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With the popularity of online-shopping, more and more delivery packages

have led to stacking at sorting centers. Robotic detection can improve sorting

e�ciency. Standard datasets in computer vision are crucial for visual detection.

A neuromorphic vision (NeuroVI) camera is a bio-inspired camera that can

capture dynamic changes of pixels in the environment and filter out redundant

background informationwith low latency. NeuroVI records pixel changes in the

environment with the output of event-points, which are very suitable for the

detection of delivery packages. However, there is currently no logistics dataset

with the sensor, which limits its application prospects. This paper encodes

the events stream of delivery packages, and converts the event-points into

frame image datasets for recognition. Considering the falling risk during the

packages’ transportation on the sorting belt, another falling dataset is made for

the first time. Finally, we combine di�erent encoding images to enhance the

feature-extraction on the YOLO network. The comparative results show that

the new datasets and image-confusing network can improve the detection

accuracy with the new NeuroVI.

KEYWORDS

neuromorphic vision, delivery packages, recognition and falling datasets, space

attention network, detection

Introduction

As the internet grows in popularity, more andmore people would like to shop online.

The increased amount of packages amount has led to the stacking of packages. Vision-

based robotic detection and grasp will become the trend at the packages’ sorting centers.

Large datasets are critical for the development of computer vision algorithms. At present,

many sensors, such as RGB cameras, radars, and depth cameras, have been adopted to

annotate object datasets (Ouaknine et al., 2020). The COCO, VOC, and KITTI datasets

are the most representative image datasets in the field of computer vision (Cheng et al.,

2020). The Cornell dataset is a representative dataset in the field of object grasping,

which uses rectangular annotation boxes (Liu et al., 2022a). With the use of the Kinect

camera, it has become popular to obtain RGB and depth information in the environment
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(Liu et al., 2017). However, the above datasets are mainly based

on RGB cameras, and are mainly used for indoor and outdoor

object recognition, industrial parts, etc. (Zhao et al., 2020). The

traditional sensors can simultaneously capture the background

and objects’ information, which increases the computational

complexity of the detection network. At the same time, when

the delivery packages move quickly, the RGB images will

appear blurred, which will also increase the detection difficulty.

Therefore, previous RGB-D based detection is only suitable for

slowlymoving objects. As the packages increase in amount, there

is an urgent need for faster testing.

Different from traditional cameras, NeuroVI can capture

pixels’ changes in the image and generate event points at a

certain pixel point. The outputs of the NeuroVI are a series of

digital “events” and “spikes” (Sun et al., 2021; Gallego et al.,

2022). In a static environment, only the moving packages can

lead to the pixel changes, especially breeding on the packages’

edges (Liu et al., 2022b). When the NeuroVI camera is fixed,

it can only capture the contours of delivery packages. So,

the NeuroVI has great advantages in capturing the moving

packages particularly. Therefore, the NeuroVI camera with the

ability of capturing color changes will be very suitable for the

movement detection of delivery packages, which will promote

the sorting speed of packages and the development of the

logistics industry in the future. However, there are currently

no delivery packages’ detection datasets associated with the

NeuroVI cameras.

Accurate sorting of delivery packages includes the

recognition and grasping operations (Xu et al., 2017). In

addition, packages may fall due to the rapid movement on

the sorting belt. In fact, the recognition and falling occur

pre-detection before the following robotic grasping operation.

Our research provides the only package detection dataset with

the NeuroVI camera (Mueggler et al., 2017a). Some other

object detection can also be achieved with NeuroVI, such as

moving cars, bicycles, pedestrians, and flying objects (Liu et al.,

2022a). They do not appear in the packages’ sorting scenario,

so it is not necessary for the package dataset to contain other

unrelated objects. Our work is the first to apply a NeuroVI

camera to the field of logistics in a sorting center. In summary,

our contributions include the following three aspects:

• We provide the dynamic recognition and falling datasets of

delivery packages for the first time.

• Three encoding methods are provided to achieve

different feature-extraction for network detection.

And the TAE instant encoding method can provide

a space attention branch layer to improve the

position-detection accuracy.

• The comparative detection experiments demonstrate that

our dataset and attention-based network can improve the

detection accuracy.

Related Work

The NeuroVI camera is an event-spired vision sensor. The

events stream produced by this sensor is recorded in the form

of a tuple unit [t, x, y, p], where t denotes the time of the event,

(x, y) denote the pixel coordinates of the event, and p denotes

the polarity of the event (Gallego et al., 2022). Based on the

principles of NeuroVI camera, the pixels along the contours of

the objects usually change harshly, and the features along the

edges can be more prominent and further enhanced. The depth

camera has similar properties to a certain extent, which can

show sudden depth changes along objects’ contours (Mueggler

et al., 2017b). Ni et al. (2011) utilized a depth camera to identify

objects. But depth cameras are susceptible to the depth changes

along slope surfaces. Besides, there may be no depth feedback

when encountering weak-reflection material.

As a new sensor from the last decade, one of the main

challenges faced by the NeuroVI camera is the lack of datasets,

which limits the further maturity of event cameras. Previously,

several datasets by NeuroVI camera were provided. Orchard

et al recorded a paragraph of pedestrian behavior with a

fixed NeuroVI camera, and the recordings could be played

automatically without image extraction (Serrano-Gotarredona

and Linares-Barranco, 2015). Krishnan and Koushik (2022)

provided a pedestrian-falling detection dataset, which was

mainly used for human safety warnings. Barranco et al. (2016)

recorded an image dataset of QR codes with a NeuroVI camera

for automatic navigation. A dataset of highway vehicles was

recorded, and the segmentation of the event points was achieved

by a clustering method (Chen et al., 2018). Li (2020) proposed

the first NeuroVI dataset for grasping dataset, but it is still

a statically grasping dataset with the external requirement of

light-compensation, not a dynamic grasping dataset for delivery

packages. In addition, there are no recognition and falling

datasets in the previous research. Although several datasets are

currently available, there is still a lack of datasets for sorting

scenarios, which limits its application prospects in the logistics

sorting field.

Compared with the traditional RGB-represented images,

NeuroVI cameras have the following advantages: simple pixel

generation, low latency, and high resolution. But the difficulty

faced by NeuroVI cameras is that they cannot directly generate

images like traditional cameras (Gallego et al., 2022). At present,

FRE and LIF spike methods are the most effective clustering

methods for NeuroVI images’ extraction (Cheng et al., 2020;

Zhang et al., 2021). The image of the FRE algorithm is the

accumulation of all event-points in a fixed time-interval, and

the image of the LIF algorithm is the accumulation of the spike

potential energy in the time-interval. For another time-interval

changing method, an events segmentation was introduced to

cluster the event-points with a fixed number of points (Song

et al., 2020). For the objects with different moving speeds, the
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encoding time-interval is adjusted instantly to display different

types of moving objects (Li and Shi, 2019). To filter the noise

events, an OTSU method is introduced to calculate the event-

points’ thickness threshold, which can distinguish the event

points and noise points (Liu et al., 2020). However, all the

encoding methods can lead to the profile-extension fluctuation

of moving objects, especially viewing the objects within a

closer distance. The extended or bolded profiles will reduce the

predicted position accuracy.

As for the visual detection, the traditional methods mainly

include SIFT method (Yi et al., 2015), optical flow method,

and frame difference method (Li et al., 2020). However,

traditional methods have poor feature-extraction capabilities,

so some researchers use techniques such as deep learning and

convolutional neural networks to extract features (Mahler et al.,

2018). Currently, detection algorithms based on convolutional

neural networks are usually two-stage classes, including R-CNN

and FastR-CNN (Ren et al., 2017; Zhang et al., 2019). Although

the accuracy of two-stage detection is high, the process is

complex and slow. In order to reduce the complexity of the

two-stage algorithm, some scholars have proposed single-stage

detection, such as SSD and YOLO (Lu et al., 2015; Zhou et al.,

2020). In addition, some scholars achieve better detection results

by adding channel or spatial attentions on the detection network

(Hori et al., 2017). However, the above research is all based on

single-frame image detection, which is limited by the delay of

image-sampling intervals, and the real-time position accuracy is

not satisfactory.

Materials and methods

In this section, we first introduce the system construction

for the two types of datasets. Then, the event stream’s

encoding methods are further elaborated. Finally, the YOLO-

attention detection network is designed to combine different

encoding methods.

The system’s construction and delivery
packages’ types

The datasets were recorded by a fixed bracket and a DVS346

camera. All the datasets were recorded at a logistics sorting

center. The DVS346 camera has a resolution of 346∗260 pixels.

Each event point is recorded as a tuple of [t, x, y, p] (Figure 1A).

The unit of t is us. The x parameter distributes in the range of [0,

345]. The y parameter distributes in the range of [0, 259]. And

the polarity p is a binary variable that takes the values 0 or 1. All

the information is recorded by the JAER software.

We conduct the detection experiment with the package’s

different viewing scales. The detection results show that our

method can reach the minimum resolution of 14∗13 pixels on

the NeuroVI image. In fact, the delivery packages are usually

distributed and sorted within several meters from the robot. And

the package’s viewing scale is far beyond the 85∗65 pixels. So, the

346∗260 pixel resolution is enough to achieve detection.

The DVS camera is fixed and owns a suitable viewing angle

to record themoving scope of the delivery packages. The viewing

zones of the camera are distributed at different distances, and

the sorting belts carrying the packages are set with different

moving speeds. As shown in Figure 2A, the delivery packages

come in three different shapes, namely cube type with a hard

surface, round type with a hard surface, and flat type with a

soft surface. The length-width-height ratio can be the definitive

criteria to categorize the package types for dataset annotation

with subjective judgment. Then, the packages can be annotated

in the datasets, which can be learned and predicted with a

state-of-the-art network. The definition can be found in Table 1.

Different packages (cube, round, flat) use different grasping

claws (Figure 3A), and the recognition dataset can be used to

select and replace the claws of the robots in advance. Falling

dataset can be used to warn of drop hazards.

Encoding methods

As the scattered event-points cannot be trained, the

traditional computer vision methods cannot be directly applied

to event-points from the NeuroVI camera. To deal with

this problem, this paper introduces three methods, namely

Frequency, TAE, and LIF. They can achieve the event-points’

accumulation for the delivery packages, and the encoding effects

are shown in Figure 2B. The encoding processes are drawn in

Figure 2C.

Frequency

Considering that more event points occur along the edges

of the object, we use the event frequency as the pixel value to

enhance the contour display of the packages (Chen et al., 2019).

The main challenge is the noise event-points with small event

point’s number. Compared with a large number of event-points

on the packages’ contours, the frequency method can restrict

the pixels’ gray values on the noise-events pixels. Therefore, the

encoding method can weaken the pixels appearance caused by

the discrete noise from the environment. We accumulate all

event points on each pixel, and the corresponding pixel value

of the event points is calculated in formula (1). The exponent

value (e−n) is greater than 0, which ensures that the calculated

value of the pixel is distributed in [0, 255]. In addition, with

the increase of event-points, the pixel value increases, which is

consistent with the principle of NeuroVI camera.

δ(n) = 255 ∗ 2 ∗ (
1

1+ e−n
− 0.5) (1)
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FIGURE 1

(A) The frame-based camera captured the RGB pixels with a fixed frequency. (B) The NeuroVI camera captured the pixel events with low latency

(Chen et al., 2020). (C) The delivery packages are needed to be grasped and sorted in the logistics center. (D) A robotic arm grasps the

packages automatically.

Among them, n denotes the number of positive/negative events

generated on the pixel (x, y), δ(n) denotes the pixel value of the

event points on the NeuroVI image, and its value is distributed

in [0, 255].

Time of active events (TAE)

In order to take advantage of the event timestamp recorded

by the NeuroVI camera, the TAEmethod is designed to enhance

the contours of the delivery packages. Specifically, regardless of

the polarity of the event points, the pixel value of each event

point will be calculated according to the maximum occurrence

time tp−max within the fixed time interval.

[TAE : t ⇒ tp−max(x, y)] (2)

In order to obtain the frame image of the event points, the pixel

value is optimized by calculating the time-interval between the

last time and the initial time in one accumulated period, and the

relevant calculation is shown in equation (3). The pixel value

calculated by the TAE method can capture the most recent time

features of the delivery packages. And the TAE method is able to

avoid bolding the profiles of the packages.

g(x, y) = 255*
tp-max − t0

T
(3)

Leaky integrate-and-fire (LIF)

According to the Leaky Integrate-and-Fire model, each pixel

can be viewed as a neuron associated with the potential energy

and the number of spikes. The potential energy is influenced by

both the number of event points and the elapsed time. When an

event occurs, the potential energy increases. When there is no

event point, the potential energy decreases gradually. Specially,

when the potential energy exceeds the threshold, a spike is

generated, and the associated potential energy is set to zero. In

a fixed time-interval, we count the number of spikes, which is

encoded as the pixel value of the frame image (Lansky et al.,

2016).

As shown in Figure 2B, the frequency or LIF encoding

methods will extend or bold the packages’ profiles. The TAE

algorithm can strengthen the appearance of the nearest event-

points and weaken the event-points in the time-interval’s initial

moment. Although the bolded profiles are beneficial to reduce

the class and object loss, they are harmful when improving the

box-position loss.

Space attention-based network model

Object detection is an important task in computer vision,

and is defined as finding target objects in an image. Object

detection not only requires identification of these objects, but

also requires marking the locations of these objects. There

are five information parameters on each object, and they are

the object’s center position (x, y), width-height (h and w),

and category.

The YOLO detection network has the advantages of a

fast detection speed, simple pipeline, and strong versatility.
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FIGURE 2

(A) The di�erent delivery packages, namely cube, round, and flat types. (B) The frame images encoded by the Frequency, TAE, and LIF methods.

(C) The link and outputs among the three encoding methods in a time-interval. The TAE algorithm can strengthen the display of the nearest

event-points and weaken the event-points in the time-interval’s initial moment, which can promote the packages’ actual appearance instantly.

TABLE 1 The definitive criteria of di�erent delivery packages.

Criteria Cube package Round package Flat package

Length-width ratio Rl−w ≤ 3 8 < Rl−w 3 < Rl−w ≤ 8

Length-hight ratio Rl−h ≤ 5 5 < Rl-h≤ 10 10 < Rl−h

Width-hight ratio Rw−h ≤ 4 4 < Rw−h ≤ 8 8 < Rw−h

Compared with other detection networks (FastR-CNN network

SDD, etc.), it can be adapted to the detection requirements of

different object’s sizes and categories. But YOLO also has the

disadvantage of lower position accuracy of objects. Therefore, we

combine the different encoding methods of NeuroVI to design a

spatial attention network to improve the detection accuracy.

YOLO is a single-stage object detector that consists

of backbone and head networks. Backbone network adopts

the Resnet structure to realize down-sampling and features-

extraction. The head network combines the features of backbone

to achieve up-sampling. The detection head contains nine

anchors, and the Non-maxima suppression is adopted to predict

the best prediction box.

The up-sampling extraction process can be facilitated by

a spatial attention model that can focus on feature attention
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FIGURE 3

NeuroVI-based YOLO detection model is fused with space attention. The TAE images are used to construct the space attention layer, which

avoids the time delay and improves the box-position accuracy. The backbone layer extracts features from the frequency or LIF image.

for location information. TAE images have the advantage of

recent event-points appearance, so the feature information can

be optimized by using the spatial attention mechanism with the

accessibility of TAE images. Different from the backbone layer,

the attention layer adopt a scaledmechanism on the TAE images.

Spatial attention is able to generate regions with different weight

distributions. The more obvious part on the TAE image will

be exerted with higher calculation weight. Since this method

only adds additional cross-layer connections on the basis of the

original network, it adds hardly any extra time and computation

in practical applications.

Through such connections, the features of different

resolutions and different semantic strengths are fused. The

feature maps with different resolutions are fused for object’s

detection. This ensures that each layer has the appropriate

resolution and strong semantic features.

Results

We built two NeuroVI-based datasets, including the

packages’ recognition and falling datasets (Specian et al., 2018).

All these datasets can be downloaded from the public website in

this paper.

Different motion directions, distances, and viewing angles

will lead to different counter recordings, which will influence the

detection accuracy of NeuroVI images. Therefore, the recording

process of the dataset should include all scenarios as much

as possible, including straight driving, turning, and different

viewing distances. The ring sorting belt can cover all of the above

scenarios. At the same time, the recordings of the dataset should

TABLE 2 The experimental settings of two datasets for delivery

packages.

Recognition

dataset

Falling dataset

Number of the packages 15 15

Shapes of package Cube, round and

flat

Cube, round and flat

Number of videos 9 6

Average video length 30 s 20 s

Scenarios Ring sorting belt Ring sorting belt

Sensor DAVIS346 Color DAVIS346 Color

Resolution 346 * 320 346 * 320

Movement Going straight,

turning left,

turning right

Falling down, falling down

with inclination, throwing

up, throwing up with

inclination

Number of annotated

frame images

3,920 3,400

be kept for a period of time, to avoid missing any viewing details.

A summary of the three datasets is shown in Table 2.

Delivery packages’ datasets for
recognition and falling

The recognition dataset of delivery packages are mainly

recorded from linear movement, turning-left movement,

and turning-right movements. Each recording lasts for 30s,
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FIGURE 4

(A) The event points and encoded frames of recognition dataset. (B) The event thickness of recognition dataset. (C) The event points and

encoded frames of falling dataset. (D) The event thickness of falling dataset. (E) The up-thrown experiment process with a falling angle of

(0◦∼90◦). (F) The down-thrown experiment process with a falling angle of (−90◦∼0◦).

including different viewing distances and moving speeds. And

these scenarios can be found in the packages’ sorting center.

Figure 4A shows the recognition datasets for three types of

delivery packages. By setting the time-interval as 20ms, the ideal

frame image can be extracted through the Frequency encoding

method. This is equivalent to ordinary RGB images captured

with a frequency of 50 fps. All the frame images were annotated

by LabelImg software.

The falling dataset includes 15 packages with different sizes.

The falling phenomenon is defined as dropping down off the

belt, not as the rolling movement. Each package includes up-

movement, down-movement, and incline-movement, which are
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FIGURE 5

(A) The process visualization of extraction features. (B) Di�erent packages’ prediction results with the recognition dataset. (C) Di�erent

packages’ falling detection with the falling dataset.

TABLE 3 The encoding time-intervals’ comparisons for di�erent

delivery packages.

Time

period

Box loss Class loss Object loss

Cube type 10ms 1e-2 0 4e-3

20ms 5e-3 0 2e-3

30ms 4e-2 0 3e-3

Flat type 10ms 1e-2 0 4e-3

20ms 5e-3 0 2e-3

30ms 5e-2 0 3e-3

Round type 10ms 1e-2 0 5e-3

20ms 4e-3 0 2e-3

30ms 3e-2 0 4e-3

Three mixed types 10ms 1e-2 1e-3 4e-3

20ms 6e-3 0 2e-3

30ms 3e-2 2e-3 3e-3

used to simulate the possible falling phenomenon caused by

high speed or collision with surroundings. Among them, the

packages’ images with a falling angle of (-90◦∼0◦) are marked

as falling samples in the down-thrown experiment. And the

packages’ images with a falling angle of (0◦∼90◦) are marked as

other falling samples in the up-thrown experiment. The process

of each falling experiment lasted for 20 s. The down-thrown

and up-thrown experiments can be utilized to make the falling

datasets with subjective annotation. If the package on the sorting

belt has a stable transportation, the falling angle is 0◦. Figure 4C

shows the frame images obtained by the encoding method.

Compared with the recognition dataset, the falling dataset

appears with obvious inclinations on the packages’ profiles,

which can be learned by the intelligent network to achieve the

falling dangers’ warning. Figures 4E,F shows an illustration to

explain the observed falling (up or down) movements, including

the successive moving sequences.

The event thickness comparisons for
di�erent packages

Event thickness is the event-points number on a pixel

within a fixed time-interval. If the event thickness is larger,

the corresponding pixel value will be more obvious, and

the packages’ profiles on the NeuroVI image will be more

obvious. So the higher event thickness will promote the package

appearance and detection work.

The time-interval is an important factor to influence the

packages’ appearance on the NeuroVI image. In Figures 4A,C,

the different time-intervals are set to compare the image

appearance effects. The larger time-interval, the more obvious

the packages’ appearance. As the packages move during the

interval, the profiles of the packages will be bolded or extended,

which will weaken the position prediction. So, the time-interval

should not be very large or small.

The moving speed is another important factor to influence

the NeuroVI image appearance. In Figures 4B,D, we compare

the event thickness in two datasets. In each dataset, the cube,

round, and flat packages were set to the same moving speed

and distance. It is easy to find that the cube package has

a larger event thickness than the other packages, which is

mainly contributed to by package’s longer profiles. At the

same time, the vertical velocity is overlaid when the package

falls, which makes the packages in the falling dataset have

a higher moving speed and event thickness than the other

two datasets.

The comparative detection experiments
with the recognition and falling dataset

Based on the recognition dataset and YOLO-attention

network, we predict the recognition results of different packages
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FIGURE 6

The training comparisons among di�erent datasets and networks. (A) The precision curves in training process. (B) The recall curves in training

process. (C) The F1 scores curves with the di�erent confidence. (D) The ROC curves with the validation dataset.

(Figure 5A). The tested part in the datasets contains both the

individual and mixed packages. As shown in Figure 5B, three

types of packages are all accurately predicted with the marked

detection accuracy. Based on our dataset, every recognition

accuracy of the packages is beyond 90%.

In Figure 5C, the falling dataset is utilized to warn of drop

hazards. There are two statuses: the “safe” label means that the

package is moving stably on the sorting belt, and the “fall” label

means that the package is dropping down. The distinguishing

criteria may be that the packages appear to be in inclined

or non-inclined states, which can be learned by the YOLO-

attention model. All the falling predictions have accuracies

beyond 85%.

Different encoding time-intervals can lead to different image

appearances, which will bring different training loss. Therefore,

we set different time-intervals to get the most feasible time-

interval. At the same time, the Cube, Flat, and Round packages

all appear with the same forms of event points, which raises

concerns on its discriminatory ability with the new datasets.

So, we also compare the training loss results of single and

mixed packages.

The training loss includes Box loss, Class loss, and Object

loss (Liang et al., 2018). The box loss is defined as the distribution

deviation between the actual and predicted boxes. The class loss

is defined as the labels’ deviation (cube, flat, or round labels; safe

or fall labels). The object loss is defined as whether there are

true objects on the image. The loss comparisons are recorded

in Table 3. When the interval time reaches 30ms, the box loss

reaches the maximum. This is because the larger time-interval

enlarges the package profiles and reduces the instant position
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display. When the interval time reaches 10ms, the object loss

reaches the maximum. This is because the lower time-interval

makes the package profiles less obvious. Experiments verify

that the encoding time interval of 20ms is most reasonable. As

there is only one class in the cube, flat, and round packages

respectively,the class losses of them in Table 3 are 0. The results

also demonstrate that the single and mixed NeuroVI datasets

own the ability to distinguish different types of packages.

In order to compare the superiority of NeuroVI images

and the YOLO-attention model, we also collected the package

dataset with the RGB images, and then conducted the

comparative detection experiments. There are 300 epochs in the

training process. Precision, recall, F1 score, and ROC are the

test metrics.

As shown in Figure 6, NeuroVI images have higher detection

accuracy and lower fluctuation than RGB images. Although they

both have high recall metrics, NeuroVI owns a faster and better

convergence rate. The main reason is that NeuroVI images

cannot be disturbed by complex backgrounds, and it can capture

the key morphological information of moving parcels.

The YOLO-attention network with the TAE spatial attention

achieves the best precision. For the recall metric, the YOLO-

attention model has smaller fluctuations than the YOLO model.

This is mainly because the TAE image can optimize the spatial

features’ weights, which is used to obtain more accurate spatial

location information for convolution operation.

F1 Score is another indicator that is used to measure

the accuracy of the detection model. It can be defined as a

weighted calculation of model precision and recall. By setting

different confidences during the training process, we calculated

the F1 Score. The ROC curve is related to the true positive

rate (TPR) and false positive rate (FPR). The larger the area

under the ROC curve, the better the detection performance of

the model. By comparing the F1 Scores and ROC curves, the

detection based on NeuroVI and YOLO-attention achieved the

best detection results.

Conclusion

In order to improve the efficiency of logistics sorting, we are

the first to provide the datasets of delivery packages with the

DAVIS346Color NeuroVI camera. According to the application

requirements, the packages’ datasets include recognition dataset

and falling dataset. Video files are recorded in the format of

(.aedat4) type. In order to facilitate neural network training,

three encoding methods of event streams are utilized to extract

the packages’ frame images. All the codes have been opened now.

In addition, three encoding methods are provided to achieve

different feature extraction for network detection with a space

attention layer.

The NeuroVI camera has the advantage of capturing pixel

changes in the environment, which can accumulate the profiles

of the objects. Therefore, the simplified frame image can simplify

the design of the network, improve the learning efficiency,

and output stable detection results. At the same time, the

high-speed processing capability of the NeuroVI camera can

improve the detection speed, especially for the delivery packages’

dynamic grasping. In the next work, we will design a lightweight

detection network with the above datasets, and achieve a faster

grasping operation.

In summary, our recognition and grasping datasets can

improve the detection speed and dynamic grasping accuracy,

which can sort more delivery packages within a limited time.

Although a high transmission speed may lead to dropping risk,

our falling dataset can provide online feedback and alarms. We

hope that the established dataset can promote the application of

the NeuroVI camera in the field of logistics sorting, and improve

the sorting speed of delivery packages.
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