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Simple Summary: ClinVar is a valuable platform that stores a large set of relevant genetic associa-
tions with complex phenotypes. However, the functional impact of a partial set of such associations
remains misinterpreted, due to the presence of variants with uncertain significance or with conflicting
pathogenicity interpretations. To fill this gap, we present AmazonForest: a metaprediction model
based on Random Forest for pathogenicity prediction. AmazonForest was used to reclassify a set of
∼101,000 variants that were predicted as having high pathogenic probability. AmazonForest is avail-
able as a web tool with a simple web interface, and also as an R object for pathogenicity predictions.

Abstract: ClinVar is a web platform that stores∼789,000 genetic associations with complex diseases. A
partial set of these cataloged genetic associations has challenged clinicians and geneticists, often lead-
ing to conflicting interpretations or uncertain clinical impact significance. In this study, we addressed
the (re)classification of genetic variants by AmazonForest, which is a random-forest-based pathogenic-
ity metaprediction model that works by combining functional impact data from eight prediction
tools. We evaluated the performance of representation learning algorithms such as autoencoders to
propose a better strategy. All metaprediction models were trained with ClinVar data, and genetic
variants were annotated with eight functional impact predictors cataloged with SnpEff/SnpSift.
AmazonForest implements the best random forest model with a one hot data-encoding strategy,
which shows an Area Under ROC Curve of ≥0.93. AmazonForest was employed for pathogenicity
prediction of a set of ∼101,000 genetic variants of uncertain significance or conflict of interpretation.
Our findings revealed ∼24,000 variants with high pathogenic probability (RFprob ≥ 0.9). In addition,
we show results for Alzheimer’s Disease as a demonstration of its application in clinical interpretation
of genetic variants in complex diseases. Lastly, AmazonForest is available as a web tool and R object
that can be loaded to perform pathogenicity predictions.

Keywords: metaprediction; encoding data; random forest; representation learning; genetic variants;
clinical impact; functional impact

1. Introduction

Next-generation sequencing (NGS) methods have allowed whole-genome analyses for
humans and other species. Genome-wide association studies (GWAS) and candidate gene
studies have produced a large volume of genetic associations between single-nucleotide
polymorphisms (SNPs) and insertions/deletions (INDELs) with complex diseases. Most
of these associations show variable effects and genetic diversity among populations [1,2].
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Variants with highly pathogenic effects are responsible for developing several types of
cancer [3], Type 2 diabetes [4], and Alzheimer’s disease [5,6]. Understanding the biological
role and impact of these variants on clinical and personalized levels is a complex task.

ClinVar is an online database that stores around 789,000 curated entries that show
associations between phenotypes and genetic variants (SNPs or INDELs) and their clin-
ical relevance (classified as either benign or pathogenic) [7]. ClinVar has improved our
understanding of the functional role of genetic variants as research increasingly focuses on
precision medicine [8]. However, many genetic variants are functionally misinterpreted
and continue to have conflicting interpretations (CI) or uncertain significance (VUS).

Distinct machine learning (ML) metaprediction models have been proposed for pathogenic-
ity prediction of genetic variants, aiming to combine the strengths of multiple pathogenicity
prediction programs. Each metaprediction model has been suggested for the analysis of a
single variant class (synonymous or nonsynonymous variants) [9–13], and most metapredictors
were used for the pathogenicity prediction of VUS and CI variants [9,10,12,13]. Interestingly,
most recently proposed metapredictors are decision tree-based or an ensemble of decision
trees, which constitute models with clear interpretations. Ensemble-based methods, such as
Random Forest (RF), are promising for pathogenicity prediction of coding and noncoding
variants [9–11,13]. However, these models have shown differences regarding data-training
methods, specifically on data heterogeneity and on the number of features used to train and test
each classification model.

Thus, we implemented AmazonForest, a pathogenicity metapredictor based on Ran-
dom Forest and functional impact data for high confidence pathogenicity interpretation.
AmazonForest is the main contribution of this work. In addition, we employed the Ama-
zonForest model to reclassify 100,805 genetic variants, and make available a dataset of
∼24,000 genetic variants with high pathogenic probability (RFprob ≥ 0.9). The resulting
dataset sums as a large collection of annotated potentially disease-causing variants that
may aid in the investigation and modeling of diseases.

2. Materials and Methods
2.1. Fetch ClinVar .vcf File

The first step consists of fetching genome-wide and clinical data from ClinVar, which
is stored in .vcf files. The .vcf file is available at https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
vcf_GRCh38/, accessed on 2 February 2021. The dataset showed 789,419 genetic variants.
Each variant is classified according to the ACMG-AMP [14] with labels that correspond
to the following categories: benign, likely benign, variant of uncertain significance, likely
pathogenic, pathogenic, or conflict of interpretation.

2.2. Functional Impact Variant Annotation by Single Predictors

SnpEff and SnpSift (v.4.3) configured with dbNSFP4.0 were used for functional an-
notation of variants stored in ClinVar .vcf files. Therefore, our metapredictor was built
based on categorical data extracted from eight predictors: FATHMM, SIFT, PolyPhen-2
HVAR, PolyPhen-2 HDIV, PROVEAN, MutationAssessor, MutationTaster2, and LRT. Each
predictor is independent and based on distinct genomic approaches such as sequence
characteristics, conservation, and amino acid changes. All predictors are described in detail
as follows:

• FATHMM predicts the functional effects of coding and noncoding variants. This
predictor combines wild-type and mutated sequences in a hidden Markov model,
which identifies mutations in peptide chains, showing the alignment of homologous
sequences and conserved protein domains [15];

• SIFT (Sorting Intolerant From Tolerant) is a prediction tool that codes an algorithm for
amino acid substitution analyses. It assumes that important positions in a protein se-
quence have been conserved throughout evolution, and therefore substitutions at these
positions may affect protein function. The algorithm sorts changes in a polypeptide
chain as tolerant or intolerant according to its evolutionary conservation [16];

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/
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• Polyphen-2 (Polymorphism Phenotyping v2) predicts the impact of amino acid sub-
stitutions on structural stability, physical interactions, and human protein function.
The probability of a mutation being pathogenic depends on the extraction of se-
quence annotations, structural attributes, and conservation profiles in protein-coding
regions [17];

• PROVEAN (Protein Variation Effect Analyzer) is a predictor that provides a general-
ized approach to predict the functional effects on variations in a peptide chain. These
effects include SNPs, INDELs, or multiple amino acid substitutions. Prediction is
performed by employing a mutation database obtained from UniProtKB/Swiss-Prot
and other experimental data previously generated from mutagenesis experiments [18];

• MutationAssessor predicts the functional impact of amino acid substitutions on pro-
teins using the evolutionary conservation of the affected amino acid in protein counter-
parts. Multiple Sequence Alignment is used to reflect functional specificity, represent
the functional impact of a missense variant, and generate conservation scores. Variants
with higher scores are more likely to be pathogenic [19];

• MutationTaster2 predicts functional changes in DNA sequences. It is designed to
predict consequences based on amino acid substitutions, and intronic substitutions
such as synonymous changes, short insertion or exclusion mutations, and variants
that cover the limits of introns and exons [20];

• Likelihood Ratio Test (LRT) is a metric that evaluates the proportion of synonymous
and nonsynonymous mutations in protein-coding regions. The altered proportion of
mutations means that a negative selection process occurred over that region during
evolution, which consequently modifies codons in peptide chains [21].

2.3. Encoding Genome-Wide Training and Test Dataset

After functional annotation, we preprocessed ClinVar data according to ACMG-AMP
pathogenicity labels. In this step, we grouped these classes into labels: (a) benign/likely be-
nign into benign; (b) pathogenic/likely pathogenic into pathogenic; (c) variant of uncertain
significance and variant with a conflict of interpretation remained with the same label.

A second round of data preprocessing was performed for filtering ClinVar data to
avoid variants with missing data. The training/test dataset comprised only variants
that were classified by the eight aforementioned single predictors of functional impact.
Following functional annotation, the ClinVar dataset was preprocessed using in-house
scripts for data extraction and encoding methods. For this study, we investigate data-
encoding strategies and representation-learning strategies:

• Label encoding is an approach that assigns numerical values from 0 to the number of
classes −1 to each of the categorical values in a dataset. For example, if the column
with categorical values contains five classes, then the label encoding assigns numerical
values between 0 and 4;

• One hot encoding transforms categorical variables using a dummy strategy. Each
variable category is transformed into a binary column. For example, given a dataset
with two categories, the one hot encoder creates two new columns to store binary
values, 0 or 1;

• Multiple Correspondence Analysis (MCA) is a statistical method that handles cate-
gorical variables for dimensionality reduction. MCA is an extension of simple corre-
spondence analysis and a generalization of principal component analysis, which is
appropriate for quantitative data [22]. The MCA is used to create a low-dimensional
space for samples and predictor points based on a contingency table, and the dimen-
sions are retained as eigenvalues;

• Autoencoders are unsupervised learning algorithms that aim to obtain a data repre-
sentation by reconstructing the input data at the output [23]. In this study, artificial
neural networks were implemented to learn representations of the ClinVar data. We
used an autoencoder similar to a multilayer perceptron (MLP), with an input layer,
a hidden layer with 10, 20, and 30 neurons, and an output layer with the same num-
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ber of predictors. Rectifier (ReLu), Rectifier with Dropout, and Hyperbolic Tangent
Function (Tanh) were used as neuron activation functions. Dropout is commonly
used to reduce overfitting and can improve the results of a classifier. The function of
this regularization layer is to turn off a portion of the neurons, forcing the network
to readjust the weights and preventing the network from memorizing the training
data [24].

2.4. Fine-Tuning of Random Forest

RF is a machine learning method created to avoid the limitations of single predictors,
being an ensemble method that combines decision trees for classification or regression
problems [25]. Essentially, each tree handles a subset of bootstrapped data from the original
set of samples, as well a random subset of predictors [26]. This random sampling raises a
low correlation between individual decision trees, which avoids overfitting. The prediction
probability for each class is used to reach a final decision and take a majority vote.

We performed a grid-search strategy for fine-tuning RF models taking as input the
categorical data, one hot encoded data, and representation-learned data extracted from
MCA and autoencoders. The grid search strategy targets two RF parameters: (a) the number
of trees in the forest model, that ranges from 50 to 1000 decision trees, and (b) the number
of bootstrapped predictors (p), that was set to 2,

√
p, p/2, p. The parameter values were

chosen based on experiments from [5,27]. Thus, we defined three experiments, as follows:

1. RF were trained with categorical data and one hot encoder;
2. RF were trained with two extracted MCA dimensions;
3. RF were trained with two dimensions from autoencoders based on three diferent

activation functions: rectifier, rectifier with dropout and tahn. Moreover, we range the
number of epochs and hidden neurons on autoencoders, which were set for 10, 20,
and 30 for both parameters.

For model evaluation, we considered the Area Under Curve (AUC) and the out-of-bag
error (OOBE), a strategy similar to cross-validation [28]. AUC is derived from Receiver
Operating Curves and represents the degree of class separability, in which values close to 1
represent high-grade model performance. All models were implemented using R base and
randomForest (v.4.6-14) and h20 (v.3.34.0.3) libraries.

2.5. AmazonForest: Web Platform for Variant Classification

We developed the online version of AmazonForest to improve user experience on
pathogenicity prediction. AmazonForest was implemented as an online platform that
performs our best metaprediction model to predict the pathogenicity of VUS, CI, and new
genetic variants. AmazonForest is available at https://www2.lghm.ufpa.br/amazonforest,
accessed on 6 February 2022. The platform is divided into two components:

• The first is the user interface component. AmazonForest was developed as a web tool
with an interface that allows performing pathogenicity prediction of SNPs or INDELs
with in silico analyses employing the best metapredictor model. The simple web
interface enables the user to predict pathogenicity in two ways. First, by providing
genomic or dbSNP information (chromosome, chromosome position, or rsID) and
second, by allowing the combination of predictor results to query pathogenicity
status. The web component was developed using Python3.6 [29], Javascript (https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference), HTML5 (https:
//developer.mozilla.org/pt-BR/docs/Web/HTML/HTML5), and using frameworks
such as Flask (v.2) (https://palletsprojects.com/p/flask/), scikit-learn [30], Pandas
(v.1.1.5) [31], Numpy (V.1.19.5) [32]. All packages was acessed on 2 February 2021.

• The second is a model administrator component to assess the evolution and performance
of the model. This model component enables the reproducibility of up-to-date data.

https://www2.lghm.ufpa.br/amazonforest
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/pt-BR/docs/Web/HTML/HTML5
https://developer.mozilla.org/pt-BR/docs/Web/HTML/HTML5
https://palletsprojects.com/p/flask/
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3. Results
3.1. Training and Test Data Records

The filtering strategy for ClinVar’s database resulted in a slightly unbalanced training
dataset without missing data, and more benign variants were cataloged than pathogenic
variants. A view of the set of variants in this process is shown in Table 1, which highlights
the original number of cataloged variants in the ClinVar database, the distribution of
variants by class for the training/test dataset, and the reclassified dataset. Furthermore,
data preprocessing showed a significant decrease in the number of genetic variants with
functional annotation for each of the eight predictors. The distribution of categorical data
was drawn in Figure 1, which highlights the challenge and complexity of interpreting the
functional impact of variants. Additionally, we established the number of epochs and
hidden neurons on autoencoders, which were set for 10, 20, and 30 for both parameters.
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Figure 1. Distribution of variants by functional impact prediction for the eight predictors described
in Section 2.2. Each functionial predictor provides their own type of classification. Deleterious (D)
and Tolerated (T) for FATHMM; neutral (N) or unknown (U) for LRT; high (H), medium (M), low
(L), or neutral for MutationAssessor; disease-causing, automatic prediction (A), disease-causing
(D), probably harmless automatic prediction (N), and known to be harmless (P) for MutationTaster;
deleterious (D) an neutral (N) for PROVEAN; probably damaging (D), possibly damaging (P) and
benign for Polyphen; and finally, deleterious (D) and tolerated (T) for SIFT.

Table 1. Distribution of genetic variants by functional impact in ClinVar original dataset. The training
and test dataset is composed of biological annotated variants for the eight functional predictors
described in Section 2.2.

Category of Genetic Variants in CinVar Original Dataset Training Dataset Reclassification Dataset
Benign 266,145 18,891 -
Pathogenic 130,739 16,471 -
With conflit of interpretation 42,609 - 7193
With uncertain significance 349,926 - 93,612
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3.2. Fine-Tuning and Selection of Metaprediction Model

RF training yielded 144 accurate models for variant pathogenicity prediction. All fine-
tuning experiment results were drawn in Figure 2. In the experiments, AUC ranged from
0.88–0.91 using label encoding data, 0.88–0.92 when one hot encoded data were employed,
0.88–0.89, and 0.81–0.89 for representation learned data extracted from MCA and deep
autoencoders, respectively. The best RF model reached higher AUC value with 1000 trees
and two bootstrapped predictors under training. This model was trained with one hot
encoded data and showed an AUC of 0.93 and an OOBE of 14.1% (see Figure 2A). For
this model, feature importance analysis by Gini impurity (GI) identified PROVEAN and
MutaTaster as the most influential features (GI > 0.2). In decreasing order (GI ≤ 0.1) of
importance, GI identified PolyPhen_Hvar, SIFT, PolyPhen2_HDIV, FATHMM, LRT_pred,
and MutaAss (see Supplementary Figure S1).

Extraction of representation-learned data from MCA and autoencoder models did not
reach higher AUC combined with RF, but are satisfactory models. Compared with label
encoding and one hot encoding, the RF model showed the lowest AUC when trained with
representation-learned data from MCA or autoencoder data. RF trained with autoencoder
data extracted from deep learning models, with Rectifier and Tanh activation functions
performed similarly. Most of the AUC for these experiments overlapped (see Figure 2).
In contrast, AUC is lower for all the experiments using RF models with autoencoder data
from deep learning models trained with rectifiers with dropout. Additionally, we observed
the lowest AUC for autoencoders set with rectifier with dropout, higher values in the
number of hidden neurons, and trained with a higher number of epochs (see Figure 2C).

In addition to the aforementioned model comparisons, we compared RF, with Naive
Bayes (NB), and Support Vector Machine, which showed satisfactory prediction perfor-
mance, AUC > 0.9 (see Supplementary Table S2 and Figure S2). All models were evaluated
by performing 10-fold cross-validation. The SVM model trained with linear kernel showed
similar results to RF (AUC = 0.93, +/−0.01). Based on this evaluation analysis and charac-
teristics of RF and SVM, we chose RF for further analysis, given that SVM performes better
on noncategorical data, has a costly computational complexity and high training time for
large databases.

3.3. Reclassification of VUS and CI Variants

The best RF model was applied to classify 100,805 genetic variants labeled as variants
of uncertain significance or conflict of interest. As a result, 32,398 (32.14%) VUS and 2282
(2.26%) CI variants were labeled as pathogenic variants. Out of this last set, we identified
a set of 24,428 genetic variants with high-probability of pathogenicity according to RF
predictions (RFprob ≥ 0.9, see Figure 3A). These variants were distributed throughout
1019 gene regions. Reactome pathway analysis was performed for those genes, which
revealed a set of 24 enriched pathways (Supplementary Table S1). The enriched path-
ways are associated with many important cell functions, such as metabolic processes, cell
growth and division, extracellular matrix organization and degradation, muscle contraction,
and cardiac conduction. Thus, missense variants related to these pathways may disrupt
biological processes.
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Figure 2. Fine-tuning analysis of Random Forest models. The Random Forest models were trained
with label encoding and one hot encoding; learned data from multiple correspondence analysis and
neural networks as autoencoders. (A) Random Forest shows high values of AUC when data is one
hot encoded; (B) AUC results for Random Forest models trained with learned data from multiple
correspondence analysis; (C) AUC results for Random forest models trained with autoencoded data.

3.4. Case Study: Alzheimer’s Disease-Related Genes

Genetic studies have identified candidate disease genes by mapping SNPs that may con-
tribute to the development of dementia traits, such as Alzheimer’s Disease (AD). Moreover, AD
is a multifactorial and complex disease with a genetic basis that remains to be elucidated [6,33].
In ClinVar data, 18 SNPs (CI or VUS) are associated with AD. Prediction results show four
pathogenic variants and 14 benign variants (see Figure 3B and Table 2). The Aβ precursor protein
(APP) gene shows 13 VUS and one CI variant. Two variants in the APP region were predicted
as pathogenic, which may impact protein structure (NM_000484.4, c.982C>T, p.Arg328Trp) and
(c.298C>T, p.Arg100Trp). MPO showed one pathogenic variant (c.1031G>A, p.Gly344Asp), as
well PSEN1 (c.475TC, p.Tyr159His).

Molecular interactions between the aforementioned genes have been associated with
AD. Extracellular formation of senile plaques, which are insoluble deposits of neurotoxic
amyloid-β (Aβ) peptides along with metal ions, is a histopathological hallmark of AD.
Through redox reactions, metal ions are activated and may bond with Aβ to catalyze
Reactive Oxygen Species (ROS) such as hydroxyl, a highly reactive radical. This reaction
may induce inflammation and oxidative damage to surrounding molecules [34–36].

Myeloperoxidase (MPO) is a myeloid enzyme abundant in neutrophil granulocytes
and monocytes but not detectable in microglia. It plays a primary role in inflammatory and
degenerative processes [37,38]. Studies reported the presence of MPO levels in the frontal
cortex in Aβ positive senile plaques and active microglia [38].
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Mutations in presenilin-1 (PSEN1), presenilin-2 (PSEN2), and APP genes were previ-
ously described as a cause of autosomal-dominant early onset type AD [39,40] and familiar
AD [41]. These genes are essential in the production of Aβ. APP encodes a precursor Aβ
protein, which is processed by the β-secretase and the γ-secretase complexes and leads to
the production of Aβ. PSEN1 and PSEN2 encode presenilins, which constitute the catalytic
subunit of the γ-secretase complex [39]. PSEN1 is also reported to cleave another type I
transmembrane substrate, which could negatively affect notch signaling [41].

Opposite to APP, PSEN1, and PSEN2 mechanisms, A Disintegrin And Metalloprotease
10 (ADAM10) reduces the formation of Aβ in physiological conditions and is associated
with non-amyloidogenic and neuroprotective pathways [42]. ADAM10 encodes α-secretase,
a protein complex which cleaves the Aβ region of APP, releasing a soluble fragment
(sAPPα) [43]. Previous studies have reported neuroprotective properties of sAPPα and
proposed its enhancement as a therapeutic strategy for AD and other neurodegenerative
diseases [44].
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Figure 3. On the left, distribution of CI and VUS classified into benign and pathogenic after impact
prediction with probability ≥ 0.9 by AmazonForest. On the right, distribution of variants for
Alzheimer’s Disease-related genes.

Table 2. AmazonForest prediction results for reclassification of genetic variants in genes associated
with Alzheimer’s disease.

Chromosome Position Gene Protein Protein Change dbSNP ID ClinVar Significance AmazonForest Prediction
21 26000066 APP NM_000484.4 c.982CT (p.Arg328Trp) VUS Pathogenic
21 26090000 APP NM_000484.4 c.298CT (p.Arg100Trp) rs200347552 VUS Pathogenic
17 58278000 MPO NM_000250.2 c.1031GA (p.Gly344Asp) VUS Pathogenic
14 73173702 PSEN1 NM_000021.4 c.475TC (p.Tyr159His) VUS Pathogenic

Chromosome Position Gene Protein Protein Change dbSNP ID ClinVar Significance AmazonForest Prediction
15 58665141 ADAM10 NM_001110.4 c.541AG (p.Arg181Gly) rs145518263 VUS Benign
15 58665172 ADAM10 NM_001110.4 c.510GC (p.Gln170His) rs61751103 VUS Benign
21 25997360 APP NM_000484.4 c.1090CT (p.Leu364Phe) rs749453173 VUS Benign
21 25997413 APP NM_000484.4 c.1037CA (p.Ser346Tyr) VUS Benign
21 26000018 APP NM_000484.4 c.1030GA (p.Ala344Thr) rs201045185 VUS Benign
21 26000167 APP NM_000484.4 c.881AG (p.Gln294Arg) VUS Benign
21 26021902 APP NM_000484.4 c.803GA (p.Arg268Lys) rs1601237753 VUS Benign
21 26021954 APP NM_000484.4 c.751GA (p.Gly251Ser VUS Benign
21 26021978 APP NM_000484.4 c.727GA (p.Asp243Asn) VUS Benign
21 26022001 APP NM_000484.4 c.704CT (p.Ala235Val) CI Benign
21 26022031 APP NM_000484.4 c.674TC (p.Val225Ala) rs746313873 VUS Benign
21 26051060 APP NM_000484.4 c.602CT (p.Ala201Val) rs149995579 VUS Benign
21 26051088 APP NM_000484.4 c.574GA (p.Glu192Lys) VUS Benign
21 26170574 APP NM_000484.4 c.47GA (p.Arg16Gln) VUS Benign
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4. Discussion

In this study, we evaluated the performance of RF trained with encoding data and
representation learning extracted from MCA and neural network-based autoencoders,
aiming to produce a metaprediction model (AmazonForest). The best RF model with one
hot encoding was chosen for (re)classification of VUS and CI variants. This study is the
first to investigate different encoding methods and influences on pathogenicity predictions
by RF and representation learning algorithms. We found that encoding methods and
autoencoders had little influence on RF models (see ROC and AUC in Figure 2).

Metaprediction approaches were proposed based on distinct machine learning or
statistical methods and differ in training datasets [9–11,13]. In fact, most of the reviewed
metapredictors adopted decision tree-based methods, [9,11,13], which deal with categorical
predictors without the need to reconstruct them [45]. However, all metapredictors are
unclear about how they handle missing data, which may produce biased models. To avoid
missing data bias and to obtain a reliable and robust model, our study removed variants
with missing data from the training set. Thus, VUS and CI variants were reclassified if they
showed data for the aforementioned eight predictors.

Our proposed model was used for the pathogenicity prediction of VUS and CI variants.
After prediction, we identified a valuable set of 24,428 variants, at a RF probability >= 0.9,
identifying a variant dataset with a high probability of being pathogenic. This information
could further improve our understanding of well-known diseases, as well as clarify molec-
ular mechanisms involved in rare disorders. Therefore, AmazonForest can help to obtain
more careful and accurate analyses of variants of uncertain significance and CI. Finally,
we provided an online tool and well-annotated R scripts for a better user experience of
pathogenicity prediction of genetic variants as well as (re)classification of CI and VUS
variants.

The proposed model was compared to other prediction algorithms such as SVM and
NB [46–48]. These additional comparison experiments are found in the Supplementary
Materials.

5. Conclusions

Our benchmark shows that AmazonForest, a Random Forest-based model, presents
satisfactory prediction results (AUC≥ 0.93) regarding categorical data and one hot encoded
data from eight functional impact predictors. Furthermore, we provide a new reclassified
database and a model for programmatic prediction of large genetic variant sets of VUS
and CI variants. Geneticists may consider the AmazonForest genetic variant data, and the
web tool, for annotation of genome-wide studies, disease model tests, and investigations
of variants pathogenicity and their associations to complex diseases, as demonstrated for
Alzheimer’s disease.

6. Software Availability

AmazonForest is available online at: https://www2.lghm.ufpa.br/amazonforest.
AmazonForest is constructed based on open source tools and all code is available at
https://github.com/hpalheta/amazonforest. To use the metaprediction model we make
availabe a R script, which are available on https://github.com/hpalheta/amazonforest/
tree/master/meta_prediction/amazonforest.R. All data was accessed on 8 December 2021.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology11040538/s1, Figure S1: Gini impurity index for eight functional impact predictors;
Figure S2: ROC curves for Naive Bayes, Random Forest and Support Vector Machine; Table S1:
Reactome pathway enrichment analysis of genes mapped for VUS and CI genetic variants with
pathogenicity probability equals to 0.9; Table S2: Accuracy, F1-score and mean AUC for Naive Bayes
Random Forest and SVM.

https://www2.lghm.ufpa.br/amazonforest
https://github.com/hpalheta/amazonforest
https://github.com/hpalheta/amazonforest/tree/master/meta_prediction/amazonforest.R
https://github.com/hpalheta/amazonforest/tree/master/meta_prediction/amazonforest.R
https://www.mdpi.com/article/10.3390/biology11040538/s1
https://www.mdpi.com/article/10.3390/biology11040538/s1
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