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Summary

Historically, defining haematopoietic subsets, including self-renewal, differ-

entiation and lineage restriction, has been elucidated by transplanting a

small number of candidate cells with many supporting bone marrow (BM)

cells. While this approach has been invaluable in characterising numerous

distinct subsets in haematopoiesis, this approach is arguably flawed. The

haematopoietic stem cell (HSC) has been proposed as the critical

haematopoietic subset necessary for transplantation. However, due to the

presence of supporting cells, the HSC has never demonstrated sufficiency.

Utilising the homeobox B5 (Hoxb5)-reporter system, we found that neither

long-term (LT) HSCs nor short-term (ST) HSCs alone were sufficient for

long-term haematopoietic reconstitution. Critically, reconstitution can be

rescued by transplanting combined LT- and ST-HSCs, without supporting

cells; a fraction we term the ‘Minimum Subset for Transplantation’ (MST).

The MST accounts for only 0�005% of nucleated cells within mouse BM,

and this MST can be cultured, expanded and genetically modified while

preserving its rapid haematopoietic engraftment potential. These results

support the consideration of an MST approach for clinical translation,

especially for gene therapy approaches that require HSC compartment

modification.

Keywords: long-term haematopoietic stem cell, short-term haematopoietic

stem cell, homeobox B5 (Hoxb5), purified haematopoietic stem cell trans-

plantation, gene therapy.

Introduction

Haematopoietic stem cell transplantation (HSCT) has been

primarily developed as a treatment for haematopoietic malig-

nancies and has been performed in >1 million patients.1 In

recent years, gene therapy approaches, wherein a patient’s

haematopoietic cells are genetically engineered and trans-

planted back to normalise the malfunctioning haematopoietic

system, have been performed for monogenic diseases, includ-

ing b-thalassaemia2,3 and severe combined immunodefi-

ciency.4,5 Given that autologous HSCT can be applied to

many more diseases, including other primary immunodefi-

ciency disorders,6 inherited metabolic disorders7 and autoim-

mune diseases,8,9 further development of the technology is

desirable.

Currently, autologous HSCT with genetic modification has

only been performed in a few hundred cases worldwide

limited in part to the technical hurdles of HSC genetic modi-

fication,10 lack of persistent gene-modified cell engraft-

ment11,12 and genotoxicity by random insertion of the

vectors throughout the genome of targeted haematopoietic

cells.13 Although genetic engineering challenges of HSCs to

solve the genotoxicity have been previously described,14

efforts aimed at optimising genetic modification and improv-

ing insufficient therapeutic efficacy should logically utilise a

purified cell fraction containing only the necessary and mini-

mally sufficient cells for HSCT.

While the HSC field has been able to ascribe the funda-

mental stem cell and haematopoiesis properties of self-

renewal,15,16 multi-potency17 and lineage restriction18 to >23
distinct subsets of the haematopoietic hierarchy, these studies

have all depended on a transplantation assay in which a

small number of candidate cells are co-transplanted with a

large number of unfractionated bone marrow (BM) cells,
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termed supporting cells (also known as competitor cells).19

From these studies the field has concluded that the long-

term (LT) HSCs, even as a single cell transplant,20,21 is both

necessary and sufficient for successful HSCT. However, this

conclusion relies on the assumption that there is a lack of

interaction and co-dependence of the LT-HSCs on the

unfractionated BM.

Therefore, we sought to identify the cell fractions that are

minimally necessary and critically sufficient for safe and

long-term haematopoiesis after transplantation, a subset we

term the ‘Minimum Subset for Transplantation’ (MST). We

systematically re-evaluated the distinct cell types in the

haematopoietic hierarchy for MST but were unable to iden-

tify a single fraction meeting these criteria. Only by utilising

the Hoxb5 mouse model, which enabled us to isolate the LT-

HSCs and short-term (ST)-HSCs with high purity,22 were we

able to identify the MST required for long-term and rapid

haematopoietic recovery in transplantation.

Methods

Mice

Homeobox B5 (Hoxb5)-tri-mCherry (C57BL/6J background)

mice derived from our previous work22 were used as donors

for transplantation assays. CAG-enhanced green fluorescent

protein (EGFP) mice (Japan SLC, Shizuoka, Japan) were

bred with Hoxb5-tri-mCherry mice for transplantation exper-

iments. The C57BL/6-Ly5�1 mice (Sankyo Labo Service,

Tokyo, Japan) were used as recipients for transplantation

assays. The 10–18-week-old mice were used as donors and

8–11-week-old mice were used as recipients. As an exception

to the above, in Fig 4F, C57BL/6-Ly5�1 mice were used as

donor cells, and C57BL/6J mice (CLEA Japan, Tokyo, Japan)

were used as recipient mice. All mice were housed in

pathogen-free conditions. Mice were bred accordingly with

RIKEN guidelines. All animal protocols were approved by

RIKEN Centre for Biosystems Dynamics Research.

More detailed information of BM analyses, sorting and

transplantation without supporting cells, peripheral blood

(PB) analyses, Sca-1+ depletion, lentiviral gene transduction,

ex vivo expansion of haematopoietic cells, fluorouracil (5-

FU) conditioning, quantification and statistical analyses are

described in the supplementary materials and methods.

Results

Non-lineage marker–/c-Kit+/stem cell antigen 1 (Sca-1)+

(LKS) fraction alone does not rescue lethally irradiated
mice

Several reports have shown that the LKS fraction (Figure S1A),

which accounts for 0�1% of the mouse BM, enables rapid

haematopoietic recovery after myeloablative conditioning.23,24

On the other hand, it has been reported that the non-LKS

fraction, which is believed to be free of undifferentiated cells,

may also contribute to continuous haematopoiesis, albeit to a

dramatically lesser extent.25 Therefore, we first tried to confirm

whether the non-LKS fraction, which accounts for 99% of the

BM cells, could rescue lethally irradiated recipient mice. Our

previous report22 showed that 2 9 105 whole BM (WBM) cells

were enough to rescue lethally irradiated mice. Therefore, we

compared the haematopoietic reconstitution between the

group transplanted with 2 9 105 WBM cells and the group

transplanted with 2 9 105 non-LKS cells (Fig 1A).

Non-LKS BM cells were prepared by depleting Sca-1+ cells

from the WBM by magnetic separation (Figs 1B,C). The sur-

vival rate of the WBM-transplanted group was 83%. In con-

trast, none of the mice transplanted with the same number

of the non-LKS cells survived (Fig 1D). No donor cells were

detected in the PB, even in the survived recipient mouse

receiving three doses of non-LKS cells (Fig 1E). These results

indicated that non-LKS fraction alone were insufficient for

rescuing recipient mice.

Transplantation with different doses of LKS cells revealed
a threshold for rapid haematopoietic recovery after
HSCT

Although LKS cells were considered necessary for rapid

haematopoietic recovery based on the above results, it is

desirable to establish a sufficiently safe transplantation dose

using fewer donor cells to improve the efficiency of genetic

modification.26,27 Therefore, we transplanted different num-

bers of LKS cells into lethally irradiated mice to determine

the minimum cell dose (Fig 2A). The groups that received

>1 9 103 cells had an average survival rate of 95�8%. In con-

trast, the groups that received <3 9 102 cells had a 50% sur-

vival rate (Fig 2B). The PB analysis revealed that the groups

receiving <1 9 103 cells had significantly reduced donor chi-

merism and delayed lymphocyte recovery (Figs 2C–E). On

the other hand, the groups receiving >3 9 103 cells had

stable donor chimerism and rapid lymphocyte recovery

8 weeks after transplantation (Figs 2C–E). These results sug-

gested that the cell dose should be determined based not

only on the survival rate but also on the rate of haematopoi-

etic reconstitution to ensure safe transplantation.

Non-HSCs in the LKS fraction do not play a pivotal role
in post-transplant haematopoietic reconstitution

Although we demonstrated that the LKS fraction alone was nec-

essary for successful transplantation, we have not determined

what is minimally necessary and sufficient as this fraction consists

of multiple cell types, including HSCs and multipotent progeni-

tors (MPPs), the latter which have lost their self-renewal capabil-

ity, and other differentiated cells. The next question is whether all

of the constituents are necessary for haematopoiesis after trans-

plantation or not. Then, we sought to identify the minimum

subsets that were truly responsible for post-transplant
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haematopoiesis. For this, we analysed the numerical contribu-

tion of the LT-HSC (Hoxb5+Lineage�c-Kit+Sca-1+CD150+

CD34�/loFlt3/Flk2�), ST-HSC (Hoxb5�Lineage�c-Kit+Sca-1+

CD150+CD34�/loFlt3/Flk2�), MPP subset A (MPPa; Lineage–c-

Kit+Sca-1+CD150+CD34+ Flt3Flk2�), MPP subset B (MPPb;

Lineage�c-Kit+Sca-1+CD150-CD34+Flt3/Flk2�) and Flt3/Flk2-

positive cells (Flt3/Flk2+; Lineage–c-Kit+Sca-1+Flt3/Flk2+) from

the LKS population along the haematopoietic hierarchy (Fig-

ure S1A). In our analyses, 1000 LKS cells consists of 500 Flt3/

Flk2+ cells, 300 MPPb cells, 75 MPPa cells, 38 ST-HSCs, and 12

LT-HSCs, excluding outlier cells (Figure S1A).

To determine the sufficiency of each of these fractions to

the MST, we first prepared four different cell mixtures starting

from the most differentiated population (Flt3/Flk2+) and add-

ing back the upstream population one by one according to the

haematopoietic hierarchy (Fig 3A). We used 1000 LKSs as a

positive control, which is the minimum number of cells to

ensure recipient survival (Fig 2B). All mice receiving non-HSC
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stitution capacity. In all, 200 000 WBM cells or non-LKS cells (Sca-1+-depleted BM cells) from CD45.2 mice were transplanted into lethally irra-
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containing fractions (▼Flt3/Flk2+, ▼MPPb, and ▼MPPa)

died within a short period of time except for one case in the

▼MPPb group (Fig 3B). Even in this case, no donor myeloid

cells were detected in the PB, representing typical graft failure

(Fig 3C). On the other hand, adding 38 ST-HSCs to the mix-

ture of Flt3/Flk2+, MPPb, and MPPa (▼ST-HSC) dramatically

improved the survival rate and myeloid cells output 4 weeks

after transplantation (Figs 3B,C). However, compared to the

LKS group which critically contains LT-HSCs, the survival

outcomes were inferior, suggesting that the LT-HSCs, while

only contributing a miniscule cell number to the LKS, were

crucial for safer outcomes. These results suggested that >90%
of the LKS fraction, which consists of MPPa, MPPb, and Flt3/

Flk2+, did not play a critical role in haematopoietic reconstitu-

tion after transplantation.

A combined fraction is the minimum necessary and
sufficient subset for haematopoietic recovery after
transplantation

As the field has concluded that the LT-HSC is both necessary

and sufficient for successful transplantation, the results above

strongly suggest that the LT-HSC is the key fraction. How-

ever, the recipient mice showed significant improvement of

survival by adding ST-HSCs. Therefore, we sought to clarify

whether either or both fractions were required to achieve
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successful transplantation. We transplanted isolated 12 LT-

HSCs, 38 ST-HSCs, 50 combined HSCs, and 1000 LKSs

respectively (Fig 4A). Surprisingly, neither 12 LT-HSCs alone

nor 38 ST-HSCs alone rescued recipient mice (Fig 4B). In

contrast, 50 combined HSCs had nearly equivalent rescue

potential to 1000 LKSs (Fig 4B).

Next, we tried to determine the sufficient dose of the com-

bined HSCs for rapid haematopoietic recovery and long-term

survival after transplantation by titrating the combined HSCs

dose (Fig 4C). The mice receiving >300 combined HSCs showed

rapid haematopoietic recovery 4 weeks after transplantation

(Fig 4D), resulting in a high survival rate (Fig 4E). Another

group receiving 300 combined HSCs confirmed 100% survival

and a year-long stable haematopoietic reconstitution deriving

from the donor cells with very high chimerism (Figs 4F,G). In

contrast, >90% of the LKS fraction, which consists of MPPa,

MPPb, and Flt3/Flk2+, contributed to haematopoiesis only in the

very short term and did not play a critical role in the survival of

the recipient mice after transplantation. In summary, the com-

bined fraction, LT- and ST-HSCs, was the minimal necessary and

sufficient subset to ensure both rapid haematopoietic recovery

and long-term haematopoietic reconstitution, i.e. the MST.

LT- and ST-HSCs work complimentarily in rapid
haematopoietic recovery and long-term haematopoiesis

Although we found that LT- or ST-HSCs alone were insuffi-

cient for rescuing irradiated mice, this may be due to the

scarcity of transplanted cells. To confirm this, we trans-

planted approximately 10-times as many LT- or ST-HSCs

compared to the previous experiments (Figures S2A, C).

While the group receiving 100 LT-HSCs showed little

improvement in survival, the group receiving 380 ST-HSCs

showed a significant improvement in survival and haemato-

poiesis, not only in the short term but also in the long term

(Figures S2B, D, and E). These results indicated that LT- and

ST-HSCs played different roles in transplantation.

To properly understand the differences, we performed a

co-transplantation assay in which we sorted LT-HSCs from

Hoxb5-tri-mCherry mice and ST-HSCs from CAG-EGFP;

Hoxb5-tri-mCherry mice, or vice versa. These cells were then

co-transplanted into the same recipients in a 25 LT-HSC: 75

ST-HSC ratio, as seen in healthy young mouse BM (Figs 5A,

and S1A). Except for one case, all mice survived the trans-

plantation with 300 MST cells, which included 75 LT-HSCs
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and 225 ST-HSCs. PB analysis revealed that both LT- and

ST-HSCs in the donor fraction produced myeloid lineage

cells predominantly in the first 4 weeks after transplantation.

However, ST-HSCs started losing the ability to produce mye-

loid lineage cells 8 weeks after transplantation (Figs 5B,C).

On the other hand, LT-HSCs maintained multilineage

haematopoietic reconstitution throughout the observation

period (Figs 5B,C). A direct comparison of the haematopoi-

etic reconstitution ability between LT- and ST-HSCs within

the donor fraction revealed that haematopoiesis by ST-HSCs

is predominant in the early post-transplant period, but LT-

HSCs are primary source for all the blood lineage over time

(Figs 5D,E). Taken together with the results showing insuffi-

ciency of the LT-HSCs to rescue, these findings suggested

that rapid haematopoietic recovery by ST-HSCs was essential

in the early post-transplant period, while LT-HSCs were

essential to ensuring robust long-term multilineage haemato-

poiesis and survival.

Gene-modified MST represents persistent reporter
expression in recipient mice

Next, we examined whether MST was applicable for gene-

modified HSCT. For this, we used lentivirus to genetically
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modify the minimum subset and confirmed their transduc-

tion efficiency and persistence by monitoring the ZsGreen

reporter expression (Figs 6A,B). We achieved a mean (SD)

59�6 (15�2)% of infection efficiency with 4 9 103 multiplicity

of infection (MOI) (Fig 6C). Under these conditions, trans-

planting 300 genetically-modified MST cells, we detected

stable donor cell contribution and persistent reporter expres-

sion for up to 16 weeks without decline (Fig 6D).

Ex vivo expansion of MST allows rapid and robust
multilineage reconstitution

Although we have shown that transplantation using MST is

feasible, as several previous studies have noted, graft failure

and delayed haematopoietic recovery are the major impedi-

ments to expand the applicability of purified HSCT to vari-

ous diseases.28 Recent studies have shown that ex vivo

expansion of umbilical cord blood stem cells promoted rapid

haematopoietic recovery,29 while maintaining the capacity for

long-term haematopoiesis. Taking this into account, we

sought to evaluate the effect of ex vivo expansion of MST on

haematopoietic recovery.

We cultured 300 MST cells for 7 days in the F12-based

culture medium with thrombopoietin30 and stem cell fac-

tor.31,32 After the incubation, we collected the cultured cells

and transplanted all expanded cells into lethally irradiated

mice. For comparison, we transplanted freshly isolated 300

MST cells into lethally irradiated mice (Fig 7A). PB analysis

showed that donor chimerism at 4 weeks was significantly

higher in the group receiving cultured cells than in the group

receiving freshly isolated cells (Fig 7B). We also observed fas-

ter recovery of lymphocytes in the PB in the group receiving

cultured cells than in the group receiving freshly isolated cells

(Figs 7C,D). To directly compare haematopoietic reconstitu-

tion potential between freshly isolated MST and expanded

MST, we co-transplanted freshly isolated 300 GFP+ MST cells

and 7-day cultured cells derived from 300 MST cells

(Fig 7E). We found that cultured cells outcompeted freshly

isolated cells in haematopoietic reconstitution throughout

the observation period (Figs 7F,G). In conclusion, these

results indicated that transplantation using ex vivo expansion

of the MST (ex vivo MST) improved short-term haematopoi-

etic recovery while maintaining long-term haematopoietic

capacity.

5-FU conditioning followed by MST transplantation
enables long-term donor haematopoiesis

Based on the aforementioned results, we have concluded that

the combined HSC fraction consisting of LT- and ST-HSCs

is the minimum subset sufficient for successful transplanta-

tion. The MST can contribute to expand the applicability of
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purified HSCT by improving gene modification efficiency.

However, due to life-threatening events caused by myeloabla-

tive conditioning, HSCT has not been commonly practised.

To potentially address this issue, we sought to explore the

utility of the MST to non-myeloablative conditioning.

5-FU has been widely used in various cancer treatments,33

partially due to 5-FU’s low-cost and less toxicity,34 contrary

to other reagents such as busulfan, cyclophosphamide, and

fludarabine.35–39 In addition, a previous report40 demon-

strated that 5-FU conditioning followed by transplantation of

5 9 106 WBM cells achieved 10% donor chimerism. There-

fore, we attempted to evaluate the same 5-FU regimen fol-

lowed by transplanting 3 9 103 MST cells instead of WBM

cells, which represent <0�1% of 5 9 106 WBM cell dose

(Fig 8A). We observed approximately the same donor chi-

merism as in the previous report (Fig 8B).40 As expected, no

donor cell engraftment was observed in the non-conditioned

group throughout the observation period (Fig 8B). Donor

chimerism analysis in each lineage showed that the MST

demonstrated persistent contribution to all cell lineages in

the PB (Fig 8C). We also critically detected persistent a MST

contribution to all haematopoietic stem and progenitor cell

fractions in the BM (Figs 8D,E and S1B), suggesting that the

MST maintained long-term self-renewal capacity and multi-

potency. These data demonstrated that MST transplantation

following 5-FU conditioning could provide an efficient thera-

peutic platform including gene therapy without fatal compli-

cations while maintaining long-term haematopoiesis.

Discussion

In the present study, using the Hoxb5-reporter system, we

have shown that the minimum subset consisting of LT- and

ST-HSCs, which account for only 0�005% of nucleated cells

within mouse BM, is critically sufficient for post-transplant

haematopoiesis and that MST transplantation is practically
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feasible without graft failure and delayed haematopoietic

recovery by transplanting a sufficient amount of MST cells.

In conventional HSCT, unpurified WBM cells, which are

comprised of mostly differentiated cells, have been intention-

ally used as donor sources to ensure high engraftment by

preventing loss of effective cells and anti-tumour effect

(called the graft-versus-tumour effect) by transfusing donor

mature T cells.41 On the other hand, recent innovations

including sequencing technology, gene modification and big

data analytics have significantly impacted on selecting treat-

ment strategies.42 For instance, molecular targeted drugs,43

chimeric antigen receptor T-cell therapy44 and immune

checkpoint inhibitors45 have the potential to replace HSCT

as the standard curative therapy for haematopoietic malig-

nancies in the near future. These changes in clinical practise

indicate the need to reconsider the use of HSCT in various

situations.

Recently, clinical trials have shown that autologous HSCT

is very effective in treating autoimmune diseases.46 Further-

more, genetic engineering technology is expected to expand

the applicability of autologous HSCT to many diseases,

including primary immunodeficiencies4 and inborn errors

of metabolism.7 On the other hand, ex vivo manipulations

of HSCs, such as cell sorting, genetic engineering and cell

culture, are likely to lose or abnormalise significantly HSC

functions, resulting in the lack of persistent therapeutic

effect11,12 or the increased risk of leukaemogenesis.13 To

solve these issues, starting from purified cell populations is

a practical solution to minimise risks around ex vivo modi-

fications.

Furthermore, to explore the applicability of MST to

humans, current myeloablative conditioning regimens need

to be revised due to acute and chronic fatal effects. Although

several groups have developed non-intensive conditioning

regimens that could be implemented into clinical practice in

the future, such as anti-c-Kit antibody treatment,47 dietary

valine restriction48 and non-conditioned transplantation,49

we hope that 5-FU conditioning will be an optimal option

because of not only low myeloablative toxicity but also low-

cost and being very mildly gonadotoxic for young patients.

Using a single MST (3000 cells) transplantation following 5-

FU conditioning, we achieved ˜10% donor chimerism com-

parable to that of the non-conditioned transplantation using

the massive HSC expansion ex vivo previously reported.50

For severe combined immunodeficiency and chronic granu-

lomatous disease, 5–10% myeloid chimerism is high enough

to improve their clinical symptom.51,52 However, given that

donor chimerism depends on the dose of transplanted cells,49

increased cell number of the MST or combination with

ex vivo expanded MST will be expected to achieve even

higher chimerism, which can further expand the application

of the MST for gene therapy.53

The MST transplantation has also brought new insights

into basic research. When assessing the function of HSCs,

WBM cells, in addition to donor cells, were commonly co-

transplanted as a supporting fraction to ensure the survival

of recipient mice. However, the supporting cell fraction also

contains functional HSCs. As we reported recently that the

cell fate of transplanted HSCs could be flexibly changed

depending on the intensity of haematopoietic stress,54 the

outcome of donor cells after transplantation are potentially

skewed by the supporting cells, especially when a low dose of

donor cells is used. Using MST transplantation, which does

not require any supporting cells, we can evaluate the func-

tion of the transplanted cell fraction specifically. Based on

this approach, we found that LT-HSCs did not improve early

haematopoietic recovery even with increasing numbers of

transplanted cells, indicating that LT-HSCs are specialised for

late and long-term haematopoiesis after transplantation. On

the other hand, we also demonstrated that ST-HSCs could

maintain long-term haematopoiesis by transplanting a large

number of ST-HSCs, although their efficiency was lower than

that of the minimum subset. This result strongly supports

our recent finding that ST-HSCs can behave like LT-HSCs

after transplantation by reducing the haematopoietic stress

per transplanted cell.54 This may also explain why transplant-

ing large numbers of HSCs grown ex vivo, including our

result, show improved haematopoietic recovery despite a dra-

matic decrease in the frequency of HSC fractions. Further-

more, we showed that the modified MST, in which the

minimum subset was the target for genetic modification,

could largely reduce development costs and sustain therapeu-

tic effects.

As we have utilised only a mouse model to identify the

MST, further research is necessary to transfer this knowledge

into a human context. In vivo tracking of human

haematopoietic reconstitution after transplantation revealed

bimodal peaks in the early and late stages,55 strongly suggest-

ing the existence of LT- and ST-HSCs in humans as well.

The establishment of a purification method of these fractions

will solve this in the future.

Finally, through detailed analysis of purified cell fractions

within BM, we identified the minimum subset that was mini-

mally necessary and critically sufficient for post-transplant

haematopoiesis over time. Based on these findings, we have

shown that MST transplantation can be a feasible method,

which can be developed as a safer transplantation method by

combining minimally invasive pre-treatment and ex vivo cell

expansion, further applying to genetic disease by high-

efficiency gene modification in the minimum subset.
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