to carry
out these tasks: one parametric and one phylogenetic. The parametric component uses the genome
of the query species to extract nucleotide compositional information during the task (i), while the
phylogenetic component starts from the proteomes of the query and of other related species covering a
diverse spectrum of phylogenetic distances, to perform tasks (ii) and (iii).

2.1. Parametric Component

For the identification of atypical genes, we implemented a parametric component that combines
two features, each using a particular metric to assess the compositional difference between each gene
and the entire genome. Features were implemented as suggested by Becq et al. [6]. The first feature
corresponded to the gene length normalized tetranucleotide (4-mers) frequencies with Chi-square as
metric and the second was the codon usage with Kullback–Leibler as metric. The per-gene values of
each feature were compared to the corresponding value calculated from the entire coding sequence of
the genome (i.e., a concatenation of all genes in the species).

To classify each gene as atypical based on features values, the One-class support vector machine
(SVM) was used, since this method is able to perform the outlier detection in an unsupervised
fashion. The goal of the One-class SVM (Figure 1B) was to separate the native genes (i.e., those
with a composition that does not differ greatly from the one of the entire genomes) (gray dots in
Figure 1B), from atypical genes (green and red dots in Figure 1B) by the estimation of a support
distribution. This model requires the selection of a kernel function (radial basis function in our case),
and the specification of the bounds of the fraction of support vectors and training errors to use as
defined by the user via the “nu parameter” (see technical details in [21] and references therein). In our
implementation, the nu parameter can be tuned by the user depending on the type of HGT events to
detect, i.e., close, medium-far and far events (see below how the nu parameter affects the predictions
made by ShadowCaster). Genes classified as outliers by the One-class SVM represent the group of
atypical genes that constitute the output of the parametric component and one of the inputs of the
phylogenetic component.
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however P0 distribution (curves) is different between them, especially for medium and far distances. 157 
(B) The distribution/separation of typical (in grey color) and atypical (in red and green color) genes 158 
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phylogenetic component is then to create a filter capable of differentiating genes that truly arose from 165 

Figure 1. Graphical representation of the conceptual model behind ShadowCaster and of its main
outputs. (A) Probability of true orthology between three gene pairs shared by a recipient species and
three phylogenetically related donor species, respectively (species tree in the left-hand side). True
orthology probability values (P0) are sampled from probability distributions according to: vertical
inheritance (phylogenetic shadowing model defined by the number of orthologs sharing recipient-donor
species at different phylogenetic distances, green panel); and lateral inheritance (horizonal gene transfer
(HGT)) model, gradient color curves from orange to deep red represent the P0 distribution in true HGT
events occurring at different phylogenetic distance along the species tree). P0 decreases in both vertical
and lateral inheritances with the increase of the phylogenetic distance, however P0 distribution (curves)
is different between them, especially for medium and far distances. (B) The distribution/separation
of typical (in grey color) and atypical (in red and green color) genes achieved by the parametric
component of ShadowCaster (4-mer frequency and codon usage). (C) Log-likelihoods for all atypical
genes detected by the parametric component in a given recipient genome. Log-likelihoods and P0 are
related by Equation (2).

2.2. Phylogenetic Component

The list of atypical genes detected by the parametric component is still putative and might
contain spurious results (e.g., native genes that did not arise from true HGT events). The aim of
the phylogenetic component is then to create a filter capable of differentiating genes that truly arose
from HGT events from those native genes that show an atypical composition but that were vertically
inherited. The model behind ShadowCaster (Figure 1A) builds on the previous knowledge that the
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amount of true orthologous genes shared between a given species pair decreases with the phylogenetic
distance that separates them [22]. In such scenario, a vertically inherited gene in a recipient species, will
show a decreasing sequence identity with its orthologs in increasingly distant species. If one sees the
sequence identity between two proteins as a proxy of orthology, and constructs a probability function
across a species phylogenetic tree will see a shadowing shape as represented in Figure 1A (green curve).
A horizontally inherited gene will in contrast disrupt the shadowing shape of the orthology probability
function creating a peak around the acceptor species (see the orange, light red and deep red curves in
Figure 1A).

We took advantage of the contrasting behavior of vertically versus horizontally inherited genes
in terms of orthology probability distribution across the species tree. While events of vertical and
horizontal inheritance are both consistent with the shared orthology probability P0 values and
distributions (green and orange curves, Figure 1A) in close-related species pairs, this is different for
medium far and far species pairs. When the phylogenetic distance increases between donor and
acceptor species, the shared orthology probability decreases as well as the probability of finding
orthologs with high sequence identity between them. In addition, the magnitude of the decrement in
shared orthology probability (P0) is different for medium and far HGT events (light red and red curves
contrasted by the shadow of the green curve, Figure 1A). With such considerations, we then applied a
Bayesian inference to estimate how likely is that a given gene has been vertically inherited.

When applied to our phylogenetic shadowing model, Bayes′ theorem for probability distributions
can be expressed as follows (Equations (1) and (2)):

f (t
∣∣∣y) ∝ f (y

∣∣∣t) f (t) (1)

P(Orthology
∣∣∣Identity) ∝ P(Identity

∣∣∣mean, std)P(Orthology) (2)

where y is a vector of protein sequence identities corresponding to the best hits of an atypical sequence
in each of the proteomes included in the phylogenetic shadow, and t represents the vertical inheritance
model derived from comparing the full proteomes included in the phylogenetic shadow in a pairwise
fashion. The distribution f (y

∣∣∣t) is the sampling density for y, describing the probability that an
atypical sequence with an identity higher than 55% follows the vertical inheritance model; f (t) is the
prior phylogenetic distribution determined by the probability of orthologs (P0) between the query
species and the species in the phylogenetic shadow; finally, f (t

∣∣∣y) is the posterior distribution of t.
Log-likelihoods for all atypical sequences detected by the parametric component in a given recipient
genome were derived from Equation (2).

To determine the number of orthologs between the species, we used OrthoMCL-pipeline
(https://github.com/apetkau/orthomcl-pipeline). To derive the vertical inheritance model
( P(Identity

∣∣∣mean, std) ), the mean and standard deviation of all protein sequence identities resulted
from the global alignments between each proteome pair were considered as well as the predicted
atypical sequences longer than 70 amino acids. The log-likelihoods of all atypical sequences were
classified in two classes with fuzzy clustering (Figure 1C). The group with lower values of likelihood
represented the genes predicted as HGT events and the other the vertically inherited genes with an
unusual composition.

As shown, our phylogenetic inference is based on a phylogenetic shadowing model instead of on
explicitly deriving a phylogenetic tree. To construct this model, it is important to have enough species
that are closely-related to the query sequence in order to detect orthology relationships, but also a
correct number of species that explains sequence divergence gradually. Thus, the phylogenetic shadow
is constructed by species from different phylogenetic distances based on the taxonomy of the query
species. In order to best describe sequence divergence across species, our phylogenetic shadowing
model is built with proteomes from species related with the query according to the following taxonomic
weights: 40% of species from the same family, 20% of species from the same order, 20% of species

https://github.com/apetkau/orthomcl-pipeline
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from the same phylum, 12% of species from the same kingdom and 8% of species from another
prokaryotic kingdom.

Proteomes are retrieved from the NCBI ftp by using the helper script “get_proteomes.py”.
In case that there are not enough sequences to complete the percentage assigned to any of the ranks,
the difference will be added to the upper taxonomic rank in order to complete with the total number of
sequences to construct the phylogenetic shadow. As an example, if we consider Escherichia coli as the
query species, its phylogenetic shadow will be composed by 40% of proteomes from Enterobacteriaceae,
20% Enterobacterales, 20% Proteobacteria, 12% Bacteria, and 8% Archaea.

ShadowCaster was mainly implemented in Python but shares functions of R and Perl too. There
are minimal external dependencies (e.g., OrthoMCL [23], Blastp and EMBOSS package for running
the phylogenetic component). A script to build the phylogenetic shadow is provided to help the user
with the input requirements (more information is supplied in the documentation of ShadowCaster at
https://shadowcaster.readthedocs.io/en/latest/).

3. Results and Discussion

3.1. Performance on Simulated Data

To determine the robustness of ShadowCaster’s approach, we conducted experiments using
simulated sets from artificial gene transfers of different origins. For this purpose, an artificial
genome was modeled to be the recipient sequence based on Escherichia coli K-12 substr. MG1655
genome. Native genes were extracted from the genome using k-mers and codon usage properties,
this step ensures the removal of highly atypical genes. We created three datasets with transfers from
different phylogenetic distance species like Methanocaldococcus jannaschii (far), Sinorhizobium meliloti
(medium-far) and Salmonella enterica (close). These species are also placed at different taxonomic
distances to E. coli. Methanocaldococcus jannaschii (far) belongs to Archaea, order: Methanococcales,
family: Methanocaldococcaceae and genus: Methanocaldococcus. Sinorhizobium meliloti (medium-far)
is a bacterium belonging to the order: Rhizobiales, family: Rhizobiaceae and genus: Sinorhizobium.
Salmonella enterica is a closely related bacterium to E. coli, both belong to the same order and family.
For each set, we randomly transferred ten genes that had no orthology with the recipient sequence
from the donor species previously mentioned.

We tested the effect of two parameters of ShadowCaster: nu parameter and the number of
proteomes needed to construct the phylogenetic shadow. The nu parameter used in the parametric
component was varied from 0.1 to 1.0 and the number of proteomes was changed from 10 to 30.
The purpose of these tests is to find the optimal combination of these parameters to achieve the best
performance of ShadowCaster depending on the origin of HGT events. Figure 2 shows the curves for
True and False Positive Rates of the tested parameters.

The influence of the nu parameter was only evaluated on the HGT detection within the group of
atypical genes. The following conclusions can be made from these curves:

1. ShadowCaster identifies with the highest precision the HGT events from medium-far and far
donors due to the differences in nucleotide composition content and orthologs. The recommended
value of nu is 0.4.

2. At the end of the parametric component, close HGT events are complex to classify within the
group of atypical genes due to the similarity they share with the recipient sequence. This issue
can be solved by incrementing the nu value but it is important to emphasize that will also increase
the false positive rate (FPR).

3. True and False Positive Rates did not change significantly with the increase of the number of
proteomes/species in the phylogenetic shadow. The recommended starting number of proteomes
is 15 since a small drop of the FPR was observed for the first time at this value. However,
for extensive analyses in real datasets where the origin of the HGT is unknow, the number of
proteomes could be increased up to 25. Considering that this parameter does not significantly

https://shadowcaster.readthedocs.io/en/latest/
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affect the TPR and FPR, adding relevant information to the phylogenetic shadow tend to improve
the quality of HGT detections. Please, see an example of ShadowCaster′s predictions belonging
to its parametric and phylogenetic component on the real dataset used in the next section at
https://github.com/dani2s/ShadowCaster_testData.
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Figure 2. True positive (TP) and False positive (FP) rate curves for showing the performance of
ShadowCaster according to the two user defined parameters: nu and number of proteomes. TP and FP
rate curves corresponding to the nu parameter are shown in (A,B) while (C,D) display the same curves
influenced by the number of proteomes.

3.2. Performance on a Real Dataset. Comparison with the Most Popular State-Of-The-Art Computational Tools

To show the purpose of using a hybrid approach in the detection of HGT events, we validate
ShadowCaster with a real genome, Rhodanobacter denitrificans 2APBS1 (NC_020541.1), retrieved from
Hemme et al. [3]. Rhodanobacter denitrificans sp. belong to the Gamma-proteobacteria (g-proteobacteria)
class that is populated by several genera resistant to environmental harsh conditions, e.g., low pH, high
temperatures and concentrations of sulfur, nitrate and metals. In particular, Rhodanobacter populations
are frequently found within niches with low pH and high levels of nitrate and heavy metals [3]. Hemme
et al. analyzed fifty-one genes related to heavy metal resistance in the metagenome of Rhodanobacter

https://github.com/dani2s/ShadowCaster_testData
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populations living in contaminated-groundwater. A total of 39 genes were identified as HGT genes by
at least one bioinformatic tool. We compare our results to the two best performing tools applied on
their work, DarkHorse and AlienHunter, and also to another of the state-of-the art methods based on
blast searches, HGTector.

As we ignore the origin of the HGT events, we took the best values obtained from the experiments
with the three simulated datasets to run ShadowCaster, the nu parameter was set to 0.4 and the number
of proteomes to build the phylogenetic shadow to 25. With the aim of comparison, DarkHorse and
AlienHunter were run in the same way as mentioned in Hemme′s methods [3]. For more details about
the parameter settings used to run the three tools, see Table S1 of Supplementary File S1. Furthermore,
the elapsed time during the HGT detections in Rhodanobacter denitrificans was estimated for each
software, considering as putative donors a non-redundant subset of genomes/taxa from the NCBI
(File S2). Such genome-wide detections were performed by using a workstation (Intel(R) Xeon(R) CPU
E5-2640 v2 @ 2.00GHz) that uses 16 threads with a RAM memory of 64 GB and Ubuntu 18.04.4 LTS as
Operating System.

HGT detections of ShadowCaster and of the other methods are summarized in Figure 3.
The running-time for each method is shown in the figure′s legend. The use of our hybrid approach allows
identifying a consensus of genes that are separately identified by the other methods. ShadowCaster
and AlienHunter were the two best tools to detect HGT genes associated with metal resistance.
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 297 Figure 3. Venn diagram illustrating the HGT events detected by three of the state-of-the-art
computational tools (AlienHunter, DarkHorse and HGTector), and by the presented methodology
ShadowCaster in the genome of Rhodanobacter denitrificans 2APBS1. HGT predictions performed by
each tool is framed inside a coloured ellipse. All HGT detections are shown for each tool (black
numbers inside each ellipse): AlienHunter (571), DarkHorse (1007), HGTector (649) and ShadowCaster
(940) while HGT events related to heavy metal resistance are labelled in bold numbers: AlienHunter
(27), DarkHorse (21), HGTector (2) and ShadowCaster (29). Elapsed time during the HGT detections
by AlienHunter (31 min 43 s), DarkHorse (93 min 57 s), HGTector (66 min 03 s) and ShadowCaster
(103 min 02 s).

In prokaryotes, genes acquired horizontally typically tend to code enzymes that are responsible
for the growth of metabolic networks [24]. Because this dataset represents a microbial population
with extreme exposure to heavy metal contamination, we wanted to understand the contribution
degree of the genes detected as HGT to the metabolic pathways for heavy metals. The analysis of Gene
Ontology (GO) terms (Figure 4) shows that the genes predicted by ShadowCaster enrich more for
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enzymatic activities/systems related to heavy metals metabolism (highlighted in blue) than those of
AlienHunter, DarkHorse and HGTector. These results confirm the benefits of using a hybrid approach
in the detection of HGT events.
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Figure 4. Gene Ontology (GO) Enrichment Analysis. Distribution of GO-InterPro terms exhibiting
statistical significance difference (Fisher Exact Test, filtering p-values for multiple testing using False
Discovery Rate) for all HGT detections performed by ShadowCaster (A), AlienHunter (B), DarkHorse
(C) and HGTector (D) in the genome of Rhodanobacter denitrificans 2APBS1. InterPro categories
highlighted in blue are explicitly related to heavy-metal metabolism. The analysis was conducted using
the Blast2GO PRO version.

4. Conclusions

We presented a new software called ShadowCaster, aimed to improve the detection quality of
HGT events in prokaryotes by reducing the number of false positives and the frequently disagreements
between the predictions made by parametric methods and by those with implicit phylogenetic models.
ShadowCaster is a hybrid approach that sequentially combines a parametric method consisting in
One-class SVM classifier trained with two types of compositional features (k-mers and codon usage)
under the shadow of an implicit phylogenetic model built on the basis that the number of orthologs
shared between two species is a proxy of the phylogenetic distance. Thus, it implements an evolutionary
model to calculate a Bayesian likelihood for each predicted atypical gene with an unusual sequence
composition according to the host genome background in order to detect “true” HGT events in
prokaryotes. The software successfully predicted close and distant HGT events in both artificially
modified and unaltered bacterial genomes. Its predictions showed the highest agreement with those
obtained by state-of-the-art HGT predictive tools, solving, to some extent, the issue addressed by
Dessimoz et al. [4] about how to combine different methods or analyzing their predictions without
affecting false positive rates.
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ShadowCaster can be found at https://github.com/dani2s/ShadowCaster as an open-source
software under the GPLv3 license. Source code is hosted at and documentation at https://shadowcaster.
readthedocs.io/en/latest/.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/756/s1.
File S1 contains Table S1: Settings used for running state-of-art methods and output processing during the
detection of HGT events in R. denitrificans 2APBS1; File S2: List of genomes/taxa considered for HGT detections at
multiple genome-scale.
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