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Abstract Area-level indicators of the determinants of
health are vital to plan and monitor progress toward
targets such as the Sustainable Development Goals
(SDGs). Tools such as the Urban Health Equity Assess-
ment and Response Tool (Urban HEART) and UN-
Habitat Urban Inequities Surveys identify dozens of
area-level health determinant indicators that decision-
makers can use to track and attempt to address popula-
tion health burdens and inequalities. However,

questions remain as to how such indicators can be
measured in a cost-effective way. Area-level health de-
terminants reflect the physical, ecological, and social
environments that influence health outcomes at commu-
nity and societal levels, and include, among others,
access to quality health facilities, safe parks, and other
urban services, traffic density, level of informality, level
of air pollution, degree of social exclusion, and extent of
social networks. The identification and disaggregation
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of indicators is necessarily constrained by which
datasets are available. Typically, these include
household- and individual-level survey, census, admin-
istrative, and health system data. However, continued
advancements in earth observation (EO), geographical
information system (GIS), and mobile technologies
mean that new sources of area-level health determinant
indicators derived from satellite imagery, aggregated
anonymized mobile phone data, and other sources are
also becoming available at granular geographic scale.
Not only can these data be used to directly calculate
neighborhood- and city-level indicators, they can be
combinedwith survey, census, administrative and health
system data to model household- and individual-level
outcomes (e.g., population density, household wealth)
with tremendous detail and accuracy. WorldPop and the
Demographic and Health Surveys (DHS) have already
modeled dozens of household survey indicators at coun-
try or continental scales at resolutions of 1 × 1 km or
even smaller. This paper aims to broaden perceptions
about which types of datasets are available for health
and development decision-making. For data scientists,
we flag area-level indicators at city and sub-city scales
identified by health decision-makers in the SDGs, Ur-
ban HEART, and other initiatives. For local health de-
cision-makers, we summarize a menu of new datasets
that can be feasibly generated from EO, mobile phone,
and other spatial data—ideally to be made free and
publicly available—and offer lay descriptions of some
of the difficulties in generating such data products.

Keywords Spatial data .GIS . Satellite imagery .Mobile
phone data

Introduction

This era in public health data is shaped by increasing
coverage of high-resolution datasets and the need to
disaggregate statistics for such initiatives as the Sustain-
able Development Goals (SDGs). Public health data
reflect both our health outcomes and the health-
shaping environments in which we live and work. The
area-level health determinants that impact health out-
comes reflect our physical, ecological, and social envi-
ronments [1]. They include access to quality health
facilities, availability of safe green public spaces, walk-
able neighborhoods, traffic density, and air/water/soil
pollution. Other important area-level determinants

include a sense of social inclusion, the extent of social
networks, and effective local governance. Over the last
15 years, life course epidemiologists and place-health
researchers have identified mechanisms by which area-
level exposures become Bembodied^ by individuals and
expressed as health outcomes, with negative effects
accumulating over time [2]. While the health sector,
including statistical agencies, generally track
individual-level indicators, area-level indicators are of-
ten of greater use to decision-makers in setting priorities,
allocating resources, and planning and evaluating devel-
opment projects [3]. Area-level factors influence popu-
lation health outcomes above and beyond the behaviors,
medical histories, or poverty levels of individuals [4],
such that single place-based interventions may benefit a
large number of people.

Over the last 20 years, several large-scale efforts have
been made to standardize area-level health determinant
indicators in public health, and urban health particularly,
including Cities Alliance’s BCities Without Slums^ ini-
tiative [5], the World Health Organization’s Urban
Health Equity Assessment and Response Tool (Urban
HEART) [6], and the United Nations’ Sustainable De-
velopment Goals (SDGs) [7] and Habitat Agenda [8]. A
recent systematic literature review identified 500 health
indicators of the physical environment which can be
used to inform public health decision-making in low-
and middle-income countries (LMICs) [9]. In each of
these efforts, indicator identification was necessarily
constrained by available datasets—those typically con-
sidered relevant include household surveys such as the
Demographic and Health Surveys (DHS) [10], censuses
[11], administrative records [12], health system data
[13], and national and sub-national policy documents.
In LMICs, urban health determinant and outcome indi-
cators are overwhelmingly derived from household sur-
veys which include hundreds of standardized variables,
along with socio-demographic characteristics to allow
for disaggregation of indicators by sub-population. Sur-
vey data are also preferred for indicator development
because they are usually more current than census data,
and more complete and detailed than administrative or
health system data.

Existing initiatives to standardize urban health indi-
cators have been highly successful in some contexts—
for example, Urban HEART has been implemented in
cities in over 40 countries, aiding them in Bidentifying
and planning action on inequities in health^ [14]. How-
ever, such initiatives have in some ways fallen short of
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achieving their goals to define area-level measures that
can be used for decision-making. One issue is that
individual-level census and survey data aggregated to
small areas often represent different phenomena than
area-level indicators themselves [4]. For example, a
census or survey identifies poorly educated individuals
and food-insecure households; however, aggregation of
these data does not classify neighborhood-level phe-
nomena such as absence of public schools or urban food
deserts. Even where strong correlations exist between
aggregated household indicators and neighborhood phe-
nomena (e.g., aggregation of household wealth to clas-
sify neighborhood wealth), small sample size in surveys
rarely permits direct estimation of city-level indicators,
let alone neighborhood-level indicators [15].

The problem is not that data are unavailable to mea-
sure health determinants in small areas, but rather, that
people involved with urban health indicator develop-
ment tend to have health and medical backgrounds and
are unware of, or are untrained in the use of, the types of
data which measure neighborhood-level phenomena
(e.g., satellite imagery) [16]. Further, the data scientists
who work with such area-level datasets tend to be situ-
ated in the environmental sciences or big industry with
limited exposure to the ecological framework for health,
and rarely package or distribute data with health
decision-makers in mind. The official launch of the
SDGs in 2016, with a focus on data disaggregation to
small areas, marked a sharp pivot among government
agencies from siloed environmental and population data
streams toward data integrated by geography [17]. Enor-
mous potential for collaboration now exists between
urban health decision-makers and data scientists.

Urban health decision-makers often use an ecological
framework to understand the influences of small area
factors (called Bneighborhood-level^ hereafter for ease
of understanding) and broader socio-political contexts
on individual-level health behaviors and outcomes [18].
This framework may be depicted as a set of concentric
circles, with individuals in the middle surrounded by
neighborhood-level factors, and social and political con-
textual factors in the outer circle (see Fig. 1). The
ecological framework of health is used to understand
and study health risks that occur simultaneously at mul-
tiple levels. Conversely, scientists who work with geo-
graphic data often frame their work around data resolu-
tion because it dictates the geographic scale at which a
phenomenon can be measured. Considering the ecolog-
ical framework and data resolution together, we see
clearly that surveys, censuses, and other individual- or
household-level datasets—most often used to calculate
urban area-level indicators which we demonstrate
later—are not the appropriate spatial resolution (Fig.
1). Instead, datasets suitable for the measurement of
small areas are needed to calculate neighborhood-level
determinants, including data collected by Earth Obser-
vation (EO), Geographic Information Systems (GIS),
big data (e.g., mobile phone records), or field observa-
tion of areas (not households).

Aims and Objectives

The aim of this paper is to extend awareness among
urban health decision-makers and data scientists about
existing and potential datasets that can support urban
health decision-making. We summarize sources of

Fig. 1 Ecological framework of
urban health with individual/
household, community, and
policy/society determinants, and
available data sources for each
unit of observation
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neighborhood-level data and introduce two case studies
that demonstrate the need for neighborhood-level indi-
cator datasets for decision-making. Next, we review
neighborhood-level health determinant and urban pov-
erty indicators. From these reviews, we generate a list of
important neighborhood-level datasets which can be
derived and packaged by data scientists for health deci-
sion-makers. Ideally, these could be made free and open
source. The difficulties in generating neighborhood-
level datasets are described in lay terms to support
dialog between decision-makers and data scientists.
Readers may approach our findings as a menu of
existing and potential neighborhood-level datasets of
urban health determinants.

Beyond Household Data

Continued advancements in earth observation (EO),
geographical information system (GIS), and mobile
technologies mean that new sources of neighborhood-
level health determinants indicators are becoming avail-
able at granular geographic resolution. The combination
of EO, GIS, and aggregated mobile phone datasets, for
example, is used to predict human settlements [19],
settlement type [20], and neighborhood outcomes such
as total populations [21, 22], population age-sex distri-
butions [23], and population flows [24] in areas as small
as 100 × 100 m cells. Open-source and crowdsourced
GIS datasets have become commonplace in LMICs. For
example, OpenStreetMap [25] is a crowdsourced map
which indicates building footprints, roads, points of
interest, and much more. GADM [26] and DIVA [27]
are two sources of global administrative boundary
datasets. The Humanitarian Data Exchange [28] and
Map Action [29] are platforms to share GIS datasets
for development and humanitarian purposes.

Not only can EO, GIS, and mobile phone data be
mapped directly, they can be combined with survey,
census, administrative, and health system data to model
data at the neighborhood-level with relevant accuracy,
for example average household wealth by cell phone
tower coverage area [30]. WorldPop and ICF Interna-
tional have already modeled dozens of household sur-
vey indicators in a gridded format, with estimated values
for each small grid cell [31–33]. Although caution
should be used while interpreting cell-level data due to
prediction errors, gridded datasets like these can be re-
aggregated into meaningful geographic areas—for ex-
ample, a city map of cultural neighborhood boundaries,

city administrative wards, or health catchment areas—or
viewed at the level of the city to get a sense of the
distribution of health determinants. More detail about
each of these data sources is provided below.

Earth Observation Data The range of available EO data
has exploded over the last decades, with substantial
improvements made in spatial, temporal, and spectral
(e.g., color band, wavelength) resolutions. Table 1 gives
an overview of available EO data and specifies the
constraints and costs associated with each category of
images, classified according to their acquisition vehicle
and spatial resolution: High-resolution satellite (HR),
very high-resolution satellite (VHR), aerial photo-
graphs, and unmanned aerial vehicle (UAV), also called
Bdrones.^ Image choice always involves trade-offs be-
tween the characteristics of different image sources and
of the Earth object (e.g., building) we want to observe or
extract (see Figs. 2 and 3 for sample images illustrating
the various levels of spatial detail). Note that we focus
here on passive (optical) data, which are the most com-
monly used images. Once the image is acquired, several
techniques exist to extract valuable information, ranging
from very simple visual interpretation (e.g., manual
digitizing of features) to more sophisticated and autom-
atized extraction techniques (e.g., land cover
classification).

GIS Vectorial Data GIS vectorial data is locational in-
formation mapped to points (e.g., school locations),
lines (e.g., roads), or polygons (e.g., city parks). It can
be collected via field-based observations with a global
positioning system (GPS) unit, although GIS vectorial
data collected in this way are prone to spatial error,
especially among cheaper GPS units [34]. Alternatively,
GIS vectorial data can be derived from EO data by
manually tracing physical objects such as green spaces,
water bodies, roads, and trash heaps. Manually digitized
GIS vectorial data are widely available on free, open
platforms such as OpenStreetMap [25] and Wikimapia
[35]. Automated feature extraction from EO data using
advanced machine learning methods also yields GIS
vectorial data, such as the millions of building footprints
released by Microsoft for all 50 US states; however, use
of these data tends to require advanced programming
skills [36].

Big Data Big data refers to extremely large datasets
composed of billions of records, usually related to
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Table 1 Overview of earth observation (EO) data

High-resolution
satellite (HR)

Very high-resolution
satellite (VHR)

Aerial
(airplane)

UAV
(BDrone^)

Grid cell size
(spatial resolution)

~ 5 m–30 m ~ 0.3–3 m ~ 0.1 m–0.4 m < 0.1 m

Typical
coverage area

National Sub-national
(e.g., admin 1,

metropolitan area)

City or district Neighborhood

Cost per sq km Free Low High High

Constraints Difficult in
cloud-covered
areas
(e.g., tropical areas)

Difficult in
cloud-covered
areas
(e.g., tropical areas)

Availability of
an aerial survey
company, flight
authorization,
meteorological
conditions

Availability of a pilot
and a drone, flight
authorization, wind
conditions

Fig. 2 Example of four spatial resolutions in Earth Observation (EO) data
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human behavior or interactions, for example tweets
posted on Twitter, mobile phone calls and texts logged
at mobile phone towers, or photos posted on Flickr [37].
In public health, big data are rarely analyzed directly
because they are non-representative of the general pop-
ulation. However, big data with spatial identifiers (e.g.,
location of mobile phone towers, or latitude-longitude
of photos) can be combined with EO and GIS data in a
spatial model—similar to small area estimation methods
with survey, census, administrative, or health system
data—to predict neighborhood-level health determi-
nants [32, 38, 39].

Field-Based Area Observation Field-based observation
is the gold standard of neighborhood-level data; how-
ever, it is extremely laborious and expensive to collect,

and it is rarely aggregated into larger repositories. Most
field-based area observation is performed in small-scale
studies [40] or via local participatory mapping exercises;
[41] however, some urban health decision-makers have
suggested that area observation be added to existing
census and survey fieldwork with minimal additional
effort. Lilford, Ezeh, and colleagues, for example, pro-
pose that urban census enumeration areas in LMICs
could be classified as slum/non-slum during census field
work, and that household survey listing teams could
similarly classify survey clusters [4, 42]. UN-Habitat
published a manual to implement such area observation
surveys [8], which has been piloted and refined by the
Surveys for Urban Equity project [43], though scale-up
of neighborhood data collection via field observation
has not yet occurred.

Fig. 3 Example of four sources of Earth Observation (EO) data
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Area-Level Health Determinants, Health Outcomes,
and Decision-Making

We provide two cases studies to demonstrate the links
between area-level health determinants and individual
health outcomes. The first case study highlights how a
single-const ruct neighborhood- level heal th
determinant—accumulation of solid waste—is linked
with multiple individual-level health outcomes. The
second case study highlights a more complicated
mul t i - cons t ruc t ne ighborhood- leve l hea l th
determinant—slum areas—and the effect of living in a
slum area on individual health and wellbeing. In the
discussion, we address challenges of creating health
determinants datasets linked to neighborhoods to sup-
port decision-makers without inadvertently marginaliz-
ing individuals who live in those neighborhoods.

Case Study: Solid Waste The most basic health deter-
minant indicators represent single phenomena such as
the unemployment rate or air pollution concentration.
Such single-construct indicators derived directly from
EO, GIS, and other spatial data are valuable to city
mayors, government departments, and non-
governmental actors to address immediate issues and
set long-term priorities. Municipal solid waste manage-
ment, for example, is the largest budget item for city
governments in most low-income and many middle-
income countries, and a priority concern for leaders
across diverse sectors [44]. Poorly managed solid waste
has health, environmental, and economic effects that
multiply as waste accumulates. Uncollected solid waste
increases exposure of all individuals in communities to
vector-borne and zoonotic infectious diseases carried by
birds, insects, and rodents. Over time, uncollected waste
accumulates to block waterways, resulting in flooding,
contaminated surface and ground water, and emissions
of greenhouse gases like methane. Altogether, these
neighborhood-level exposures lead to increased inci-
dence of respiratory illness and diarrhea, and decreased
incidence of mental health among individuals [45]. In
LMICs, the amount of waste produced per person is
expected to double in the next 20 years, and costs to
manage solid waste will increase four to five fold [44].

Despite the importance of solid waste management,
only about 40% of waste is collected in low-income and
70–85% in middle-income countries [44]. The majority
of collected waste is deposited in open dumps rather
than in lined and covered landfills [44]. Decision-

makers in LMICs have limited data about solid waste
on which to base policies and allocate limited resources.
Data about solid waste quantity and composition in
LMICs is sparse, adding to the challenges faced by
municipal systems in managing growing levels of waste
from rapid urbanization and development. Measure-
ments of solid waste quantity and composition are gen-
erally taken at final dumping sites and via interviews
with waste system managers, then supplemented with
field visits to identify informal dumping sites and inter-
views with garbage pickers [46]. However, the quality
and completeness of these data vary substantially; they
are altogether missing in many low-income countries.

Mapping solid waste piles and estimating the
volumes of trash they contain would be an enor-
mous asset to those involved with solid waste man-
agement and planning in LMICs. A qualitative study
of informal waste pickers/collectors/transporters and
local authorities in Kenya’s largest cities found that
informal waste pickers/collectors/transporters would
make better use of city designated dumping sites if
better equipment could be provided by authorities,
and the designated sites were more accessible [47].
National and local authorities recognized the need to
better harmonize their waste management policies,
including engagement and licensing of private waste
collectors, and agreed that better city planning of
dumping sites and landfills was a priority [47]. For
effective coordination among informal, private, and
formal government waste collectors, and for plan-
ning of official dumpsites and landfills, it is essential
to first establish the locations of existing solid waste
piles. Routine monitoring of solid waste piles can
support authorities to track progress and identify
neighborhoods where engagement activities are par-
ticularly needed.

In recent years, EO data scientists have manually
identified and characterized dumping sites in small areas
[48–50], and trained feature extraction models to iden-
tify dumping sites in large areas, though many of the
latter studies focused on high-income countries [51–53].
Data scientists who wish to make substantial impact on
health and wellbeing in LMICs should consider
methods for mapping neighborhood-level health deter-
minants such as solid waste pile location and coverage.
Ensuring that community organizations, local govern-
ment, and other decision-makers have timely access to
this information could trigger action to improve local
waste management.
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Case Study: Slum Areas (SDG 11.1.1) To summarize a
multitude of correlated phenomena, indices such as the
urban health index [54] or multi-construct datasets of
slum areas [42] can be calculated. Slum area boundary
maps are needed by urban decision-makers to estimate
numbers of people living in slums [55], allocate public
services [56], plan and evaluate health policies and
campaigns [57–59], respond to humanitarian disasters
[60, 61], and make long-term development decisions
from local to national levels [62–64]. Due to highly
heterogeneous social, economic, and environmental
conditions within and between slum areas, it is also
important to classify slum areas by their dominant char-
acteristics [65, 66].

A key challenge of mapping slums is that definitions
vary widely by country and city. A UN-Habitat report
comparing the definitions of slum areas in 21 global cities
found 21 different definitions, each based on some com-
bination of poor construction materials and lack of per-
manency, legality, health and hygiene, basic services,
infrastructure, and so on [67]. Definitions also vary wide-
ly in terms of the minimum number of households and/or
the minimum area required to designate a slum area
versus a cluster of poor households [68]. Global slum
definitions such as the one offered by Cities Alliance are
too vague to operationalize in any specific context [69]:

BA slum is a contiguous settlement where the
inhabitants are characterized as having inadequate
housing and basic services. A slum is often not
recognised and addressed by the public authorities
as an integral or equal part of the city.^

One important milestone was the adoption of a
Bslum household^ definition by UN-Habitat, which
classifies a household or group of individuals as a
slum household if they lack any of the following:
durable housing, sufficient space, safe water, adequate
sanitation, or security of tenure [70]. This definition
has been widely used by urban health decision-makers
and social researchers to define census EAs or other
small areas as slums when more than 50% of house-
holds meet the slum-household definition [68,
71–73]. While this definition has been easy to
operationalize from household survey and census data
[74], it fails to account for some of the most important
area-level health determinants that result from living
in slum areas. Furthermore, the household-based def-
inition has been shown to overestimate slum areas in

some contexts, classifying neighborhoods as slums
that are not considered as such locally [75].

Slum areas are characterized by a number of
neighborhood-level risk factors that occur simultaneously
including poorly kept narrow roads that prevent access by
emergency vehicles; open drainage which exposes indi-
viduals to contaminated water; limited-to-no public waste
collection resulting in exposure to disease-carrying animals
and pollution as detailed above; spatial-social segregation
from parts of the city with public transportation, schools,
health facilities, food markets and other services; and
proximity to steep slopes, flood plains, toxic waste areas,
industrial zones, or other environmental risks [76, 77].
Many slum areas are importantly characterized by their
lack of formal recognition because they are located on land
zoned for non-residential use, or public or private lands,
which leaves residentswithout formal land titles and places
them at risk of eviction [77]. One can live in a spacious
home with durable walls, access to clean water, and an
improved toilet but still face substantial health or environ-
mental risks because their home is located in a slum area.

Over the last two decades, data scientists have devel-
opedmethods tomap informal settlements fromEO data
[78], based largely on building characteristics such as
size, density, and organization, and site characteristics
such as the presence of steep slopes [79]. Seminal works
include an ontology of six building and settlement char-
acteristics to classify slums from EO data [80] and
reviews of EO-based slum mapping methods that de-
scribe slums in terms of formation processes over time
[37, 76] (Fig. 2). However, a key criticism of EO-based
slum mapping is that it overemphasizes physical build-
ing characteristics and does not reflect the numerous
social and environmental vulnerabilities that slum
dwellers face. For example, the Bajra Nagar slum in
Kathmandu has been well-established for approximate-
ly 40 years and, as of 2019, has evolved organized
permanent buildings, yet residents still lack security of
tenure and access to basic services. Conversely,
Shantinagar, in the same city, emerged recently on a
riverbank and is characterized by small, disorganized
shacks. Most current EO-based slum mapping methods
would not identify the former example as a slum.

Numerous efforts have been made to bridge the gaps
between urban health decision-makers and data scien-
tists to facilitate slum area mapping, including expert
meetings (e.g., 2002 [69], 2008 [76], 2017 [81]) and
peer-reviewed journal articles outlining slum area social
constructs for data scientists [82]. Two authors of this
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paper (DRT, HE) attended the 2017 Bellagio expert
meeting focused on SDG indicator 11.1.1 (BProportion
of urban population living in slums, informal settle-
ments or inadequate housing^) [81], in which a global
definition for slum area classification along five do-
mains was discussed: social/environmental risk, lack
of facilities/infrastructure, unplanned urbanization, con-
tamination, and lack of tenure (Fig. 4). Neighborhoods
which experience deprivation in multiple domains
would be classified as slums (the exact number of dep-
rivations requires further study). Local decision-makers
should be involved to select meaningful variables to
represent each domain, for example, social/
environmental risk might be identified as Bsettlement
on a steep slope^ in Rio de Janiero, Brazil, where as
Bsettlement in a flood zone^ might be used in Dhaka,
Bangladesh. Regardless of the slum area definition used,
experts are converging on a few key best practices for
slum area mapping. First, the datasets used for slum area
mapping should reflect both physical and social charac-
teristics in neighborhoods, and second, models are ide-
ally validated with field-based area observation by peo-
ple with local context knowledge [37, 77].

Methods

To understand the indicators needed by urban health
decision-makers, we compiled a list of indicators from
the 12 sources [16, 83–92] identified in Pineo et al.
(2018) [9], Cities Alliance [69], Urban HEART [6],

the SDGs [93], and the Habitat Agenda [8]. All indica-
tors were classified by their place in the ecological
framework (household/individual, neighborhood, poli-
cy/society), and given a simple descriptive label (Sup-
plement 1). Neighborhood-level indicators were further
grouped by the five Bellagio domains: social and eco-
nomic risks, lack of facilities/infrastructure, unplanned
urbanization, contamination, and lack of tenure. This
organizational structure describes neighborhood-level
phenomena and represents the range of social and envi-
ronmental characteristics that shape urban wellbeing
and disparity. Only health determinant indicators were
considered in this analysis; outcome indicators such as
mortality rate or prevalence of depression were omitted.

To understand what additional indicators data sci-
entists might be able to create for urban health
decision-makers, we also compiled a list of variables
used in slum area mapping efforts. This list was
compiled from published reports from expert meet-
ings in 2002 [69] and 2008 [76], a seminal slum
area mapping paper which provides an ontology of
slum area characteristics [80], reviews of slum area
mapping efforts with EO data over the last two
decades [37, 78], and an important paper on the
integrated use of mobile phone, EO, and survey data
to map poverty at the neighborhood-level across
Bangladesh [30]. The variables thus identified were
organized by the Bellagio slum domains.

A panel of data scientists (co-authors CL, SV, JES,
MS, EW, TG, SG) reviewed the area-level health deter-
minant indicators as a group, scoring each in terms of

Fig. 4 Select taxonomies to categorize slum areas
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the technical feasibility, resources required, and data
available to generate that indicator at a neighborhood-
level (e.g., 1 × 1 km).

Technical feasibility was scored as highly feasible,
where the method already exists; maybe feasible,
where any neighborhood-level modelling of the
indicator would require methodological research
or input data beyond what currently exists; or tech-
nically unfeasible with current or foreseeable
methods and data.
Resource requirements were scored in terms of
whether a neighborhood-level dataset would be
easy to make, or already exists; would require
moderate amounts of human-resources, computing
power, and/or other technological resources; or
would be very resource-demanding.
Available source data were scored as already
available; available with incomplete coverage or
only partial access (e.g., area-level field observa-
tions have patchy coverage, and only some coun-
tries publish crime statistics); or source data which
are not available or easily accessible (e.g., access to
mobile phone data requires strict, negotiated agree-
ments, and tenure status is rarely collected in cen-
suses or surveys).

This exercise resulted in the identification of a
menu of area-level health determinants which can
be created from EO, GIS, and other area-level data
sources, along with a core set of methods needed
to create them. Data sources were classified into
(i) main data source, i.e., required to provide in-
formation on the health determinant and (ii) op-
tional data sources, i.e., useful to improve the
main data source by increasing the spatial detail
and/or the geographical coverage of the main data
source. Where neighborhood-level health determi-
nant indicator datasets already existed on a public
platform for multiple LMICs, we mention the
source and scale of the dataset.

Results

More than 870 health determinant indicators were iden-
tified at the individual/household, neighborhood, and
policy/society levels, and 84 additional health outcome
indicators were described (Table 2) [6–8, 16, 69,

83–92]. Of the four global initiatives considered, only
61 of 370 (16%) of urban health determinant indicators
represented neighborhood-level phenomena. The Habi-
tat Agenda, Cities Alliance, and Urban HEART each
used 42 indicators, and the SDGs used 244 indicators. In
the Habitat Agenda and Cities Alliance frameworks, the
indicators were spread across the three scales with
neighborhood-level indicators emphasizing civil en-
gagement and business or community facilities, respec-
tively. Meanwhile Urban HEART indicators mainly
represented individual/household-level phenomena (24
of 42, 57%) and SDG indicators mainly represented
policy/society-level phenomena (126 of 244, 52%).
The 500 indicators specified in 12 publications of the
Pineo et al. [9] review followed a different pattern, with
200 (40%) of urban health determinant indicators
representing neighborhood-level phenomena.

Variables from the slum mapping documents are sum-
marized in Table 3 [30, 37, 43, 69, 76, 78, 80]. Several of
the described slum mapping initiatives used aggregated
census or survey data to map slum areas directly [71–73],
though aggregated census or survey data can also be a
predictive variable representing extra contextual informa-
tion in a spatial model that is trained using field-verified
slum locations. In this latter approach, it is appropriate to
consider aggregated census or survey data as a
neighborhood-level variable because it classifies areas
with high proportions of slum households, but it is not
equating slum households with slum areas.

The most commonly used variables for slum
area mapping were presence of green space, loca-
tion in a hazardous environment (e.g., in flood
zone, on steep slope), proximity to a major road,
and individual building features such as density,
height, organization, roof material, and size/shape.
These most used variables represent the social/
environmental risk domain and unplanned urbani-
zation domain. Variables representing other do-
mains, including lack of facilities/infrastructure
(e.g., proximity to health facilities or schools, and
road material/condition/type), contamination (e.g.,
proximity to garbage piles or hazardous indus-
tries), and tenure status, were less commonly used.
Most variables used in slum area mapping by data
scientists are derived from EO or GIS data. The
under-represented domains were more likely to
contain variables derived from field data collection
and big data sources such as mobile phones, re-
vealing potential opportunities to fill data gaps.
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Table 3 Summary of slum area mapping indicators, by Bellagio domain

Field data EO Big Data GIS Agg census/ survey Citation

Slum area model training data

Area classification during census/survey X 43

Participatory slum mapping X 37,80

Geotagged photos (e.g., Flikr) X 37

Online crowdsourced mapping X 37

Manually digitize satellite image X 37,80

Govt-registered slum locations X 37

Social/environmental risk

Climate (precipitation, temperature) X 30

Green space type, coverage X X 30,76,78,80

Hazardous location—flood zone, slope X X 30,69,76,80

Median household/percapita income X X 30

Mobile phone use (e.g., number calls) X 30

Mobile phone top-up (e.g., amount) X 30

Mobile phone mobility patterns X 30

Mobile phone social network metrics 30

Open space coverage X X 76,78

Percent HHs nondurable floor, roof, wall X 69,76,80

Percent HHs overcrowding X 69,76,80

Percent HHs unimproved sanitation X 69,76,80

Percent HHs unimproved water X 69,76,80

Proximity, travel time to CBD X 30,76,80

Proximity to landcover type (e.g., marsh) X 37,80

Proximity to high-voltage power lines X 69,80

Proximity to highways, major roads X 30,69,78,80

Proximity to railway X 69,78,80

Proximity to river, stagnant water body X X 30,78

Lack of facilities/infrastructure

Nighttime light intensity X 30

Open drains present X X 76

Proximity, density health facilities X 76

Proximity, density schools X 76

Proximity to public transport stop/line X 76

Road coverage X X 76

Road material (e.g., paved) X X 78,80

Road pattern X X 78,80

Road repair conditions X 76,78

Road width/type (e.g., local, main) x X 78,80

Unplanned urbanization

Building coverage, density X 37,76,78,80

Building height, shadow X 37,76,78,80

Building organization X 37,76,78,80

Building roof material, color X 37,76,78,80

Building footprint (size, shape) X 37,76,78,80
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Across the two reviews, 77 area-level health de-
terminant indicators were identified (Table 4). Of
these, 55 (71%) were deemed to be technically fea-
sible to generate at a neighborhood scale (green and
yellow), 11 (14%) of which may require additional
technical research (yellow). Among the 55 techni-
cally feasible indicators identified, most already ex-
ist or are easy to make (green), or are only moder-
ately demanding to make (yellow); only 8 (15%)
were considered very demanding in terms of com-
putational processing (red). Similarly, only 12 (22%)
of the 55 technically feasible datasets were flagged
as having unavailable or difficult to access source
data (red). Sources of existing data include the
WorldClim2 database [94], IRI/LDEO Climate Data
Library [95], CGIAR-Consortium for Spatial Infor-
mation [96],Global Human Settlement City Model
[97], CCI Africa Land Cover map [98], and the
Africa Electricity Grids Explorer [99], among others
[100–103]. Altogether, 38 indicators were deemed
feasible to generate across multiple LMICs with
limited to moderate investments (green and yellow
across all three scores).

Discussion

We have presented a menu of area-level health determi-
nants datasets that can be feasibly generated and regen-
erated for multiple LMICs fromEO, GIS, mobile phone,
aggregated census or survey, and field area-level obser-
vation data. This menu consists of existing and proposed
area-level indicators identified as sufficiently important
by urban health experts and decision-makers to warrant
inclusion in the SDGs, Urban HEART, and other

initiatives. While many of the indicators identified by
urban health experts and decision-makers are now di-
rectly generated from aggregated census or survey data,
individual-level data are inappropriate for measuring
a r e a - l e v e l phenomena i n ne i ghbo rhood s .
Neighborhood-level health determinants such as open
or blocked drains, illegal trash piles, or degree of neigh-
borhood informality, which pose risks to health above
and beyond individual-level factors, should be mea-
sured with area-level datasets derived from EO, GIS,
mobile phone, and area observation, with census and
survey data included only as model covariates.
Decision-makers should not replace individual-level
datasets with neighborhood-level datasets, but rather
use these datasets alongside one another to understand
the complex relationships of place and health over time.

Generation of area-level indicators is only partly a
technical challenge. A more fundamental challenge is
the development of common language, understanding,
and partnerships among urban health experts and data
scientists who usually hail from different disciplines and
industries. Communication and collaboration is neces-
sary to generate the right area-level indicators at the
right geographic resolution to support urban health
decision-makers [17]. Harmonization of data by spatial
unit poses a challenge if decision-makers use different
versions of administrative boundaries, or need data ag-
gregated to different types of spatial units (e.g., admin-
istrative areas versus health catchment areas). Gridded
datasets are particularly useful in this regard, allowing
aggregation of data to any number of spatial units [104].
Additional challenges include the development of data
collection and use of standards that protect the privacy
of individuals and vulnerable communities in granular
spatial datasets [105]. To this end, we discuss several

Table 3 (continued)

Field data EO Big Data GIS Agg census/ survey Citation

Irregular building morphology X 37,80

Population density estimate X 30,37

Contamination

Air quality estimate (e.g., PM2.5) X 76

Dump coverage (% of area) X X 76

Dump proximity X X X 69,76

Proximity to hazardous industries X 69,76,80

Tenure

Percent HH with insecure tenure X 69
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issues that must be navigated during collaborations
among urban health experts and data scientists to

generate meaningful neighborhood-level health deter-
minants indicators.

Table 4 Assessment of technical feasibility, resources, and source data needed to generate area-level health determinant indicators in
LMICs, by Bellagio slum area definition domain

Neighbourhood-level health 
determinant

Technical 
feasibility †

Resources 
needed ‡

Data 
availability Main data source(s) Op�onal or supplemental 

data source(s)
Exis�ng products 
(resolu�on)

Social/environmental risk

Civil engagement (e.g. vo�ng rate) Vo�ng record count Gridded popula�on model
Census HDX28

Climate - ave monthly/annual 
precipita�on LR imagery WorldClim v294, IRI 

Climate Library95

Climate - ave monthly/annual 
temperature LR imagery WorldClim v294, IRI 

Climate Library95

Green space boundaries GIS + HR imagery
GIS + VHR imagery

Green space boundaries, by type (e.g. 
maintained, overgrown, garden) GIS + VHR imagery

Open space boundaries VHR imagery

Flood zone HR imagery + Terrain model
VHR imagery + Terrain model Soil maps SRTM (90m)96

Steep slopes HR imagery + Terrain model
VHR imagery + Terrain model SRTM (90m)96

Land use change GlobalLand30 + GIS + Fonte, 
et al. 2017 model 101

OpenStreetMap25, CCI 
Land Cover (20m)98, 
GlobeLand30 (30 m)102

Proximity to landcover type (e.g. 
marsh, water) GIS data HR imagery

OpenStreetMap25, CCI 
Land Cover (20m)98, 
GlobeLand30 (30 m)102

Household/per-capita income Survey
Census HR imagery + GIS data

Percent households nondurable floor, 
roof, wall

Survey
Census HR imagery + GIS data

Percent households overcrowding Survey
Census HR imagery + GIS data

Percent households unimproved 
sanita�on

Survey
Census HR imagery + GIS data DHS (5km)109

Percent households unimproved 
water

Survey
Census HR imagery + GIS data DHS (5km)109

Mobile phone use (e.g. number calls) CDR

Mobile phone top-up (e.g. amount) CDR

Mobile phone mobility pa�erns CDR

Mobile phone social network metrics CDR

Proximity to high voltage power lines GIS data Africa Grid99, 
OpenStreetMap25

Proximity to highways, major roads GIS data HDX28, DIVA27, 
OpenStreetMap25

Proximity to railway GIS data HDX28, DIVA27, 
OpenStreetMap25

Proximity to river GIS data OpenStreetMap25

Proximity to central business district GIS data

Travel �me to central business district GIS data + cost/distance 
model VHR imagery

Crime rates Crime reports Gridded popula�on model
Census

Lack of facili�es / infrastructure

Businesses number, type GIS data OpenStreetMap25

Solid waste system coverage City planning documents Gridded popula�on model
Census

Energy, telecom coverage City planning documents Gridded popula�on model
Census

Number of intersec�ons GIS data HDX28, OpenStreetMap25
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LMIC Government Geospatial Capacity

Over the course of just a few years, health experts have
begun to seek geostatistical capacity strengthening in

order to create flows of disaggregated, high-quality,
timely, authoritative, and accessible data to inform
decision-making and measure progress toward develop-
ment [17]. Many LMICs have a National Spatial Data

Table 4 (continued)

Open drains present Manually digi�ze VHR Imagery

Proximity, density health facili�es GIS data HDX28, OpenStreetMap25

Proximity, density schools GIS data HDX28, OpenStreetMap25

Proximity to public transport stop/line GIS data OpenStreetMap25

Road coverage GIS data HDX28, OpenStreetMap25

Road material (e.g. paved) GIS data
VHR / Aerial imagery

Road pa�ern GIS data HDX28, OpenStreetMap25

Road type (e.g. secondary, main) GIS data
VHR / Aerial imagery OpenStreetMap25

Road width VHR / Aerial imagery

Water/sanita�on system coverage City planning documents Gridded popula�on model
Census

Unplanned urbaniza�on

Building coverage (percent area with 
buildings) VHR imagery GIS data OpenStreetMap25

Building footprint (size, shape) VHR imagery GIS data OpenStreetMap25

Building height, shadow VHR imagery (stereo)

Building pa�ern (morphology) VHR imagery GIS data OpenStreetMap 25

Building roof material, colour VHR imagery

Built se�lement type VHR imagery + field observ. GHS-SMOD97, GRID3100

Popula�on density Census + EO + GIS data
Microcensus + EO + GIS data WorldPop (100m)108

Popula�on migra�on Census CDR
Google loca�on WorldPop (100m)108

Urban expansion Census + UN growth rate
Microcensus + UN growth rate

EO
GIS data WorldPop (100m)108

Contamina�on

Air quality es�mate (e.g. PM2.5) Ground measure instruments LR/MR imagery Peng et al. 2016 (1km)103

Dump coverage (% of area) VHR imagery Drone

Dump proximity VHR imagery Drone

Dump volume Drone

Proximity to hazardous industries GIS data

Tenure

Security of tenure Survey
Cadastal

VHR imagery
GIS

Key:
† assuming unlimited resources
‡ �me, human-power, funding
LR – Low resolu�on
MR – Medium resolu�on
HR – High resolu�on
VHR – Very high resolu�on
CDR – Call detail records (mobile phone)
GIS – Geographic informa�on systems 

(i.e. points, lines, polygons)
EO – Earth Observa�on                          

(e.g. temperature, eleva�on, imagery)

Feasible

Easy to 
make, or 
already 
exists

Available
Notes:
*   includes: piped water into dwelling/yard/plot, piped to neighbour, public tab/standpipe, 

tubewell/borehole, protected dug well, protected spring, rainwater, some bo�led water
** includes: flush/pour flush to piped sewer system, flush/pour flush to sep�c tank, flush/pour 

flush to pit latrine, ven�lated improved pit (VIP) latrine, pit latrine with slab, compos�ng toilet
The following area-level indicators are not included because they are technically unfeasible or the 

source data are not going to be available in the foreseeable future (at a sufficiently granular 
scale): Food vendor safety, social/cultural assets, unhealthy adverts, unhealthy vendors, 
barefoot walking, pedestrian density, pedestrian facili�es, sidewalk and crosswalk type/quality, 
bike lanes, street ligh�ng, power coverage parking availability, noise pollu�on, odour pollu�on,  
proximity to high-voltage power lines, proximity to hazardous industries, nigh�me light 
intensity, road repair condi�ons, tenure to under-represented groups. 

Maybe feasible, 
requires more 
research

Moderately 
demanding 

Incomplete 
coverage or 
access

Technically 
unfeasible
(Excluded)

Very 
demanding

Not available 
or accessible
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Infrastructure (NSDI) in place that houses environmen-
tal data (e.g., elevation, land use, imagery, geological,
and soil maps) and infrastructure data (e.g., roads, set-
tlements, cadastre). These NSDIs house much of the
source data needed to create the neighborhood-level
health determinants datasets desired by urban health
decision-makers. While many LMICs have substantial
geospatial capacity [106, 107], their NSDIs are not yet
well connected with national statistical systems, admin-
istrative registrars, or other sources of demographic
data. It is essential that government agencies build the
in-country relationships and data infrastructure needed
to integrate data and share capacity across government
agencies. Non-governmental organizations, internation-
al agencies, industry, and academics can support in-
country government efforts by contributing to NSDI
development and data integration efforts, and by
supporting open data initiatives [17]. This is particularly
important in countries without a well-functioning NSDI
or data scarcity tomitigate the likelihood that the poorest
countries, and their inhabitants, will be stranded on the
wrong side of the growing digital divide.

Improving Neighborhood-Level Datasets

An easy entry point for collaboration among urban
health experts and data scientists is the generation of
small area estimates from existing survey datasets.
Neighborhood-level estimates can be generated with
models that integrate survey and other individual-
level datasets with multiple EO and GIS covariates.
Examples of small area estimates derived from
household surveys include WorldPop datasets of
poverty, literacy, contraceptive use, stunting, and
other variables in 1 × 1 km grid cells [108], and
DHS datasets of vaccination coverage, unmet need
for family planning, antenatal care, and other indi-
cators in 5 × 5 km grid cells [109]. All of the afore-
mentioned datasets are generated from DHS surveys
for which displaced survey cluster location coordi-
nates are publicly available. Hundreds of additional
characteristics could potentially be mapped at the
neighborhood-level if other large-scale survey pro-
grams simply published displaced cluster coordi-
nates. Discussions about how to displace survey
cluster coordinates [110, 111], and the effect of
cluster displacement on gridded small area estimates
[112] are published elsewhere.

Meaningful Neighborhood-Level Indicator Definitions
and Resolutions

Throughout this article, we have used the term
Bneighborhood-level^ to indicate a geographic scale of
interest for urban indicators; however, the term is both a
spatial and social concept. As a social concept, neighbor-
hoods are local spaces where routine social activities take
place [113]. As a strictly spatial concept, however, neigh-
borhood can refer to any convenient local geographic
area smaller than a municipality but larger than a few city
blocks, such as a postal code, census unit, or grid cell
[114]. In this article, we use the term in the latter sense but
recognize the importance of grouping like populations
when presenting aggregated data to minimize the arbi-
trary effects of the modifiable areal unit problem. This is
known colloquially as Bgerrymandering^ when it is used
to influence political power by delineating voting districts
[114]. The definition of a neighborhood, even within the
same city, will likely vary by user. While users of urban
indicators should feel comfortable reaching out to data
scientists to generate the datasets listed in Table 4, it is
important that data users define meaningful areas or
scales at which these indicators should be created.

Currently, the ideal scale for mapping of neighborhood-
level indicators, including slum areas, is not well specified
[37]. Neighborhood boundaries can be defined using small
census administrative units or postal codes, though in
many LMICs, these administrative units are not geocoded
or do not exist [75, 114]. An alternative approach widely
used in LMICs are gridded datasets [115], such that esti-
mates in small grid squares can be aggregated to any larger
geographic area by data users [116]. Gridded datasets are a
highly flexible format to map urban indicators in LMICs,
and arguably in high-income countries as well. Gridded
datasets may provide decision-makers with sufficiently
detailed information about local spatial variation of a phe-
nomena compared to census units or postal codes, while
still not revealing the exact locations of, say solid waste
piles or slum area boundaries, to protect vulnerable com-
munities from fines, evictions, or other negative uses of
neighborhood-level datasets. We recommend that when
decision-makers and data scientists collaborate to map
neighborhood-level indicators, they address the issue of
geographic scale early in the process. Specifically,
decision-makers should identify themaximumarea needed
to capture neighborhood-level phenomena, data sci-
entists should identify the minimum area that can be
feasibly modeled with adequate accuracy, and both
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should consider the level of aggregation needed to
obfuscate the exact boundaries of vulnerable com-
munities or sensitive neighborhood features. Togeth-
er, the collaborators can establish a feasible, practi-
cal grid cell size for mapping urban indicators (e.g.,
100 × 100 m, 500 × 500 m).

Privacy and Avoiding Harm to Individuals
and Communities

For health decision-makers, a key concern about the use
of EO,GIS, andmobile phone data is individual privacy.
To appreciate the importance of this concern, consider
that much of the work of health decision-makers in
government offices, health facilities, and public service
organizations around the world is strictly governed by
policies to protect the data of individuals they serve
[117]. Privacy is an essential component of human
dignity, and thus foundational to healthy, functioning
societies [118]. Given the fast pace of technological
advancements, policy vacuums tend to exist around
new types of data for a period of time; at the moment,
partial policy vacuums exist around social media re-
cords [119], CDRs [120], and UAV data [121]. Further-
more, very high-resolution EO data can violate privacy
of personal space, allowing fenced back yards to be
monitored by others [122].

The lack of data privacy policies is especially prob-
lematic for CDR and UAV data which pose the greatest
risks to personal privacy but currently rely on voluntarily
initiatives. For example, before distributing UAV imag-
ery, sensitive features such as people and cars may be
blurred [105, 123]. Mobile phone companies and CDR
data researchers take steps to protect individual privacy,
the most robust of which prevent individual-level records
from leaving the company’s premises by allowing CDR
researchers to submit queries for aggregated CDR statis-
tics by mobile phone tower [124]. In collaborations with
health decision-makers, it is essential that data scientists
acknowledge privacy issues, and outline strict individual
privacy protection protocols. This involves the recogni-
tion by data scientists that area-level health determinants
datasets may be combined or compared against health
outcomes data, if possible, by later users.

In addition to protecting the privacy of individuals, it
is important to consider the potential harm to individuals
and communities when unflattering details are revealed
about private property, or even public spaces, via
neighborhood-level data. Aggregated CDR statistics

pose little-to-no harm; [124] however, high-resolution
EO and AUV data might. A study in Kigali, Rwanda
and Dar es Salaam, Tanzania, showed residents and
local leaders examples of very high-resolution imagery
from their own neighborhoods, and asked which visible
objects were considered sensitive. In Rwanda, where a
2011 national campaign required all residents to replace
thatched roofs with modern building materials [125],
and where uncleanliness is stigmatized, revealing low-
quality roofing materials and rubbish piles in public or
private spaces were considered sensitive information,
whereas in Uganda open-roof latrines were the main
sensitivity concern [105]. While these issues can poten-
tially be assessed and addressed during small-scale UAV
data collection allowing residents time to modify their
yards and public spaces before UAV flights are sched-
uled, these precautions are not done for very high-
resolution imagery routinely collected via satellites and
published publicly on such platforms as Google Maps
and OpenStreetMap [25, 126].

An even greater risk than stigma or embarrassment—
particularly among the poorest—is receipt of fines, harass-
ment, or displacement as a result of publicly available
satell i te imagery being processed into new
neighborhood-level datasets such as trash pile coverage
or slum area classification. Though, perhaps counter-intu-
itively, some informal slum dwellers prefer to be mapped
to legitimize their existence, and even mitigate forced
eviction [127]. For urban neighborhood-level determinants
that pose risks to individuals, a potential solution is to
generate gridded outputs, rather than more detailed point,
line, or polygon outputs. For example, 100 × 100 m grid
cell map of trash piles or slum areas might provide enough
detail about where trash piles or slums are located while
obfuscating exact boundaries and still allowing the data to
be aggregated to larger geographic units.

Co-creating New Neighborhood-Level Health
Determinants Datasets

As communication and collaborations between data sci-
entists and health decision-makers improve, so will the
breadth of neighborhood-level datasets generated. Most
of the datasets included in our Bmenu^ were defined by
teams who wore the disciplinary blinders of either data
science or public health. However, what additional
datasets might be imagined and created to fill information
gaps as teams become more interdisciplinary, and more
resourceful at integrating EO, GIS, big data, and area
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observations? Internet and mobile phone data are two
largely untapped data sources that might become better
utilized in future collaborations. For example, recently in
Kenya, researchers identified areas of insecure tenure by
mapping the absence of online real estate activity against
population density [128]. Additionally, in recent years
aggregated, anonymizedmobile phone records have been
combined with other data sources to capture community
social capital characteristics [129]. For national statistical
agencies to integrate new neighborhood-level health det-
riments datasets into NSDIs and official statistics, LMIC
governments also need to be involved in the co-creation
process. Creation of neighborhood-level datasets for
LMICs cannot be a purely academic endeavor nor can
it take place only in HICs. It is worth stating again, there
is enormous potential for impactful, creative collabora-
tion at this moment.

Conclusion

Urban health decision-makers have clearly articulated
their need for neighborhood-level health determinants
datasets. Disciplinary silos which historically isolated
data scientists and health experts seem to be dissolving
in this era defined by the SDGs, big data, and open-
source data, and governments across LMICs are
connecting environmental (e.g., EO, GIS) and popula-
tion (e.g., census, survey) data via national spatial data
repositories. This moment is ripe for new collaborations
that generate neighborhood-level health determinants
datasets to inform decision-making while clarifying pol-
icies to protect individual privacy. Better informed de-
cisions using neighborhood-level health determinants
datasets stand to improve the environments and societies
in which we live, particularly in LMICs.
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