
RESEARCH ARTICLE

Diagnostic efficiency of RPA/RAA integrated

CRISPR-Cas technique for COVID-19: A

systematic review and meta-analysis

Xiaoyu Zhang, Xiao Ge, Fangyuan Shen, Jinjuan Qiao, Yubo Zhang, Heng LiID*

Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China

* Leehome1985@163.com

Abstract

Objective

To evaluate the diagnostic value of recombinase polymerase/ aided amplification (RPA/

RAA) integrated clustered regularly interspaced short palindromic repeats (CRISPR) in the

diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Methods

We searched relevant literature on CRISPR technology for COVID-19 diagnosis using

"novel coronavirus", "clustered regularly interspaced short palindromic repeats" and "RPA/

RAA" as subject terms in PubMed, Cochrane, Web of Science, and Embase databases.

Further, we performed a meta-analysis after screening the literature, quality assessment,

and data extraction.

Results

The pooled sensitivity, specificity and a rea under the summary receiver operator character-

istic curve (AUC) were 0.98 [95% confidence interval (CI):0.97–0.99], 0.99 (95% CI: 0.97–

1.00) and 1.00 (95% CI: 0.98–1.00), respectively. For CRISPR-associated (Cas) proteins-

12, the sensitivity, specificity was 0.98 (95% CI: 0.96–1.00), 1.00 (95% CI: 0.99–1.00),

respectively. For Cas13, the sensitivity and specificity were 0.99 (95% CI: 0.97–1.00) and

0.95 (95% CI: 0.91–1.00). The positive likelihood ratio (PLR) was 183.2 (95% CI: 28.8,

1166.8); the negative likelihood ratio (NLR) was 0.02 (95% CI: 0.01, 0.03).

Conclusion

RPA/RAA integrated with CRISPR technology is used to diagnose coronavirus disease-19

(COVID-19) with high accuracy and can be used for large-scale population screening.
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1 Introduction

The World Health Organization (WHO) declared COVID-19 a Public Health Emergency of

international concern on January 30, 2020, and a pandemic on March 11, 2020 [1, 2]. COVID-

19 is extremely harmful to the economy and public health of countries around the world, and

we urgently need an efficient and accurate diagnostic method for large-scale population

screening.

Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal

swabs is commonly used to confirm the clinical diagnosis [3]. However, RT-PCR requires ded-

icated equipment and well-trained professional technicians, making them expensive and diffi-

cult to apply in areas with poor medical resources [4]. Therefore, it is particularly important to

develop diagnostic test assays that are more rapid and easier to implement than RT-PCR.

Recently developed Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) diag-

nostic technology has shown high sensitivity, specificity, rapidity, and convenience in patho-

gen technology [5, 6]. At present, the methods of combining recombinase polymerase/ aided

amplification (RPA/RAA) with CRISPR/Cas systems (mostly Cas9, Cas12, and Cas13) have

been used to detect SARS-CoV-2. We synthesized the relevant studies on the application of

RPA/RAA integrated with CRISPR in the diagnosis of COVID-19 and evaluated its diagnostic

value for COVID-19 to provide a theoretical basis for rapid large-scale screening of COVID-

19.

2 Principle of CRISPR/Cas system

The CRISPR-Cas system establishes adaptive immunity in three stages: adaptation, expression,

and interference [7]. When exogenous genes invade bacteria, bacteria cut exogenous genes

into several spacer sequences and insert them into the bacterial genome. Guide RNAs encoded

in CRISPR repeat region sequences are transcribed and processed into single CRISPR RNAs

(crRNAs) that guide Cas proteins to recognize and cleave invading DNA or RNA in a

sequence-dependent manner, which is the cis-cleavage activity of Cas proteins [8]. In addition,

there is a trans-cleavage activity in Cas12 or Cas13 proteins, which can non-specifically cleave

all single-stranded DNA (ssDNA) or single-stranded ribonucleic acid (ssRNA) in the system

[9].

The complete genome of SARS-CoV-2 is about 30 kb, of which the first 2/3 close to the 5

’end contain open reading frame 1ab (ORF1ab) genes encoding 16 non-structural proteins,

and the last 1/3 contain genes encoding structural proteins including envelope protein (E),

spike protein (S), nucleocapsid protein (N) and membrane protein (M) genes [10]. The cleav-

age activity of the Cas protein is provoked by exogenous delivery of crRNA that can specifically

bind to the gene sequence in SARS-CoV-2. In the Cas12/Cas13-based systems, the presence of

a cleavage reaction can be detected with a fluorescence reader or lateral flow strips by placing

single-stranded DNA reporters labeled with fluorophore and biotin/quenching group [11, 12];

other Cas proteins can accurately detect the crRNA sequence of SARS-CoV-2 using their activ-

ity of targeted binding [13].

3 COVID-19 molecular diagnosis based on CRISPR/Cas system

3.1 CRISPR/Cas3 or Cas9 based diagnostics for COVID-19

Azhar et al [14] developed a method FELUDA (FnCas9 editor linked uniform detection assay)

for the detection of SARS-CoV-2 based on the CRISPR-Cas9 system using FnCas9, a homolog

of Cas9. FELUDA does not require trans-cleavage of reporter molecules, directly uses the

digestion of Cas9 for nucleic acid detection, has a specificity and sensitivity of 98% and 96%,

PLOS ONE Meta-analysis of RPA/RAA combined with CRISPR in the diagnosis of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0276728 October 26, 2022 2 / 15

https://doi.org/10.1371/journal.pone.0276728


and is also highly accurate in detecting pathogenic single nucleotide variants and nucleic acid

sequence analysis. Using the collateral single-stranded DNA cleavage activity of Cas3, Yoshimi

et al developed a rapid (within 40 min), low-cost, instrument-free SARS-CoV-2 detection

method, named CONAN [15] (Cas3-operated nucleic acid detection). CONAN not only

detects SARS-CoV-2 in clinical samples but also offers specific detection of single-base-pair

mutations in influenza virus A variants.

3.2 CRISPR/Cas12 based diagnostics for COVID-19

In 2020, based on the trans-cleavage of Cas12, Zhang Feng et al [16] developed STOP (SHER-

LOCK Testing in One Pot) for the detection of new-crowned viruses. STOP integrated sample

processing, nucleic acid amplification, and detection in one tube, avoiding the effect of false

positives caused by repeated uncapping. STOP is also combined with loop-mediated isother-

mal amplification technology (LAMP), which improves the sensitivity of the product, with

viral loads as low as 10–100 copies/μL. Broughton et al [17] combined the previously estab-

lished CRISPR-Cas12a-based targeting DETECTR (DNA endonuclease-targeted CRISPR

trans reporter) and RT-LAMP technologies to detect SARS-CoV-2 N and E genes within forty

minutes. The AIOD-CRISPR (all-in-one dual CRISPR-Cas12a) detection technology devel-

oped by Ding et al [18] uses a pair of Cas12a-crRNA complexes to bind different sites of the

target sequence for specific recognition by targeting the nucleoprotein (N) gene of SARS--

CoV-2. By adding a single-stranded DNA fluorophore-quencher (ssDNA-FQ) reporter, the

detection results can be directly read by naked eyes in the background of blue LED lamp.

3.3 CRISPR/Cas13 based diagnostics for COVID-19

Jennifer Doudna et al [19] combined two different CRISPR enzymes, Cas13 and Csm6, to cre-

ate a method that can detect a small amount of RNA virus within one hour, known as FIND-IT

(Fast Integrated Nuclease Detection In Tandem), and this amplification-free technology pro-

vides a rapid and inexpensive diagnostic strategy for COVID-19. To address the need for

reagents as well as expensive equipment, Rauch et al [20] developed CREST (Cas13-based,

Rugged, Equitable, Scalable Testing) using the advantage of widely available enzymes (Cas13),

low-cost thermocyclers (DIY-Bio and mini PCR/mini 16), and easy-to-use fluorescent visual-

izers, providing a bedside solution for COVID-19. The LOD of the CREST protocol was up to

10 copies of a target RNA molecule per microliter which unveiled that CREST is as sensitive as

the corresponding RT-qPCR. At the same time, the authors also proposed PEARL [21] (Pre-

cipitation Enhanced Analyte Retrieval), which can avoid a convenient RNA extraction method

using commercial kits, and the scalability of CREST can be further improved if it is used in

combination.

We summarized various CRISPR/Cas based detection platforms (Table 1).

Table 1. CRISPR-based COVID-19 nucleic acid detection system.

platform name Cas protein Time (min) Lod(copy/μL) Target genes Amplification system References

FELUDA Cas9 55 10 N, S RT-PCR [14]

CONAN Cas3 40 1 N RT-RPA [15]

STOP Cas12 50 100 N RT-LAMP [16]

DETECTR Cas12 45 10 N RT-LAMP [17]

AIOD-CRISPR Cas12 20 5 N RT-RPA [18]

FIND-IT Cas13 20 31 N, S, ORF1ab - [19]

CREST Cas13 120 10 N PCR [20]

https://doi.org/10.1371/journal.pone.0276728.t001
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4. Materials and methods

Article screening and data extraction in our work were followed by the proposal of the

Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA-P) 2009

(S1 Checklist).

4.1 Search strategy

We used "COVID-19" or "SARS-CoV-2" or "coronavirus disease-19" or " severe acute respira-

tory syndrome coronavirus 2" and "CRISPR" or "clustered regularly interspaced short palin-

dromic repeats" as subject terms or keywords to search the literature published in PubMed,

Embase, Cochrane Library, and Web of Science before April 2, 2022 (S1 File).

4.2 Study selection

All articles were screened according to the inclusion and exclusion criteria. The inclusion cri-

teria were as follows: (1) The study subjects were suspected or confirmed COVID-19 cases; (2)

both peer-reviewed and preprint original articles on RPA/RAA integrated CRISPR/Cas tech-

nology; (3) The purpose of the research is to evaluate the accuracy of CRISPR diagnostic

method; (4) The extracted or calculated data could be used to obtain true-positive (TP), false-

positive (FP), false-negative (FN), and true-negative (TN) values. The exclusion criteria were

as follows: (1) Non-English Literature; (2) Non-Clinical research literature consisting of con-

ference abstracts, reviews, and case reports; (3) studies based only on either RPA/RAA or

CRISPR-Cas assays related to COVID-19.

4.3 Data extraction

We made a self-made scale to extract relevant information for inclusion in the study, includ-

ing: (1) study first author;(2) year of publication;(3) TP, FP, FN, and TN;(4) location of study;

(5) types of specimens;(6) targeted genes;(7) the type of Cas protein. When controversial

results were encountered, they were negotiated by a third researcher.

4.4 Quality assessment

QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) is currently the most rec-

ommended quality evaluation tool for diagnostic accuracy tests and is mainly composed of

four parts: case selection, test to be evaluated, gold standard, case process and progress. Litera-

ture quality evaluation was performed by two investigators independently according to QUA-

DAS-2 to evaluate the included literature, and when inconsistent evaluation was encountered,

it was solved by negotiation.

4.5 Statistical analysis

The Spearman correlation coefficient and I2 test reflect the heterogeneity of threshold and

non-threshold effects, respectively. We assessed the sensitivity, specificity, and diagnostic odds

ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLP) of the 95%

confidence interval (CIs) between RPA/RAA combined with CRISPR and the reference stan-

dard. We assessed diagnostic accuracy by summary receiver operating characteristic (SROC)

curves and area under the curve (AUC), with high accuracy at AUC above 0.9. We used Deeks

’ funnel plot to determine whether this article had publication bias. The meta-analysis was

undertaken using STATA17.0 and Meta-Disc 1.4. Quality assessments of included studies

were carried out with RevMan 5.4 and SPSS 26. Differences with P< 0.05 were considered sta-

tistically significant.
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5. Results

5.1 Study selection

Following title, abstract, and full text screening according to inclusion and exclusion criteria, a

final 25 articles were included for descriptive and numerical analysis in this scoping review, as

outlined in the PRISMA flow diagram (Fig 1). The general information on the included studies

is presented in Table 2.

5.2 Literature quality evaluation

Risk of bias assessment and applicability concerns for each study was carried out using the

QUADAS-2 tool. In terms of case selection, because COVID-19 is more special and case selec-

tion has some limitations, studies have a high risk of bias; In terms of diagnostic tests to be

evaluated, because there is no clear experimental design or unclear expression, some studies

do not perform diagnosis by blind method, so the risk of bias is mostly unclear; In terms of ref-

erence standard and case process, real-time PCR was used for all reference standard tests, so

Fig 1. Flow diagram of the study selection process.

https://doi.org/10.1371/journal.pone.0276728.g001
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the risk of study bias was a low risk of bias. In terms of applicability, except for case selection,

which has some limitations, the other aspects have a high evaluation, so the overall quality of

the literature included in the study is good.

5.3 Meta analysis

5.3.1 Diagnostic threshold effect analysis and heterogeneity test. The results showed no

heterogeneity caused by the threshold effect as the spearman correlation coefficient was 0.327

and the P value was 0.111 (> 0.05). However, it was observed that there was significant hetero-

geneity caused by non-threshold effects. The sensitivity of I2 was 42.54, and the specificity of I2

was 72.20, indicating that there was overall heterogeneity, but the sensitivity and specificity of

most studies are close to 1 (Fig 2 and Table 3). And meta-regression was conducted to perform

sources of heterogeneity.

5.3.2 The diagnostic effect of CRISPR. Diagnostic efficacy parameters for RPA/RAA

combined with CRISPR were derived by pooling effect sizes. The pooled sensitivity, specificity,

PLR, NLR and DOR were 0.98 (0.97,0.99), 0.99 (0.97,1.00), 183.2 (28.8,1166.8), 0.02 (0.01,0.03)

and 10702 (1765,64903) (Table 3), respectively. In addition, the SROC curve showed that AUC

was 1.00 (0.98–1.00) (Fig 3).

Table 2. Major characteristics of included studies.

author year TP FP FN TN Cas gene Region type References

Yin 2021 8 0 0 13 Cas12 N, S United States NPS [22]

Ali 2022 74 3 0 17 Cas9 orf1b Saudi Arabia NPS [23]

Patchsung 2020 78 3 0 73 Cas13 S Thailand NPS/OPS [24]

Nimsamer 2021 42 0 3 63 Cas12 N, S Thailand NPS/OPS [25]

Huang 2021 2 0 0 7 Cas12 N China NPS/OPS [26]

Talwar 2021 12 0 0 8 Cas12 S Korea nasal swabs/sputum [27]

Mayuramart 2021 51 0 2 111 Cas12 S Thailand NPS/OPS [28]

Hou 2020 52 0 0 62 Cas12 orf1ab China NPS/ bronchoalveolar lavage fluid specimens [29]

Tian 2022 15 0 1 16 Cas12 O, N China NPS [30]

Lu 2022 98 0 6 100 Cas12 orf1b, E China NPS [31]

Ma 2020 13 0 0 11 Cas12 E China NPS [32]

Helena 2021 26 1 1 20 Cas13 N United States saliva [33]

Sun 2021 6 0 0 9 Cas12 N China swab samples [34]

Chen 2021 11 0 0 16 Cas12 - United States NPS [35]

Azhar 2021 14 0 1 32 Cas9 N, S India saliva/blood [14]

Wang 2020 16 0 0 15 Cas12 E China - [12]

Tsou 2021 10 0 0 12 Cas12 M, N United States NPS [36]

Xiong 2020 11 0 0 11 Cas12 N China NPS [37]

Azmi 2021 45 0 2 29 Cas13 S, N, E, RdRp India saliva [38]

Zhang 2022 62 0 0 25 Cas13 N China - [39]

Li 2021 243 25 3 378 Cas13 N China swab samples/sputum [40]

Erhu 2021 34 1 0 29 Cas12 E, Orf1ab China NPS/saliva [41]

Ning 2021 30 0 0 30 Cas12 N, E, Orf1ab United States NPS [42]

Ding 2020 8 0 0 20 Cas9 E, Orf1ab United States nasal swab/saliva [18]

Marsic 2021 54 2 0 4 Cas9 N Saudi Arabia nasal swab/saliva [43]

TP: true-positive; FP: false-positive; FN: false-negative; TN: true-negative (TN); NPS: nasopharyngeal swab; OPS: oropharyngeal swab; orf1ab: open reading frame 1ab;

RdRp: RNA-dependent RNA polymerase

https://doi.org/10.1371/journal.pone.0276728.t002
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5.3.3 Subgroup analysis

We performed the meta-regression based on the variables including publication country, sam-

ple type, Cas type, and number of Genes, to explain this heterogeneity. Meta-regression analy-

sis indicated that region and Cas type were the sources of heterogeneity for sensitivity and

specificity. Additionally, the P value of the sample type was less than 0.05 indicating that it

might be a significant source of heterogeneity in specificity (Table 4).

5.3.4 Sensitivity analysis and publication bias

Individual articles were eliminated one by one, and then recalculated and analyzed to observe

I2, P values, and the combined effect size and 95% CI after individual removal. The results sug-

gest that a single article has little effect on the above indicators, indicating that the study results

are stable. Deeks’ funnel plot was used to evaluate whether there was a publication bias in the

included studies; P< 0.05 indicates significant publication bias (Fig 4).

Fig 2. Forest plots of pooled sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0276728.g002

Table 3. Pooled effect size.

Parameter Estimate 95% CI I2

Sensitivity 0.98 (0.97, 0.99) 42.54

Specificity 0.99 (0.97, 1.00) 72.20

Positive Likelihood Ratio 183.2 (28.8, 1166.8) -

Negative Likelihood Ratio 0.02 (0.01,0.03) -

Diagnostic Odds Ratio 10702 (1765,64903) -

https://doi.org/10.1371/journal.pone.0276728.t003
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6. Discussion

The results of this study indicate that the detection of COVID-19 by RPA/RAA integrated

CRISPR technology is a technique with high diagnostic efficacy. In this meta-analysis, we have

included only those articles which were solely based on RPA/RAA integrated CRISPR tech-

nique used for COVID-19 diagnosis. After the implementation of several inclusion and

Fig 3. SROC curve of CRISPR for the diagnosis of COVID-19.

https://doi.org/10.1371/journal.pone.0276728.g003

Table 4. Meta-regression.

Covariate category studies Sensitivity P1 Specificity P2

Cas Cas12 16 0.98 (0.96–1.00) 0.04 1.00 (0.99–1.00) 0.00

Cas13 5 0.99 (0.97–1.00) 0.95 (0.91–1.00)

Gene single 14 0.99 (0.98–1.00) 0.20 0.98 (0.96–1.00) 0.89

Multiple 10 0.96 (0.94–0.99) 1.00 (1.00–1.00)

Region Domestic 11 0.98 (0.97–1.00) 0.01 1.00 (0.99–1.00) 0.00

Abroad 14 0.98 (0.97–1.00) 0.99 (0.98–1.00)

Sample type nasopharyngeal swab 9 0.98 (0.96–1.00) 0.99 1.00 (0.99–1.00) 0.00

Other 5 0.97 (0.94–1.00) 0.99 (0.96–1.00)

https://doi.org/10.1371/journal.pone.0276728.t004
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exclusion criteria as reported above, finally, 25 articles have been thoroughly assessed and

selected for further analysis. Through QUADAS-2 analysis of the included studies, the quality

of the articles generally performed well and more reliable results could be obtained.

Our included literature was performed using RT-qPCR as the gold standard, and RPA/

RAA combined with CRISPR showed an accuracy of the approximate gold standard for the

diagnosis of COVID-19. Whether CRISPR can be used as an alternative to RT-qPCR, we com-

pared the two assays by self-scale (Table 5). We pooled RNA extraction approach and the CT

values of RT-qPCR from 25 articles, and the CT values of positive specimens were not the

same in each article, but all floated within the same range (< 40) and met the "Diagnosis and

Treatment Protocol for Novel Coronavirus Pneumonia (Trial Eighth Edition)" criteria (S2

File). Factors such as disease severity, sample collection time, and extraction approach will

Fig 4. Deek’s funnel plot.

https://doi.org/10.1371/journal.pone.0276728.g004

Table 5. RT-qPCR vs CRISPR in SARS-CoV-2.

Components RPA/RAA with CRISPR RT-qPCR

Time <1h 2-4h

Isothermal amplification Yes No

Multiple testing Yes Yes

Limit of detection (LoD) 5–10 copies/μL 1 copy/μL

Assay components Quantitative Quantitative

Bulky instrumentation

required

No Yes

Advantage Fast, easy, visual High sensitivity and specificity, stable and reliable

Disadvantage The research system and platform are not mature enough Requires complex instruments and professionals

Applied Suitable for screening in medically underdeveloped and remote

areas

Clinical or center for disease control and prevention

Laboratories

https://doi.org/10.1371/journal.pone.0276728.t005
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cause differences in positive CT values, and 25 laboratories cannot ensure that the above fac-

tors are completely consistent, so positive CT values in the range of less than 40 are reasonable

and will not have much impact on the gold standard RT-qPCR.

The pooled AUC of CRISPR in the diagnosis of COVID-19 was 1.00 (0.98–1.00). AUC is an

important approach to assessing the accuracy of diagnostic tests, when the AUC is� 0.9, it

indicates an excellent diagnostic test [44]. Generally, a PLR higher than 10 indicates that the

test under consideration is sufficient to confirm the diagnosis, while an NLR less than 0.10

means that the negative index test is sufficient to rule out the target disease. The pooled PLR

and NLR were 183.2 (28.8,1166.8) and 0.02 (0.01,0.03), respectively. The range of DOR is from

0 to infinity, reflecting the connection between the results of diagnostic tests and diseases; a

higher value suggests that the diagnostic test has a stronger discriminatory ability between

patients and healthy people. The pooled DOR was 10702 (1765,64903). The results show that

CRISPR has good diagnostic performance and high diagnostic value.

Meta-regression showed that the region and Cas type were the causes of heterogeneity in

sensitivity and specificity (P < 0.05). Regarding regional classification, because the number of

studies we included is not large enough, and it is only a simple classification of regions into

domestic and foreign types, this result is not of great significance. Small but statistically signifi-

cant differences (p< 0.05) were found for Cas type in terms of sensitivity and specificity. Six-

teen studies used Cas12, five used Cas13, and four others used Cas9. Cas13 directly acts on the

genetic material of coronaviruses, that is RNA, so the detection step is relatively simple and the

detection time is shorter compared with Cas12. Both Cas12/Cas13 combined with RPA/RAA

techniques show extremely high sensitivity and specificity in diagnosing COVID-19, and the

same conclusion was made in Wang’s study [45]. In sample type analysis, to unify the criteria,

we did not include the literature on multiple types of samples containing nasopharyngeal

swabs in the analysis. We classified the literature on other sample types (saliva, blood, bronch-

oalveolar lavage fluid specimens, etc.) as the "Other" group. The specificity of a single nasopha-

ryngeal swab was higher than the "Other" group by meta-regression analysis. The conclusion is

supported by other studies that suggest that nasopharyngeal swabs have a higher diagnostic

effect value and a better diagnostic effect than saliva, but given the difference in sampling time,

we believe that saliva sampling is a reasonable alternative to nasopharyngeal swabs [46].

RPA/RAA is the commonly used amplification technique, but the pre-amplification process

increases detection time, LAMP combined with CRISPR technology for the diagnosis of

COVID-19 is another commonly used detection method [47], but compared with RPA/RAA,

LAMP requires two pairs of primers and is more prone to false positives [48], so more and

more unamplified CRISPR technologies are being developed for nucleic acid detection [49].

At present, amplification-free techniques are divided into the following three strategies [50]:

(I) Reduce the reaction volume to increase the target concentration and improve the LOD

(limit of detection); (II) Combined electrochemical biosensors; (III) Cas-mediated cascade

amplification. We analyzed the amplification-free CRISPR technology for COVID-19, but due

to the insufficient number of articles to combine effect sizes, the specificity and sensitivity of

each study were simply extracted for discussion. The specificity of amplification-free CRISPR

technology is high, but in Liang’s [51] study in terms of sensitivity, the detection sensitivity

was as low as 0.66 and the performance was suboptimal. This shows that areas with high

requirements for detection time can use amplification-free for initial screening and reduce

time costs, but in terms of accuracy, amplification-free CRISPR technology still needs to con-

tinue to be optimized. We summarized the CRISPR/Cas-based amplification-free platforms

(Table 6).

This study has three objective factors that warrant discussing: (I) the number of included

studies is small, and although the use of the single literature elimination method to verify that
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single literature has little effect on the pooled effect size results, the more included studies, the

sample size of the study subjects, the more persuasive the results; (II) different target genes,

sample types, sampling methods, storage conditions, transportation methods may cause bias

in the results, and these factors cannot be controlled; (III) our analysis indicated significant

publication bias in included studies. Given that CRISPR technology is a newly developed

nucleic acid detection technology and the detection applied to new crown viruses is also in the

early development stage, many of the platforms developed based on the CRISPR system and

evaluation of diagnostic accuracy for new crown viruses are performed by the same research

group. Thus, there is likely to be bias toward reporting higher diagnosis performance.

7. Conclusion

The rapid spread of the COVID-19 pandemic has severely affected thousands of people’s

health and has had a significant impact on the global economy. At present, although RT-qPCR

can be used as the gold standard method for COVID-19 detection, due to the lack of reagents

and equipment, COVID-19 cannot be found and diagnosed in a timely manner in areas with

less developed medical conditions. The use of RPA/RAA integrated CRISPR-Cas in COVID-

19 diagnosis has made a significant impact that should be endorsed for further optimization

and improvement. Especially in resource-limited areas, patients can get their COVID-19 test

reports in a short period, which is crucial in the event of an outbreak. Based on the results we

analyzed, it can be concluded that RPA/RAA integrated CRISPR performs well and has great

potential as an alternative to RT-qPCR for the diagnosis of COVID-19 in the resource-poor

area.
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