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Abstract 
Ovaries are central to development, fertility, and reproduction of women. A particularly interesting feature of ovaries is their accelerated aging 
compared to other tissues, leading to loss of function far before other organs senesce. The limited pool of ovarian follicles is generated before 
birth and once exhausted, menopause will inevitably commence around the age of 50 years marking the end of fertility. Yet, there are reports 
suggesting the presence of germline stem cells and neo-oogenesis in adult human ovaries. These observations have fueled a long debate, 
created experimental fertility treatments, and opened business opportunities. Our recent analysis of cell types in the ovarian cortex of women 
of fertile age could not find evidence of germline stem cells. Like before, our work has been met with critique suggesting methodological 
shortcomings. We agree that excellence starts with methods and welcome discussion on the pros and cons of different protocols. In this com-
mentary, we discuss the recent re-interpretation of our work.

In 2020, we presented the first single-cell analysis of the  
adult human ovarian cortex.1 We subjected over 24 000 cells 
isolated from 7 healthy patients of reproductive age to single-
cell RNA sequencing (scRNA-seq), and identified 6 main cell 
types: oocytes, granulosa cells, immune cells, endothelial cells, 
perivascular cells, and stromal cells. Our data is in agreement 
with independent single-cell datasets describing granulosa 
cells, immune cells, vascular system cells, and stroma/theca 
cells in adult human ovarian medulla,2 adult non-human 
primate ovaries,3 and adult mouse ovaries.4 None of these 
scRNA-seq studies has reported germline stem cells although 
these cells should be present in various species.5 Germline 
stem cells (also called oogonial stem cells [OSCs], egg precur-
sor cells and non-oocyte germ cells) in adult human ovaries 
were first reported a decade ago together with a protocol 
for their antibody (Ab) based isolation by fluorescence- or 
magnetic-activated cell sorting (FACS or MACS) targeting an 
extracellular domain of DDX4.6,7 Following these protocols, 
we isolated such putative OSCs from human ovaries (DDX4 
Ab+ cells) and carried out scRNA-seq and flow cytometry  

analysis, which revealed these cells to be perivascular cells.1 
The findings of our scRNA-seq study are in agreement with 
many others who have not been able to validate human ovar-
ian DDX4 Ab+ cells as OSCs,8-10 or simply have not found 
germline stem cells among thousands of analyzed cells.2-4 
Considering the positive publication bias in research, we find 
it likely that many more groups have similarly failed to iden-
tify OSCs but have not reported it.

The age of women at first childbirth is increasing globally, 
and many will discover that their fertility is already declining 
by the time pregnancy is desired. The treatment of sub- and 
infertility in aging women is a growing challenge in reproduc-
tive medicine, and also presents a lucrative business opportu-
nity. For example, the DDX4 Ab+ cells have already been used 
in experimental fertility treatments targeting women with 
low-quality oocytes.11 The autologous germline mitochon-
drial energy transfer (AUGMENT) technology by Ovascience 
promised to boost the quality of oocytes by injection of ex-
tra mitochondria extracted from “egg precursor cells” (a.k.a. 
OSCs).12 The first randomized controlled study assessing the 
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AUGMENT treatment was discontinued because the proto-
col led to abnormal embryo development and significantly 
reduced blastocyst rates.13 In this triple-blinded, randomized 
controlled study, the OSCs were isolated by Ovascience fol-
lowing the protocols established by its founders.7,13

Recent criticism presented by Alberico et al regarding our 
study on cell types in adult human ovarian cortex suggests 
that we missed OSCs due to problems with (1) cell sorting, 
(2) numbers of cells, and (3) bioinformatic analyses.14 Further 
arguments presented relied on numbers of papers published 
on the topic, and on the importance of OSCs for fertility 
treatments. We agree that the clinical implications of stem 
cells generating functional new oocytes in humans are signif-
icant, and for that reason the existence of these cells must be 
robustly established, and their function and biological signif-
icance thoroughly characterized in pre-clinical settings before 
further clinical experiments are carried out.

It was proposed that our data identifying DDX4 Ab+ cells 
as perivascular cells were a result of accidental sorting of vas-
cular system cells due to autofluorescence from collagen and 
elastin in the red channel.14 Evidence for this was provided 
by experiments where a population of cells was sorted from 
cow ovaries based on autofluorescence. Then, the authors 
permeabilized the cells and showed them to be positive for 
cluster of differentiation 31 (CD31) and smooth muscle actin 

(SMA).14 Importantly, CD31 is a marker for endothelial cells, 
and we did not have significant numbers of endothelial cells 
in the DDX4 Ab+ population.1 In addition, collagen and elas-
tin are not specific to perivascular cells in human ovaries.15 
Finally, our antibody validation experiments that compared 
3 DDX4 antibodies in parallel1 already showed that only 
the DDX4 Ab specifically recommended for OSC isolation6,7 
separated a cell population, thereby contra-indicating a de-
tection based on mere autofluorescence. Here, we set up new 
experiments to show that the DDX4 Ab+ population can be 
captured also with other fluorochrome-conjugates (Fig. 1). In 
addition, it is important to remember that the recommended 
DDX4 Ab labels perivascular cells in situ in ovarian cortex in 
addition to correctly labeling oocytes.1

A vivid discussion concerning sufficient numbers of cells 
for scRNA-seq experiments to uncover cell types is also on-
going.14 The number of cells needed for identification of rare 
cell types can be estimated by statistical considerations. If an 
average percent yield of 1.7% DDX4 Ab+ cells in ovarian 
cortex is expected in FACS experiments, as reported by the 
authors6,7 (a number that the authors mathematically convert 
to 0.014% occurrence in the ovaries), then identification of 
this population by scRNA-seq would require in total 1800 
ovarian cortical cells, assuming 6-10 clusters and aiming to 
find at least 20 OSCs (https://satijalab.org/howmanycells/). In 

Figure 1. Isolation of DDX4 Ab+ cells with different fluorescent probes. DDX4 Ab+ cells were detected using secondary Ab labeled with either AF594 
(excited by 561 nm laser, upper panel) or AF647 (excited by 640 nm laser, lower panel). DDX4-AF594 detects 8.8% of the cells as DDX4 Ab+ and 
allows for better separation of the 2 populations compared to DDX4-AF647 that detects 5.2% DDX4 Ab+ cells. Both labeling strategies mainly target 
perivascular cells identified as positive for CD146 and CD9. Green marks cells positive for DDX4 Ab, and red marks cells double positive for CD146/CD9. 
As a negative control, the isotype control Ab recommended by Abcam (ab171870) was used. Abbreviations: Ab, antibody; FSC, forward scatter.
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Figure 2. Comparison of scRNA-seq output using different versions of Cell Ranger. (A) Histogram showing the UMI counts per cell (left graphs) and 
percentage of mitochondrial genes per cell (right graphs) in Cell Ranger v2 and v3 outputs. Use of Cell Ranger v3 increased the number of cells 
with low UMI counts and with a higher percentage of mitochondrial genes when compared to v2. Blue: sequencing output using Cell Ranger v2, 
red: sequencing output using Cell Ranger v3. C-sec, caesarean section; GRP, gender reassignment patient. (B) Scatter plot of the germ cell cluster 
cells showing the oocyte (FIGLA, OOSP2, GDF9, and ZP3) and oogonial stem cell (PRDM1, DPPA3, and DAZL) marker expression scores based on 
Cell Ranger v6. The 3 non-oocyte germ cells/OSCs identified with the “optimized workflow” using Cell Ranger v6 are marked with purple, and the 2 
identified by the Cell Ranger v3 analysis are marked with pink. (C) Heatmap showing the similarity of the cells in the germ cell cluster (analyzed by Cell 
Ranger v6) to female fetal gonadal cells. The cell identity assigned by SingleR, UMI counts, and cell identity suggested by Alberico et al. are shown. 
Similarity scale indicates the transcriptional similarity of annotated cells ranging from low (dark blue) to high similarity (yellow) to fetal germ and somatic 
cells. Abbreviation: FGC, fetal germ cell; RA retinoic acid.
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each of our 4 samples, cells of >90% viability were prepped to 
the libraries with the aim to capture 8000 viable cells, and in 
agreement, the data output consisted of 5715 cells in unsorted 
gender reassignment patient (GRP) sample, 6445 cells in un-
sorted caesarean section (C-sec) sample, 5479 cells in DDX4 
Ab+ sorted sample, and 6690 cells in DDX4 Ab-sorted sam-
ple. Hence, the cell numbers in our experiments far exceeded 
the recommended numbers needed to detect populations with 
even smaller expected frequencies.

Cell clusters that form the basis of cell type identification are 
defined by algorithms that bring cells together based on their 
transcriptomic similarity and difference to other cells present 
in the input data. Therefore, introducing a reference cluster of 
cells to the data can help identify cells that would not have 
otherwise formed a separate cluster. We integrated our adult 
ovary datasets with human fetal ovary data consisting of both 
ovarian somatic and germline cells.16 Robust co-clustering 
was found between fetal and adult ovarian somatic cells as 
well as oocytes, confirming the known ovarian biology where 
prenatally formed immature oocytes last into adulthood.1 
No adult cells clustering together with fetal retinoic acid 
responsive or meiotic germ cells were found.1 In our set of  
24 329 adult cells, 4 cells co-clustered with mitotic fetal germ 
cells. However, these cells did not express any markers of 
pluripotency, germline or oocytes.1

Additional concerns have been presented regarding our bi-
oinformatic analyses, and a workflow optimization based on 
re-analyzing our data with newer versions of commonly used 
analysis pipelines and packages (Cell Ranger and Seurat) to-
gether with user-friendly visualization application provided 
by 10× Genomics (Loupe Browser) have been presented as the 
solution that enables discovery of OSCs in our data.14 Single-
cell analysis technologies are rapidly evolving, allowing for 
more efficient identification of cellular identity and cell and 
molecule counting, enabling the re-evaluation of published 
datasets. The presented re-analysis focused on our unsorted 
ovarian cortical cells. When Cell Ranger v3 was applied, over 
27 000 cells were discovered14 compared to the 12 160 found 
by us using Cell Ranger v2.1 Importantly, the cell suspension 
that we used for library preparation was calculated to con-
tain 8000 viable cells for each sample based on MoxiZ au-
tomated cell counting, which was independently confirmed 
by the sequencing core facility by manual Bürker chamber 
counting prior to library preparation, making the discovery 
of over 27 000 cells in total from the 2 unsorted samples by 
changing bioinformatic pipeline surprising. Indeed, most of 
the new “cells” added by Cell Ranger v3 have low unique 
molecular identifier (UMI) counts and high mitochondrial 
gene expression, which is a known feature of v3 and indic-
ative of non-viable cells, cellular debris, and empty droplets 
(https://kb.10xgenomics.com) (Fig. 2A).17 This re-analysis 
also increased the number of cells in the germ cell cluster 
from 18 to 62 cells, out of which 2 were now suggested as 
OSCs (“non-oocyte germ cells”). From here, the optimized 
pipeline presented by Alberico et al took the re-analysis to 
Cell Ranger v6 and replaced Seurat with Loupe Browser in 
the downstream analyses. This approach yielded again over 
27 000 cells, and a germ cell cluster of 62 cells (or 65 cells by 
Seurat). This time, 3 of these cells were suggested as OSCs 
based on the co-expression of a combination of germline 
genes (DPPA3, IFITM3, TUBB8, and DDX4). Importantly, 
the 2 OSCs from v3 (identified based on expression scores of 
PRDM1, DPPA3, and DAZL) and the 3 from v6 are not the 

same (Fig. 2B). The v6 cells were annotated as oocytes in the 
v3 data, and vice versa. The 3 v6 OSCs express relatively high 
levels of oocyte markers (Fig. 2B) and when compared to fetal 
germline and somatic cells by SingleR analysis,18 they were all 
identified as oocytes (Fig. 2C). None of the cells in the germ 
cell cluster was annotated as mitotic, retinoic acid responsive, 
or meiotic germ cell by SingleR (Fig. 2C). Instead, some of 
the “new cells” in the germ cell cluster had more resemblance 
with granulosa cells than germline cells (Fig. 2C).

It has also been correctly noted that the perivascular 
cells that we isolated by FACS targeting DDX4 do not ex-
press DDX4 mRNA,14 as our in situ RNA-hybridization and 
scRNA-seq experiments previously showed.1 In conclusion, 
our data show that the recommended polyclonal rabbit Ab 
from Abcam targeting C terminus of DDX4 non-specifically 
binds to perivascular cells, in addition to labelling DDX4 
in oocytes. This does not motivate the use of this Ab to i-
solate OSCs. We hope that these data would encourage all 
laboratories working with DDX4 Ab for germline stem cell 
isolation to employ stringent quality control parameters for 
characterizing and identifying putative OSCs.

We consider it essential for meaningful further development 
in the field that any germline stem cells, regardless of what 
they are called, are thoroughly characterized on single-cell 
level and by multiple technologies to be certain of their na-
ture. This is equally applicable to “oocyte-like cells” that are 
reported to develop spontaneously or after elaborate differen-
tiation protocols in cell cultures.6,19-25 Extensive work in mice 
has shown that generation of functional oocytes form regular 
embryonic stem cells is possible but requires closely mimick-
ing the sequential steps of germline development in vivo.26 
Even though mouse embryonic stem cells can be also directly 
programmed to oocyte-like cells, which can even be fertilized, 
the embryos do not develop to blastocysts due to aberrant nu-
clear maturation of the oocytes.27 These observations are crit-
ical, considering that the generation of viable offspring from 
DDX4 Ab+ cell derived oocytes in mice remains to be shown 
despite nearly 2 decades of research.6,21

To aid the community in taking ovarian research even further, 
we have prepared a user-friendly online tool where our data can 
be freely browsed (https://eovary.ki.se/ generated by shinyCell28). 
We hope that our comprehensive dataset will lead to more com-
parative studies between laboratories that can help reveal fasci-
nating, yet undiscovered details of human ovarian biology.
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