
sensors

Article

Resource Usage and Performance Trade-offs for
Machine Learning Models in Smart Environments

Davy Preuveneers * , Ilias Tsingenopoulos and Wouter Joosen

imec–DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium;
ilias.tsingenopoulos@cs.kuleuven.be (I.T.); wouter.joosen@cs.kuleuven.be (W.J.)
* Correspondence: davy.preuveneers@cs.kuleuven.be; Tel.: +32-16-327853

Received: 19 January 2020; Accepted: 18 February 2020; Published: 20 February 2020
����������
�������

Abstract: The application of artificial intelligence enhances the ability of sensor and networking
technologies to realize smart systems that sense, monitor and automatically control our everyday
environments. Intelligent systems and applications often automate decisions based on the outcome
of certain machine learning models. They collaborate at an ever increasing scale, ranging from
smart homes and smart factories to smart cities. The best performing machine learning model,
its architecture and parameters for a given task are ideally automatically determined through a
hyperparameter tuning process. At the same time, edge computing is an emerging distributed
computing paradigm that aims to bring computation and data storage closer to the location where
they are needed to save network bandwidth or reduce the latency of requests. The challenge we
address in this work is that hyperparameter tuning does not take into consideration resource trade-offs
when selecting the best model for deployment in smart environments. The most accurate model
might be prohibitively expensive to computationally evaluate on a resource constrained node at the
edge of the network. We propose a multi-objective optimization solution to find acceptable trade-offs
between model accuracy and resource consumption to enable the deployment of machine learning
models in resource constrained smart environments. We demonstrate the feasibility of our approach
by means of an anomaly detection use case. Additionally, we evaluate the extent that transfer learning
techniques can be applied to reduce the amount of training required by reusing previous models,
parameters and trade-off points from similar settings.

Keywords: resource optimization; hyperparameter tuning; machine learning; smart environments

1. Introduction

Recent technological advancements in software and hardware have enabled the realization of
context-aware applications in intelligent environments. Internet of Things (IoT) applications are
processing growing amounts of sensor information to monitor everyday environments. Typical
application examples include those supporting the elderly in smart homes [1], the ones monitoring
environmental parameters in smart cities [2], smart health applications on wearable devices [3] and
fault detection solutions for smart manufacturing [4].

Smart applications tap into a wealth of information derived from raw data by sophisticated data
analytics techniques, including artificial intelligence methods and machine learning algorithms. While
traditional machine learning has been applied successfully in many areas, we are now witnessing
the adoption of deep learning methods and models proliferating. The main reason is the ability
to recognize and extract complex patterns without the need to manually craft complex high-level
features—upon which traditional machine learning methods usually depend— from raw data. Deep
learning is now also finding its way into a variety of smart applications [5–9]. However, as these
techniques rely on vast amounts of data to train models, and as the evaluation of such models can

Sensors 2020, 20, 1176; doi:10.3390/s20041176 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6279-4430
https://orcid.org/0000-0002-7714-5238
http://dx.doi.org/10.3390/s20041176
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/4/1176?type=check_update&version=3

Sensors 2020, 20, 1176 2 of 27

be computationally expensive, applications are leveraging the cloud and use Machine Learning as a
Service (MLaaS) [10,11] to extract valuable information and make predictions in a scalable manner.
The advantage of MLaaS in a resource rich deployment environment is that it simplifies and accelerates
hyperparameter tuning [12]. Hyperparameter tuning or optimization is the process of automatically
testing different configurations for training a machine learning model. Contrary to model parameters
that are learned or estimated from data to make predictions, a hyperparameter is a parameter whose
value is set before starting the model training process. Typical examples of hyperparameters for a
variety of machine learning methods are the number of leaves or the depth of a decision tree, the
number of clusters in k-means clustering, the number of estimators in a random forest, the number
of hidden layers or the learning rate for a deep neural network, etc. Tuning the hyperparameters
of a machine learning model can be done through simple grid search or random search strategies,
or through advanced methods such as Bayesian optimization or genetic algorithms [13,14].

Edge computing [15] is a mainstream distributed computing paradigm that aims to bring
computation and data storage closer to the location where they are needed in order to save network
bandwidth or reduce the latency of application requests. For smart environments, the consequence is
that the evaluation of machine learning models is also being shifted towards edge devices. A typical
use case is federated machine learning [16–18], a machine learning technique that trains a shared
prediction model across multiple decentralized nodes. These train the model with their own local data
samples and do not exchange their data samples with other nodes. The technique was used amongst
others on smartphones [19] to enhance the next-word prediction for virtual keyboards. As training
data never leaves the node, federated learning was previously conceived as a means to maintain the
confidentiality of training data. However, recent research has shown that this assumption may not
always hold [20,21].

The challenge that we address in this research is two-fold: First, the case is that most
hyperparameter tuning frameworks typically optimize the hyperparameters with respect to a single
model criterion—usually the error or misclassification rate—to obtain the model with the best
performance. However, for edge devices with resource constraints, such as sensors, gateways,
wearables, etc., the most accurate prediction model may be too memory or battery demanding,
too large to fit on a CUDA accelerated deep learning device (e.g., NVIDIA Jetson TX2 embedded
system) or too computationally complex to be evaluated on the edge device, especially for applications
where inference times faces stringent response latency constraints. Secondly, it is resource and time
expensive to thoroughly tune hyperparameters, a process that results in knowledge about the specific
use-case and deployed model that is discarded on the next iteration. Operating under significant
resource and time constraints necessitates the use of the information already accumulated on optimal
architecture and hyperparameter choices.

We present a hyperparameter tuning framework that also considers resource trade-offs when
selecting the best model for deployment in smart environments, as depicted in Figure 1. Our
contribution leverages multi-objective optimization [22] to find acceptable trade-offs between model
accuracy and resource consumption. Our framework implements a two-stage approach. The
first stage explores the high-dimensional search space in a resource rich environment, such as a
high-end workstation or server with many CPUs and a large amount of memory. This multi-objective
optimization process results in a collection of models of which some are on the Pareto front (Models on
the Pareto front present the trade-offs between the optimization objectives and are considered equally
good). Models that are not on the Pareto front have a counterpart on the Pareto front that is equal or
better in terms of all the optimization objectives. The second stage re-evaluates the found models on the
target device for an accurate characterization of the resource consumption. We then analyze how well
the set of ‘best’ models on the Pareto front—as well as the hyperparameters of these models—transfer
to resource constrained target devices. We investigate this in relative terms by comparing the models
on the Pareto fronts on both test environments, and in absolute terms by analyzing the memory and
CPU usage impact on the target device. Carrying out the hyperparameter tuning directly on the target

Sensors 2020, 20, 1176 3 of 27

device is often not feasible due to the resource limitations of the target device. The hyperparameter
tuning process imposes high memory requirements for evaluating multiple models on large training
sets. It already takes several hours on a high-end server or workstation, even when evaluating multiple
models in parallel. Furthermore, re-evaluating the obtained models standalone on the target device
is necessary to get an accurate resource usage without the memory overhead of the hyperparameter
framework. Indeed, in a production environment, one would only deploy the best model on the
target device and not the actual hyperparameter tuning framework. We demonstrate the feasibility
of our approach by means of an anomaly detection [23] use case. As computing the Pareto front
for optimal solutions is time consuming, even on a workstation or server, we also evaluate to what
extent transfer learning techniques [24,25] can be applied to reduce the amount of training required by
reusing previous models, parameters and trade-off points from similar settings [26,27]. Contrary to
other works that pursue a resource-individual approach, our framework offers a single integrated
solution for hyperparameter tuning with multiple resource trade-offs. The main contributions of this
work can be summarized as follows:

• Hyperparameter tuning with resource trade-offs on top of existing traditional machine learning
and deep learning frameworks.

• Practical feasibility analysis of transfer learning to speed up the computation of optimal
configurations in similar settings.

• Evaluation of an anomaly detection use case involving network intrusion detection with attacks
representing the anomalies, as well as other datasets.

These contributions were developed within the frame of the ICON RADIANCE research project
(https://www.imec-int.com/en/what-we-offer/research-portfolio/radiance). In this project, we have
the ambition to extend machine learning algorithms to detect anomalies in environments such as
IT and telecommunication networks, enabling them to detect anomalies in real-time under resource
constraints and adapt to changing contexts. This will cut training time and reduce the need for
human involvement.

Anomaly Detection Algorithm

Hyperparameters

Trained Model

Stream 1 Stream 2 Stream N…

Testing and Cross-Validation

Figure 1. Hyperparameter tuning with resource trade-offs for an anomaly detection algorithm.

The remainder of this paper is structured as follows. In Section 2, we describe relevant related
work on hyperparameter tuning and optimization. Section 3 describes our multi-objective optimization
solution for finding acceptable machine learning models in terms of model accuracy and resource
usage. In Section 4 we evaluate our framework on the ability to find Pareto-optimal solutions, measure
the impact of transfer learning, and compare both scenarios against a baseline not taking resource
constraints into consideration. We conclude in Section 5 summarizing the main insights and offering
suggestions for further work.

https://www.imec-int.com/en/what-we-offer/research-portfolio/radiance

Sensors 2020, 20, 1176 4 of 27

2. Related Work

The hyperparameters of a machine learning method are parameters whose values are set prior
to the start of the learning process. By contrast, the values of typical model parameters like neuron
weights are computed during model training. Hyperparameter tuning is the problem of choosing a
set of optimal hyperparameters for the learning problem. Recently, a variety of automated machine
learning (AutoML) frameworks for traditional and deep learning methods has been proposed to tackle
this challenge.

Auto-WEKA [28] is a Java-based AutoML framework that combines algorithm selection and
hyperparameter optimization for the open source WEKA machine learning library [29]. Contrary
to other frameworks that focus on deep learning only, Auto-WEKA explores the many learning
and feature selection algorithms implemented in WEKA, resulting in an high-dimensional search
space to search for the best performing configurations. It was one of the first frameworks to fully
automate the process with Bayesian optimization, by utilizing Sequential Model-Based Optimization
(SMBO) [30]. An instantiation of this optimization algorithm upon which Auto-WEKA depends
was implemented by the Sequential Model-Based Algorithm Configuration (SMAC) tool [30]. For
Python-based applications, Scikit-learn (https://scikit-learn.org/) is a popular and well-known
framework for traditional machine learning. The AutoSklearn [31] framework follows the same
AutoML approach first introduced in Auto-WEKA, combining a highly parametric machine learning
library with a Bayesian optimization method. For Keras-based deep learning models, AutoKeras [32]
similarly relies on Bayesian optimization to find the best neural network architecture.

Google Vizier [33] is the de facto black-box optimization and parameter tuning engine at Google,
and underpins Google’s Cloud Machine Learning HyperTune (https://cloud.google.com/ml-engine/
docs/hyperparameter-tuning-overview) subsystem. The advantage of Vizier and HyperTune over
frameworks like Auto-WEKA is that the solution is offered as a service and minimizes the managerial
overhead. Open source implementations of Vizier are available as well (e.g., Advisor, https://github.
com/tobegit3hub/advisor). Vizier supports a form of transfer learning which leverages data from
previous tuning experiments to accelerate the current one.

Multi-Objective Neural Architectural Search (MONAS) [34] is a hyperparameter optimization
framework that aims to find neural network architectures optimized not only for prediction accuracy,
but also other indicators. While the authors mainly focused on energy consumption as part of their
evaluation and comparison with other approaches, the MONAS framework is extensible and can
incorporate other optimization constraints. The multi-objective optimization process is based on
reinforcement learning, using accuracy and energy consumption as components of the reward signal.
The framework is also capable of enforcing hard constraints, such as a maximum peak power or
minimum accuracy. DPP-Net [35] is another approach of device-aware search for Pareto-optimal
neural network architectures. Similar to MONAS, it optimizes device-related (e.g., memory usage)
and device-agnostic (e.g., accuracy or model size) objectives. Both approaches were evaluated in [36],
showing that both frameworks are effective and are able to achieves Pareto-optimality with respect
to the given objectives. While both resource-aware optimization frameworks are closely related to
the objectives of our research, an open source implementation for MONAS and DPP-Net was not
available for evaluation and adaptation purposes. Google’s AutoML uses reinforcement learning with
gradient policy upgrade on top of Tensorflow to design the best neural network architecture. More
recently, Google researchers proposed MnasNet [37], a solution that also incorporates the inference
speed information into the main reward function of the search algorithm to find good trade-offs.

There is a multitude of software frameworks available that can assist in tuning the
hyperparameters of a machine learning model. Table 1 contains an overview of automated
hyperparameter optimization and tuning solutions. This list is not meant to be exhaustive, for a
more comprehensive list of tuning solutions the reader can refer to: https://github.com/windmaple/
awesome-AutoML and at https://github.com/markdtw/awesome-architecture-search.

https://scikit-learn.org/
https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview
https://cloud.google.com/ml-engine/docs/hyperparameter-tuning-overview
https://github.com/tobegit3hub/advisor
https://github.com/tobegit3hub/advisor
https://github.com/windmaple/awesome-AutoML
https://github.com/windmaple/awesome-AutoML
https://github.com/markdtw/awesome-architecture-search

Sensors 2020, 20, 1176 5 of 27

Table 1. Overview of hyperparameter optimization and tuning solutions.

Framework URL

TPOT https://epistasislab.github.io/tpot/
SMAC https://github.com/automl/SMAC3
AutoWeka http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
AutoSklearn https://automl.github.io/auto-sklearn/
AutoKeras https://autokeras.com/
H2O AutoML http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
TransmogrifAI https://transmogrif.ai
HyperAS https://maxpumperla.com/hyperas/
DEvol https://github.com/joeddav/devol
Talos https://github.com/autonomio/talos

The opportunity to accelerate hyperparameter tuning through transfer learning was explored
in [26,27]. Transfer learning is a methodology where a model developed for a specific task is reused
as the starting point for a model on another, related task. Yogatama et al. [26] proposed an algorithm
for automatic hyperparameter tuning that generalizes across different datasets. It is an instance of
Sequential Model-Based Optimization (SMBO) that uses deviations from the per-dataset means to
transfer information. Perrone et al. [27] proposed a multi-task adaptive Bayesian linear regression
model for transfer learning in Bayesian optimization. The challenge that they address is the fact that
Bayesian optimization has an algorithmic complexity that is cubic in the number of evaluations. Their
technique has a linear complexity to the number of function evaluations. It uses one Bayesian linear
regression model per optimization problem, and then realizes transfer learning in a scalable way by
coupling the models through a shared deep neural network.

Managing computational resources is also a key challenge for applications at the intersection
of edge, cloud and services computing research, such as Multi-Access Edge Computing (MEC) [38].
A MEC system is an operator-owned system to run third party applications in a 5G landscape.
Zanzi et al. [39] presented M2EC, an orchestration solution that acts as a MEC broker and exposes
administration and management capabilities to MEC tenants. M2EC optimally allocates requested
resources in compliance with the Service Level Agreements (SLA) of the tenants. Baresi et al. [40]
proposed PAPS, a framework for the partitioning, allocation, placement and scaling of large-scale edge
topologies and the decentralized self-management of containers and edge infrastructure. PAPS splits
an edge topology into smaller communities that each elect a leader that is responsible for placing and
allocating containers to cope with agreed SLAs for the incoming workload. These edge computing
frameworks complement our research in that the resource usage characterization of the machine
learning models provided by our solution are a perfect guide to defining these SLAs, while offering
the necessary flexibility to edge resource management frameworks by allowing to trade one resource
for another.

The gap that we aim to bridge is that existing solutions [33,41] focus primarily on finding the
parameterization that achieves the best classification accuracy. A small subset of them consider
resource usage and real-time detection as additional trade-offs to find the best parameter set for a
particular model within a specific setting, configuration or deployment. Those are purposed to find
solely neural network architectures, whereas equally effective traditional machine learning methods
may exist. Furthermore, the practical feasibility of transfer learning [26,27] in the presence of multiple
optimization objectives is not yet thoroughly explored.

3. Multi-Objective Optimization Approach

In this section, we describe the different steps behind our multi-objective optimization approach,
as well as the datasets we have employed for our experimental evaluation. We explore both traditional
machine learning techniques as well as deep learning methods:

https://epistasislab.github.io/tpot/
https://github.com/automl/SMAC3
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://automl.github.io/auto-sklearn/
https://autokeras.com/
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://transmogrif.ai
https://maxpumperla.com/hyperas/
https://github.com/joeddav/devol
https://github.com/autonomio/talos

Sensors 2020, 20, 1176 6 of 27

1. We evaluate our framework on different types of anomaly datasets, including synthetic anomaly
datasets as well as datasets collected in the real-world.

2. We train and test various machine learning models, and compare their performance as well as
their resource usage (memory and CPU):

• Binary classification vs. One-class classification.
• Traditional machine learning vs. Deep learning methods.

3. We formally evaluate how adequately the Pareto front of optimal configurations transfers to the
target device, in relative and absolute terms.

Binary classification techniques train models with normal and anomalous samples in the training
set, whereas one-class classification techniques (such as One-Class SVM and Autoencoders) train only
on normal samples. One-class classification methods learn a model of normal samples, and classify a
test sample as anomalous when it deviates beyond a given threshold. As such, they can also identify
unknown anomalies, whereas binary classifiers typically find anomalies only in respect to the samples
that are part of the training set.

3.1. Anomaly Detection Datasets and Generation Tools

As a test bed we are focusing on anomaly detection [23] use cases, as they cover a broad variety
of applications ranging from fault detection or other exceptional situations in manufacturing scenarios
up to security breaches manifesting themselves as deviations from normal user interaction or network
traffic behavior. Key challenges with anomaly detection are (1) the number of classes are highly
imbalanced, i.e., the anomalies are underrepresented compared to the normal samples, (2) new
anomaly patterns may emerge that were not yet known when training the model and (3) the discovery
of anomalies in one or more streams of data samples can be subject to real-time detection goals.
Beyond real world anomaly datasets, the availability of software tools to generate synthetic datasets
with known ground truth makes the systematic comparison for growing amounts of datasets more
straightforward. The datasets we considered in our research are the following:

• Yahoo! Webscope S5 Dataset: Yahoo! Research [42] announced a benchmark dataset for time
series anomaly detection. They have developed new anomaly detection algorithms causing fewer
false positives to help service engineers looking to improve user experience and security. In order
to evaluate the proposed algorithms, they created a large dataset that they have made public
via their Webscope data-sharing program. The dataset includes real traffic to a Yahoo service,
and incorporates also some synthetic data. There are 367 time series in the dataset. Each time
series contains between 741 and 1680 observations recorded at regular intervals. They are also
accompanied by an indicator series where a “1“ defines that the observation was an anomaly,
and “0” indicator highlights normal traffic. The distinction between the real and synthetic data
is the way the anomalies were determined. For the real data, these anomalies were determined
by human judgment. The anomalies in the synthetic data were generated algorithmically. The
dataset is available at https://research.yahoo.com/news/announcing-benchmark-dataset-time-
series-anomaly-detection.

• Enterprise software system anomalies: This dataset was collected between August 2014 and
October 2015 by Huch et al. [43] in a real-world industrial setting—monitoring 20 instances
of a complex enterprise application—to test the feasibility of machine learning-based anomaly
detection at runtime. The dataset consists of 831 metrics in 1-minute time intervals (in total 7.5 ×
106 data points), and contains time series data about the operating system, database connections
and transactions, memory and CPU usage and many other metrics. The dataset is available at
https://www.kaggle.com/anomalydetectionml/rawdata. The fact that 20 instances of the same
application are monitored, makes this dataset ideally suited to evaluate the performance impact
of transfer learning.

https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection
https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection
https://www.kaggle.com/anomalydetectionml/rawdata

Sensors 2020, 20, 1176 7 of 27

• CICIDS 2017: CICIDS 2017 [44] is a network intrusion detection dataset—available for download
at https://www.unb.ca/cic/datasets/ids-2017.html—with network monitoring data collected
over 5 days and from multiple machines. During the data gathering process, a variety of
attacks—including Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,
Botnet and DDoS— were carried out on specific days. In this work, we consider these
attacks as anomalies. The raw data—i.e., bidirectional network traffic—was analyzed with
a tool CICFlowMeter (http://www.netflowmeter.ca/netflowmeter.html) to produce 83 high-level
statistical feature vectors.

• Agots: Anomaly Generator on Time Series (Agots) is an anomaly generation tool to produce
completely synthetic multivariate data streams with the option to define (1) the number of values
in each time series, (2) the number of time series and (3) the number of time series that should
correlate. For the generation of outliers, the tool provides various parameters, including for the
definition of extreme values, shifts, changing trends and variances. Figure 2 depicts an example
with four time series in which two streams x0 and x1 are correlated, and where four types of
outliers were added. These include two extremes in stream x0 at offset 50 and 100, a shift in
stream x1 between offsets 170 and 200, a trend in stream x2 between offsets 270 and 290 and a
change in variance in stream x3 between offsets 400 and 450. More details about Agots and an
open source implementation can be found at https://github.com/KDD-OpenSource/agots. The
dataset generated for our experiments contains 80 time series with 1500 data samples, and a
variety of anomalies as depicted in Figure 2. The high-level feature vectors were computed over a
window size of 10.

Another more sophisticated synthetic anomaly generation tool is AnoGen [45] developed by
Facebook AI research. The approach relies on Variational Autoencoders (VAE) and Generative
Adversarial Networks (GANs). AnoGen learns the normal and abnormal distributions using VAEs.
To generate outliers or rare events in time series, AnoGen samples in the outlier region of the latent
variable z. For datasets that only provide raw low-level time series data samples, we use tsfresh 0.13
(https://tsfresh.readthedocs.io) as a feature engineering tool in order to compute over 750 time and
frequency based high-level features on sliding windows of different lengths.

0 100 200 300 400 500

10

5

0

5

10

15

20

25 x0
x1
x2
x3

Figure 2. Synthetic anomaly data stream created with Anomaly Generator on Time Series (Agots).

3.2. Automated Benchmarking and Trade-Off Analysis

Here the objective is twofold: to identify anomalies in a time series dataset, and at the same time
optimize resource consumption. Resource consumption can be measured both during the training
phase, as well as during the testing phase. Evidently it will be different at both stages, given that
for most machine learning methods the training phase is much more computationally and memory
demanding. When we are concerned with purely statistical methods, there is no training time, only
the successive update of the statistical indicators and thresholds.

https://www.unb.ca/cic/datasets/ids-2017.html
http://www.netflowmeter.ca/netflowmeter.html
https://github.com/KDD-OpenSource/agots
https://tsfresh.readthedocs.io

Sensors 2020, 20, 1176 8 of 27

By the very definition of anomaly, its occurrence is quite rare. When trading accuracy and resource
consumption, it is very difficult to beat the algorithm illustrated in Figure 3. It depicts a straightforward
anomaly detection algorithm which always returns “0“, interpreted as false or not an anomaly. From a
systematic performance comparison point of view, it has several benefits:

• It requires no training.
• It is very low on resource consumption, both in terms of memory and processor usage.
• It is easily parallelizable and horizontally scalable.
• It has a pretty good accuracy (due to the imbalanced nature of the problem).

1 int isAnomaly(...) {
2 return 0;
3 }

Figure 3. The least resource intensive anomaly detection algorithm.

Obviously, the algorithm does not have any false positives (i.e., predicting an anomaly whereas in
practice there is no anomaly), but it has a very high false negative rate (i.e., predicting no anomaly
whereas in practice there is one). As a result, we have to be vigilant with identifying and positioning
the performance metrics and trade-offs in relation to each other before drawing conclusions and
generalizations. The end goal is therefore to produce a cost and trade-off model that would be able to
take into account the following parameters and indicators:

• CPU time, wall clock time, memory vs. accuracy.
• Training vs. testing phase.
• Offline vs. online learning.

It follows then that a systematic analysis should vary one constraint at a time, and then tune
the models with different parameters and configurations, e.g., fixing a memory budget which is a
commonplace constraint in some deployment environments. Afterwards, the analysis can incorporate
the effect of different wall clock times. Other practical considerations regarding the deployability
of such machine learning models, are the feasibility of parallelization over multiple cores or nodes
(e.g., for ensemble methods), the cost/benefit importance of feature engineering for specific application
cases and the availability of hardware accelerated implementations.

3.2.1. Binary Classification with Traditional Machine Learning Methods

In order to systematically compare between machine learning model families and configurations,
we have built on top of AutoSklearn 0.6.0 and Java-based Auto-WEKA 2.6.1. By default these
frameworks support only single objective optimization, as depicted in Appendix A.1 for the errorRate
metric and the Yahoo dataset. The log trace in the appendix illustrates the configuration of the best
machine learning model (RandomForest) found within 10 minutes, as well as the classification accuracy
and the running time on the test set. We follow the same procedure for the other datasets, including
the synthetic dataset generated by Agots. In the 10-minute exploration of the search space, a similar
RandomForest model offers the best accuracy albeit with a slightly different attribute selection step
(see the code in Appendix A.2). Similar hyperparameter tuning experiments were carried out with
the Python-based AutoSklearn 0.6.0 tuning framework on top of Scikit-learn 0.21.3 machine learning
library, as shown in Appendix A.3. In practice, the previous hyperparameter tuning experiments
would have to run for several hours in order to find the best approximately configuration. These
examples serve merely as an illustration and in the evaluation section, we report the results of a more
comprehensive exploration on larger datasets.

By default, both Auto-WEKA and AutoSklearn optimize for only one metric, such as the error
rate or accuracy. MONAS and DPP-Net [36], on the other hand, are natural extensions that search

Sensors 2020, 20, 1176 9 of 27

and optimize for multiple device-agnostic and device-aware constraints, resulting in gradually better
models for all optimization objectives. The outcome of this process are tuples of objective performances
where we can select the ones that are Pareto-optimal, that is they are optimal at least in one of the
objectives. The entirety of these points constitute the Pareto-front, which can facilitate in choosing the
fitting configuration for the occasion.

Our approach takes the intermediate results of either Auto-WEKA or AutoSklearn, including the
model itself as well as the performance metrics, to construct the Pareto front. This is illustrated for
one of the hyperparameter experiments with AutoSklearn in Figure 4, depicting the Pareto front in
red—including configurations c1, c3, c5, c6 and c9 and a selection of the sub-optimal configurations in
green—i.e., c2, c4, c7 and c8—that have either a higher error rate or are slower.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16

18
15.4

9.8

4.3
3.1 2.5

Pareto Front: Error Rate vs. Evaluation Time

Hyperparameter configurations (c1 - c9)

Pareto Front

Evaluation Time (s)

E
rr

o
r

R
a

te
 (

%
)

c
1

c
2

c
3

c
5

c
4

c
6

c
7 c

8

c
9

Figure 4. Pareto front of nine hyperparameter configurations (c1 to c9) demonstrating the error rate
versus evaluation time trade-off.

The main motivation for this approach is two-fold. First, it builds on top of existing frameworks
without the need to modify code. Second, the search space for just a single optimization metric
(e.g., errorRate) is already huge. Not only do Auto-WEKA and AutoSklearn need to compare the impact
of different hyperparameters, they also have to do that across multiple feature selection and machine
learning methods. With recommended exploration times for a single experiment being more than
24 hours, taking into consideration additional optimization objectives will impact considerably the
computational demands. We therefore use the intermediate validated models and process monitoring
in order to calculate the Pareto front.

3.2.2. One-Class Classification with Traditional Machine Learning Methods

Contrary to binary classification techniques that train models using normal and anomalous
samples in the training set, one-class classification methods learn a model using normal training
samples only. A test sample is considered anomalous when it deviates too far from what has been
modeled as the normal distribution. Traditional machine learning methods that fall into this One-Class
Classification (OCC) category include One-Class K-means, One-Class K-nearest neighbors, One-Class
SVM or a combination of these methods [46]. The first two methods also rely on thresholds to decide
whether a new sample is anomalous or not, whereas One-Class SVM relies on two hyperparameters γ

and ν for which the optimal configuration can be found through a simple grid search.
While traditional machine learning frameworks like Scikit-learn provide implementations

for anomaly detection—such as One-Class SVM, Isolation Forest and Local Outlier Factor—the
corresponding automated hyperparameter tuning frameworks are not befitting for this sort of
unsupervised learning problems. AutoSklearn needs a loss function to tune the hyperparameters [47]

Sensors 2020, 20, 1176 10 of 27

and such a loss function is not provided for outlier detection by the underlying Scikit-learn framework.
As a workaround for this limitation we use a custom grid search hyperparameter tuning solution,
rather than AutoSklearn, to analyze the accuracy and resource usage trade-offs for this subset of
unsupervised machine learning algorithms provided by Scikit-learn.

3.2.3. One-Class Classification with Deep Learning-Based Methods

Moving to deep learning based anomaly detection methods, our investigation focuses mainly on
autoencoder [48,49] neural networks. Autoencoders learn a compressed representation or an encoding
of a normal dataset containing no anomalies, in an unsupervised manner. A typical autoencoder
architecture is illustrated in Figure 5. We define these autoencoders using the Tensorflow 2.0 framework
(https://www.tensorflow.org).

In
pu

t l
ay

e
r

Compressed
feature vector

Encoding neural network Decoding neural network

O
ut

pu
t l

ay
er

Figure 5. Deep autoencoder learning a compressed representation of normal input samples.

For an autoencoder that has sufficient learning capacity and has converged, the output sample
closely resembles the input sample, as the decoder network learns how to reconstruct the original
input from the compressed feature vector. At time of inference, the reconstruction error is used as a
measure of how faithful the decoder’s reconstruction of the input is. Normal input samples have a low
reconstruction error, whereas anomalous samples result in a high reconstruction error. A threshold
in reconstruction error differentiates between the categories the input sample is classified, and this
threshold can be set as the maximum reconstruction error observed during the training phase on
normal samples. The hyperparameter search space for autoencoder models includes the different
number of hidden layers, the number of neurons per layer, the number of layers in the encoder and
the decoder, the learning rate and others.

Other opportunities to trade accuracy and resource usage is the use of the 16-bit half precision
floating point format to represent the weights of the neural network rather than the standard 32-bit
single precision floating point numbers. Not only does this reduce the memory consumption by half,
it also leads to significantly faster network evaluations, especially on dedicated hardware such as
mobile GPUs, but at the expense of slightly reduced accuracy. The latter is a approach often employed
for Android or iOS mobile devices by converting regular Tensorflow models into Tensorflow Lite
(TFLite) (https://www.tensorflow.org/lite) models for on-device inference. In fact, further resource
usage improvements can be achieved through quantization of the models into 8-bit integers. The best
performance is achieved on mobile devices with dedicated hardware and software (e.g., an Android
device implementing the Neural Networks API on top of a hardware accelerator). For evaluating the
converted models on workstations with a regular CPU, TFLite offers only an interpreter. Although
more lightweight in terms of memory usage, the TFLite interpreter is not equally optimized for speed
compared to the regular Tensorflow engine, and as such does not offer an accurate characterization of
the speed of network evaluation. That is why this Tensorflow model representation trade-off is not
explored within the hyperparameter tuning and trade-off analysis process.

https://www.tensorflow.org)
https://www.tensorflow.org/lite

Sensors 2020, 20, 1176 11 of 27

One of the main reasons to focus exclusively on this kind of neural networks is that for training
they require data samples representative of normal behavior only. In an open-world assumption
this property makes them more practical compared to classification models that can only recognize
anomaly patterns only if they were previously trained on them. Autoencoders can be used on raw
data inputs as well as high-level feature vectors. This is illustrated for the CICIDS 2017 dataset in
Figure 6 using the high-level feature vectors as input for the autoencoder. The high-level features were
computed by the CICFlowMeter tool.

1 x_train = ...
2 x_validation = ...
3 x_test = ...
4
5 input_dim = x_train.shape[1]
6
7 input_layer = Input(shape=(input_dim,))
8
9 net = Dense(70, activity_regularizer=regularizers.l1(1e-4))(input_layer)

10 net = Dense(50)(net)
11 net = Dense(20)(net)
12 net = Dense(50)(net)
13 net = Dense(70)(net)
14 net = Dense(input_dim, activation=’sigmoid’)(net)
15
16 autoencoder = Model(inputs=input_layer, outputs=net)
17
18 nb_epoch = 1000
19 batch_size = 512
20
21 earlystopper = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=1, patience=100)
22
23 autoencoder.compile(optimizer=Adam(lr=2e-3), loss=’mean_squared_error’, metrics=[’accuracy’])
24
25 checkpointer = ModelCheckpoint(filepath="model.h5", verbose=1, save_best_only=True)
26
27 tensorboard = TensorBoard(log_dir=’./tensorboard’, histogram_freq=0, write_graph=True, write_images=True)
28
29 history = autoencoder.fit(x_train, x_train, epochs=nb_epoch, batch_size=batch_size, shuffle=True,
30 validation_data=(x_validation, x_validation), verbose=1, callbacks=[checkpointer, earlystopper,
31 tensorboard]).history

Figure 6. Autoencoder in Tensorflow 2.0 for the CICIDS 2017 dataset.

Using the CICIDS2017 dataset as an example, from an input feature vector of 78 statistical features,
the autoencoder constructs a compressed feature vector of size 20 through a series of densely connected
layers before reconstructing it back into its original representation. The neural network is trained
by minimizing the reconstruction loss and its convergence is evaluated on the validation dataset.
The reconstruction loss defined as the mean squared error between the autoencoder’s output feature
vector and the expected output feature vector, which is the same the original input feature vector. The
network will be trained for at most 1000 epochs with a batch size of 512, and training will stop early
when no improvement on the validation loss is achieved in the last 100 epochs.

3.3. Transferability of Pareto Fronts to Different Contexts

Optimal model selection and hyperparameter optimization is an indispensable and
time-consuming process in finding the highest performance model for the given task. When we
take resource usage into consideration, it follows that identifying the optimal trade-off points becomes
a challenging, non-trivial task. For that purpose we investigate to what extent transfer learning
methodologies [24–26] are applicable in this domain in order to reduce the amount of training required
by reusing previous model configurations, parameters and trade-off points from similar settings in
order to bootstrap and inform future exploration. The overall approach is depicted in Figure 7.

Sensors 2020, 20, 1176 12 of 27

Anomaly Detection Algorithm

Hyperparameters

Trained Model

Testing and Cross-Validation

Enhanced TL

Anomaly Detection Algorithm

Hyperparameters

Trained Model

Testing and Cross-Validation

Reuse
optimization

Figure 7. Transfer learning to speed up hyperparameter tuning and training.

Contrary to previous approaches that consider only a single optimization objective, such as the
misclassification or error rate, moving towards multi-objective optimization we are compelled to
account for the resource usage characteristics, including CPU time and memory consumption. In
practice a straightforward method to accomplish this is to investigate whether the Pareto front of
hyperparameters of a previous tuning experiment remains similar to the new one. The new tuning
experiment may differ in two ways:

• A similar dataset collected in a different environment.
• A different deployment and evaluation environment (e.g., with a CUDA hardware accelerator).

To investigate the feasibility of the approach, we will employ the CICIDS 2017 network intrusion
detection and the Enterprise software system anomalies datasets. By tuning the hyperparameters
and learning a model on a subset of the machines in the network—possibly in a federated learning
manner too—we can verify whether the model is equally effective—i.e., also with regard to the Pareto
front—for the other machines and configurations in the network.

The methodology we follow re-evaluates the various hyperparameter configurations in the new
context based on a distance metric from the original Pareto front (see Figure 4), and demonstrates the
amount of time saved compared to executing a full exploration phase from the start.

4. Evaluation

In this section we assess and demonstrate the multi-objective hyperparameter tuning process for
traditional machine learning and deep learning methods along with the computation of the Pareto
fronts. Additionally, we evaluate the effectiveness of transfer learning in minimizing the amount of
time it requires to optimally tune the hyperparameters in comparable settings.

In principle, the effectiveness of a model can be measured by means of the accuracy metric, defined
in terms of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

However, anomalies are usually underrepresented in the test set compared to the normal samples.
A classifier that is unable to find any anomalies, such as the one in Figure 3, will have a high accuracy.
Indeed, TP and FP will be equal to 0, such that the accuracy in this particular case becomes Accuracy =

TN/(TN + FN). When the number of anomalies in the test set is relatively small, the value of FN
will be small too, resulting in a high accuracy. That is why we must either ensure that all classes
(i.e., normal and anomalous samples) are equally balanced in the test set, or use a different metric that
can deal with class imbalance, such as the F1 score defined as the harmonic mean of the precision
and recall:

Precision =
TP

TP + FP
(2)

Sensors 2020, 20, 1176 13 of 27

Recall =
TP

TP + FN
(3)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(4)

For the one-class classification methods, we will also be using operating characteristic curve
(ROC) curves as a way to represent the balance between true positive rate and false positive rate of
a binary classifier system as its discrimination threshold is varied, as well as F1 score as a metric for
binary classification.

The base deployment environment for the hyperparameter tuning is a Dell PowerEdge R620
server with 64GB of memory and two Intel Xeon E5-2650 (8 cores) CPUs running at 2.00GHz and
hyperthreading enabled (resulting in 32 virtual cores). The peak memory usage for any process is
measured as the maxrss value reported by the getrusage() system call on Linux.

4.1. Traditional Machine Learning Trade-Offs

AutoSklearn uses up to 2 h to find the best machine learning model and set of hyperparameters.
For the Yahoo anomaly benchmark dataset, we use tsfresh to compute high-level feature vectors on a
sliding window of 11 elements. In the case the 11-element sequence contains at least one anomaly, we
consider the whole sequence as anomalous. The combined dataset contains 89,935 samples, and we
use 80% (or 71,948 samples) for training and validation (split according to a 67/33 ratio) in order find
the best model and hyperparameters. The remaining 20% is used for testing and measuring resource
usage. The dataset was split with stratified sampling such that the training, validation and test sets
have approximately the same percentage of samples of each target class (i.e., normal and anomalous)
as the original complete dataset.

AutoSklearn constructed 177 configurations of machine learning models and hyperparameters,
trained until they converged and recorded the accuracy on the validation set. Figure 8 depicts the best
machine learning models, evaluated on a test set—not overlapping with the training and validation
set—to construct the Pareto fronts. We monitor the amount of memory used for the process and the
wall clock time (i.e., the elapsed real time) for evaluating the test dataset. While the validation dataset
may give a reasonable estimate for accuracy, the memory and CPU usage are more difficult to measure
accurately during the hyperparameter tuning as multiple configurations are evaluated in parallel. That
is why each configuration is measured sequentially on a test dataset as a separate process to obtain
an accurate resource usage characterization. We apply a filtering, also in the reported figures, where
configurations with an extremely high resource usage (i.e., more than 750 MB or taking more than
750 ms) are discarded. As an example, one configuration used 1140 MB and another required more
than 8 s wall clock time (41 s CPU time) to evaluate the 17,987 samples in the test set. We also filtered
out the results of a dummy classifier that AutoSklearn uses to set a baseline for the other models. This
dummy classifier makes random predictions, and is therefore relatively fast:

• Memory: 448 MB.
• Wall clock time and CPU time: < 1 ms.

The memory consumption in Figure 8 provides a clear indication of the minimum memory
usage for the whole Python process to load the test dataset and the necessary software libraries
(e.g., AutoSklearn, Scikit-learn, Pandas, etc.). Figure 8 also depicts the Pareto fronts for the memory
consumption of just the data object representing the machine learning model (i.e., only the size of the
model object and not any software libraries, datasets or other objects). The majority of models use less
than 2 MB as shown on the bottom left. As the wall clock time depends heavily on the effective use of
the available cores on CPU, the figure also illustrates on the bottom right the Pareto front with respect
to the actual CPU time used to evaluate the model on the test samples.

Sensors 2020, 20, 1176 14 of 27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F1 Score

500

550

600

650

700
M

em
or

y
(M

B)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F1 Score

200

300

400

500

600

700

W
al

l c
lo

ck
 ti

m
e

(m
s)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 Score

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Ob
je

ct
 si

ze
 (M

B)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 Score

100

200

300

400

500

600

700

CP
U

tim
e

(m
s)

Figure 8. Pareto fronts for memory (top left), wall clock time (top right), object size (bottom left) and
CPU time (bottom right) for the Yahoo! Webscope S5 Dataset.

Figure 8 depicts two dimensional Pareto fronts. The Pareto front for multiple optimization
objectives composes a multi-dimensional surface, but this surface is difficult to represent and interpret
as-is when the objectives are more than 2. In the presence of hard constraints, this surface can still
be projected to the two-dimensional space in order to facilitate the choice of the optimal model. We
repeated the same experiment with the Agots synthetic dataset and plot the memory and wall clock
time Pareto fronts in Figure 9. Compared to the Yahoo dataset in Figure 8, the overall memory
consumption and evaluation times are significantly lower for the Agots dataset (4473 test samples),
and significantly higher for the CICIDS 2017 dataset (566,149 test samples). This is according to our
expectations, given the complexity of both datasets relative to the Yahoo dataset.

Sensors 2020, 20, 1176 15 of 27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F1 Score

200

220

240

260

280

300
M

em
or

y
(M

B)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F1 Score

25

50

75

100

125

150

175

200

W
al

l c
lo

ck
 ti

m
e

(m
s)

0.0 0.2 0.4 0.6 0.8 1.0
F1 Score

1500

1750

2000

2250

2500

2750

3000

M
em

or
y

(M
B)

0.0 0.2 0.4 0.6 0.8 1.0
F1 Score

800

1000

1200

1400

1600

1800

2000

2200

W
al

l c
lo

ck
 ti

m
e

(m
s)

Figure 9. Pareto fronts for memory (left) and wall clock time (right) for the Agots synthetic dataset
(top) and CICIDS 2017 dataset (bottom).

4.2. Traditional One-Class Classification Methods Versus Deep Learning-Based Autoencoders

We use the CICIDS 2017 dataset to compare the deep learning-based autoencoders with a selection
of traditional one-class classification methods. These are all trained on normal samples and tested
on a mix of normal and anomalous samples. As AutoSklearn is mainly intended for supervised
classification problems and not this kind unsupervised learning methods, we implemented a simple
grid search for the γ and ν hyperparameter of the One-Class SVM algorithm implemented in the
Scikit-learn framework:

• γ: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500].
• ν: [0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1].

For these 156 hyperparameter combinations and training with 36,363 samples, Figure 10 depicts
the memory usage and wall clock time to classify 13,318 test samples, of which 9091 normal and
2227 anomalous (same class distribution as the original dataset). Memory consumption for the whole
Python process varied between 95 and 114 MB for the configurations on the Pareto front. The highest
F1 score obtained is 0.706 with a test time of around 4.90 s for all 13,318 test samples (wall clock time
and CPU time are equal as only one CPU core is used). Furthermore, the implementation of One-Class
SVM is not multi-core enabled, so the classification of the 13,318 test samples only uses one of the 32
virtual cores of the Intel Xeon CPU.

Sensors 2020, 20, 1176 16 of 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 Score

93.0

93.5

94.0

94.5

95.0

95.5

96.0
M

em
or

y
(M

B)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 Score

0

1000

2000

3000

4000

5000

6000

7000

W
al

l c
lo

ck
 ti

m
e

(m
s)

Figure 10. Pareto fronts for memory (left) and wall clock time (right) for the CICIDS 2017 dataset using
the One-Class SVM classifier.

These results are in sharp contrast with the ones provided by the autoencoders implemented
in the Tensorflow 2.0 library. To set a baseline, merely loading and activating the Tensorflow library
by creating a tensor holding one random floating point value causes the Python process to consume
242 MB.

The dataset is split in a training set of size 1,590,881 and a validation set of size 340,904, both
only containing normal feature vectors. The test set is the same as for the One-Class SVM classifier,
having a mix of normal and anomalous samples. We explore different neural network architectures, as
illustrated in Figure 6 and explained in Section 3.2.2, but with varying numbers of layers and neurons
per layer, etc.

One of those autoencoder configurations is depicted in Figure 6. The training of this particular
neural network architecture ends at epoch 227. The lowest loss value achieved within these 227 epochs
is 1.7e−4. The wall clock time to train this Tensorflow 2.0 model is 2705 s (CPU time is 5867 s), and
the peak memory usage of the Python process during training is 4,046,200 kilobytes, or about 3951
megabytes. The size of the Tensorflow model when serialized to disk is just 303,600 bytes.

The accuracy of the model in terms of the area under the receiver operating characteristic curve
(ROC) curve is AUC = 0.841, as depicted in blue in Figure 11.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

 (1
 -

Se
ns

iti
vi

ty
)

AUC = 0.841

ROC

Figure 11. The area under the operating characteristic curve (ROC) curve for the CICIDS 2017
autoencoder with a 70-50-20-50-70 neurons per layer configuration.

Sensors 2020, 20, 1176 17 of 27

The false positive rate and true positive rate metrics are computed for different thresholds of the
reconstruction error that classify input samples as either normal or anomalous. The dashed diagonal
line depicts a random classifier that assigns to normal or anomalous classes each with probability 0.5,
resulting in a AUC = 0.5. The evaluation of the 13,318 test samples takes 1.22 s wall clock time and
1.36 s CPU time. Peak memory usage is 341,228 kilobytes or 333 megabytes. We re-train the same
autoencoder on an NVIDIA Titan V GPU with a 100 times larger batch size, i.e., 51,200 rather than 512.
The training process now completes with a wall clock time of 338 s (versus 2705 s on the CPU).

Other autoencoders with different number of layers, neurons per layer, etc. will have variable
performance metrics and resource usage characteristics, both for the training and testing phases. As
the neural network training is significantly faster on the CUDA accelerated hardware, we explore
other hyperparameter configurations on the Titan V GPU. However, for a fair comparison with the
One-Class SVM method, we evaluate the 13,318 test samples for the found models on the CPU.
Figure 12 depicts the Pareto-fronts for 64 different configurations of autoencoders. Contrary to the
previous experiments where we analyzed the Pareto front using the F1 score of the different models,
we now use the AUC metric to compare the different autoencoders. For an autoencoder, we need to set
a threshold to categorize normal and anomalous samples. Only for a given threshold, we can compute
the corresponding F1 score. We vary the threshold to compute the area under the ROC curve, and use
this threshold-independent metric to compare the different autoencoders. An alternative is to fix a
threshold for all 64 models, and compare the F1 scores for this given threshold. There is no significant
difference in the peak memory usage for any of the autoencoder models, as they vary between 332
MB and 339 MB, a difference of about 2%. The wall clock time varies between 1000 ms and 1600 ms,
whereas the CPU time varies between 1100 and 1750 ms (higher than the wall clock time due to the
use of multiple CPU cores). This means One-Class SVM is more efficient in terms of resource usage.

0.76 0.78 0.80 0.82 0.84 0.86 0.88
AUC

332

333

334

335

336

337

338

339

M
em

or
y

(M
B)

0.76 0.78 0.80 0.82 0.84 0.86 0.88
AUC

1100

1200

1300

1400

1500

1600

W
al

l c
lo

ck
 ti

m
e

(m
s)

0.76 0.78 0.80 0.82 0.84 0.86 0.88
AUC

175

200

225

250

275

300

325

350

Fi
le

 si
ze

 (K
B)

0.76 0.78 0.80 0.82 0.84 0.86 0.88
AUC

1100

1200

1300

1400

1500

1600

1700

CP
U

tim
e

(m
s)

Figure 12. Pareto fronts for memory (top left), wall clock time (top right), file size (bottom left) and
CPU time (bottom right) for the CICIDS 2017 dataset using 64 configurations of autoencoders.

Sensors 2020, 20, 1176 18 of 27

4.3. Transferability of the Pareto Front to Similar Datasets: The Machine Learning Models

The construction of Pareto fronts is a procedure that leads to designs that are simultaneously
optimal over multiple criteria. Populating a Pareto front is a computationally expensive task and in
that regard a methodology to transfer previously optimal configurations in new but related contexts
can prove invaluable. Despite the contextual proximity of a task, the effectiveness of transferring the
Pareto optimal configurations should be evaluated in a consistent and representative manner. For that
reason a hypervolume indicator [50] is preferred as a metric to measure the effectiveness. Specifically
this hypervolume indicator is the volume contained by the convex hull constructed by the two Pareto
fronts, the origin one and the target one. In this manner we can get a direct assessment, even though
still relative, of the effectiveness of the transfer between different contexts.

The impact of transfer learning is tested on the Enterprise anomaly dataset. In the following
experiments, we use the operational data that are already processed and labeled (https://www.kaggle.
com/anomalydetectionml/features) rather than the raw data. This dataset contains 7,501,347 feature
vectors for 10 different hosts (i.e., the first feature in each feature vector), and each feature vector
contains 235 features, including whether the feature vector is normal or an anomaly. We split the data
per host, and use the data of three hosts (i.e., lphost11, lphost14 and lphost15) to train various models,
and investigate how well the Pareto front of models transfers to three separate hosts (i.e., lphost09,
lphost10 and lphost17).

Figure 13 depicts the Pareto fronts for peak memory usage and wall clock time using AutoSklearn
for the supervised machine learning scenario, and the One-Class SVM classifier for the unsupervised
variant. These configurations are trained for the lphost11, lphost14 and lphost15 hosts. To measure the
impact of transfer learning, we first evaluate to what extent the same trained models can be reused for
the lphost09, lphost10 and lphost17 hosts. The results for the AutoSklearn models and One-Class SVM
are depicted in Figure 14.

0.0 0.2 0.4 0.6 0.8 1.0
F1 Score

350

400

450

500

550

600

M
em

or
y

(M
B)

0.0 0.2 0.4 0.6 0.8 1.0
F1 Score

250

500

750

1000

1250

1500

1750

W
al

l c
lo

ck
 ti

m
e

(m
s)

0.2 0.4 0.6 0.8 1.0
F1 Score

177.3

177.4

177.5

177.6

M
em

or
y

(M
B)

0.976 0.977 0.978 0.979 0.980 0.981 0.982 0.983 0.984
F1 Score

500

1000

1500

2000

W
al

l c
lo

ck
 ti

m
e

(m
s)

Figure 13. Pareto fronts for memory (left) and wall clock time (right) for the Enterprise anomaly
dataset using AutoSklearn (top) and One-Class SVM (bottom).

https://www.kaggle.com/anomalydetectionml/features
https://www.kaggle.com/anomalydetectionml/features

Sensors 2020, 20, 1176 19 of 27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 Score

400

450

500

550

600

650
M

em
or

y
(M

B)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
F1 Score

250

500

750

1000

1250

1500

1750

2000

W
al

l c
lo

ck
 ti

m
e

(m
s)

0.0 0.2 0.4 0.6 0.8 1.0
F1 Score

195.8

195.9

196.0

196.1

196.2

M
em

or
y

(M
B)

0.65 0.70 0.75 0.80 0.85 0.90 0.95
F1 Score

500

1000

1500

2000

2500

W
al

l c
lo

ck
 ti

m
e

(m
s)

Figure 14. Pareto fronts for memory (left) and wall clock time (right) for the Enterprise anomaly
dataset re-using AutoSklearn (top) and One-Class SVM (bottom) models for different hosts.

It is evident that the F1 score drops significantly for the binary classifiers found by AutoSklearn.
Whereas the maximum value for the F1 score on the original data, as depicted in Figure 13, goes up
to 0.998, the metric drops to 0.697 in Figure 14. The One-Class SVM models transfer better, with the
F1 score dropping from 0.982 to just 0.953. Interestingly enough, the wall clock time Pareto front in
Figure 14 collapses to two data points with a similar F1 score and wall clock time:

• Pareto-optimal model 1: F1 score = 0.9531404, Wall clock time: 216.9302 ms.
• Pareto-optimal model 2: F1 score = 0.9527573, Wall clock time: 215.0607 ms.

These results show that transferring trained models directly is not optimal and the performance
drops are not consistent, as illustrated by the considerably low F1 score of 0.697. In the next section,
we investigate the impact of transferring the hyperparameter configurations in a Pareto front in place
of the machine learning models themselves.

4.4. Transferability of the Pareto front to Similar Datasets: The Hyperparameters

With this approach, we take the hyperparameters of the AutoSklearn models on the Pareto front
for the origin dataset (depicted in Figure 13), and retrain model with the same configurations on the
target dataset. In the memory experiment, from the 277 models there are five on the corresponding
Pareto front (see Table 2), whereas eight models are on the wall clock Pareto front (see Table 3).

Sensors 2020, 20, 1176 20 of 27

Table 2. Models on the wall clock Pareto front (columns with ∗ report results for new test set).

Model ID F1 Score Memory (MB) F1 Score ∗ Memory (MB) ∗

73 0.9983 457 0.9963 430
111 0.9980 381 0.9870 405
213 0.9980 363 0.9950 380
242 0.9960 357 0.9901 405
179 0.9947 354 0.9907 363

Table 3. Models on the wall clock Pareto front (columns with ∗ report results for new test set).

Model ID F1 Score Wall Clock Time (ms) F1 Score ∗ Wall Clock Time (ms) ∗

67 0.9983 334 0.9963 393
141 0.9973 244 0.9950 251
212 0.9930 223 0.9640 187
214 0.9830 169 0.9325 129
83 0.9797 160 0.9765 157
148 0.7726 147 0.8798 135
29 0.6309 143 0.6710 139
183 0.3686 140 0.2687 139

This experiment illustrates that even if the original model is not effective or accurate, one may
train a new model in the new context with the same hyperparameters to obtain approximately the
same results, depending on the proximity of the contexts. That is to say the computationally expensive
hyperparameter tuning process can be replaced by retraining the models with the configurations on
the original Pareto front, in this case from 277 models (training time = 7197 s) down to just 13 models
(training time = 507 s).

4.5. Transferability of the Pareto front to a Different Target Device

In the final experiment, we evaluate the hyperparameter configurations situated on the Pareto
front on a different evaluation environment. This new environment is an NVIDIA Jetson TX2 board,
with a hex-core ARMv8 64-bit CPU and 8GB of memory.

As the test samples have remained the same, the accuracy of each hyperparameter configuration
is also the same. The differences are in resource usage, i.e., the peak memory usage and the wall clock
time to evaluate the test samples. As Figure 15 illustrates, the Pareto curve remains the same, but
memory consumption is overall lower, whereas the wall clock time more or less doubled. This means
that the transfer learning of the Pareto front is successful unless one aims to select a configuration that
must meet strict resource limitations. In that case, it is sufficient to only re-evaluate the configurations
on the Pareto front.

Re-evaluating the 4 wall clock time Pareto-optimal hyperparameter configurations (initially
obtained on the Dell PowerEdge R620 server but now testing again on the NVIDIA Jetson TX2
embedded board) takes 1922 ms, whereas fully exploring all 144 hyperparameter configurations on
the embedded board takes 15,718,492 ms. The main reason is that some of these 144 models—filtered
out from Figure 15—take more than 320,000 ms to test, as depicted in Figure 16. So the performance
gain through transfer learning is significant, speeding up the evaluation with a factor ≈8000.

Sensors 2020, 20, 1176 21 of 27

0.2 0.4 0.6 0.8 1.0
F1 Score

177.3

177.4

177.5

177.6

M
em

or
y

(M
B)

0.976 0.977 0.978 0.979 0.980 0.981 0.982 0.983 0.984
F1 Score

500

1000

1500

2000

W
al

l c
lo

ck
 ti

m
e

(m
s)

0.2 0.4 0.6 0.8 1.0
F1 Score

143.5

144.0

144.5

145.0

145.5

M
em

or
y

(M
B)

0.976 0.977 0.978 0.979 0.980 0.981 0.982 0.983 0.984
F1 Score

500

1000

1500

2000

2500

3000

3500

4000

4500

W
al

l c
lo

ck
 ti

m
e

(m
s)

Figure 15. Pareto fronts for memory (left) and wall clock time (right) for the Enterprise anomaly
dataset re-using One-Class SVM models on the Dell PowerEdge R620 server (top) and NVIDIA Jetson
TX2 board (bottom).

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

0

50000

100000

150000

200000

250000

300000

350000

Wall clock time on Jetson TX2 device

One-Class SVM model

W
a

ll
cl

o
ck

 ti
m

e
 (

m
s)

Figure 16. Wall clock time for all One-Class SVM models on the NVIDIA Jetson TX2 board.

5. Conclusions

In this work we presented a comprehensive assessment and demonstration of the trade-offs
between the performance of various machine learning models in resource critical environments.
Following the proposed methodology we construct plots and Pareto-optimal surfaces over 4
datasets that can prove instrumental for the machine-learning engineer or practitioner in selecting
the optimal model tailored to the desired task. Finally, we perform an extensive evaluation
and highlight the trade-offs that demonstrate our methodology’s pertinence and applicability in
resource-constrained environments.

Our experiments demonstrate that multi-objective hyperparameter optimization can be
accelerated through transfer learning, but that not all machine learning methods and corresponding
Pareto fronts transfer equally well. Furthermore, traditional machine learning methods can be more
effective in terms of resource usage compared to deep learning-based neural networks. As much as

Sensors 2020, 20, 1176 22 of 27

that may sound as a predictable conclusion, in the near future the spread of new optimized hardware
solutions—such as neuromorphic computing chips [51] that emulate the electrical behavior of neurons
in the brain, or FPGA-based accelerators [52]—will enable the evaluation of neural networks at a very
low energy cost and can turn into a tipping-point for deep learning at the edge.

As future work, we will investigate how alternatives to the One-Class SVM classification
algorithm, such as the Isolation Forest method, affect the transferability of hyperparameters. Another
exploration that should be considered is the computational cost of feature engineering for traditional
machine learning methods compared to the intrinsic one carried out by deep learning models. To
achieve a more efficient hardware resource utilization on typical mobile platforms and edge computing
devices, we will investigate how our framework can be extended to measure additional indicators,
such as the area usage, power consumption and latency. This would entail additional functionality
that fully automates the hyperparameter tuning process, the deployment of machine learning models
on the target device, as well as the evaluation of test data and the accurate measurement of these
indicators. This would result in a more universal and comprehensive analysis of resource usage in
relation to the performance of the deployed models.

Author Contributions: Conceptualization, methodology, software and validation, D.P.; writing—original
draft preparation, D.P. and I.T.; writing—review and editing, D.P. and I.T.; supervision, D.P. and W.J.;
project administration, D.P.; funding acquisition, W.J. All authors have read and agreed to the published version
of the manuscript.

Funding: This research is partially funded by the Research Fund KU Leuven and by imec through ICON
RADIANCE (HBC.2017.0629). RADIANCE is a project realized in collaboration with imec. Project partners are
BARCO, Skyhaus and Skyline communications, with project support from VLAIO (Flanders Innovation and
Entrepreneurship).

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Titan V GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. A Log Trace of Hyperparameter Optimization with Auto-WEKA for the Yahoo Dataset

1 Options: -seed 123 -timeLimit 10 -memLimit 8192 -nBestConfigs 10 -metric errorRate -parallelRuns 2
2
3 === Classifier model (full training set) ===
4
5 best classifier: weka.classifiers.trees.RandomForest
6 arguments: [-I, 10, -K, 0, -depth, 0]
7 attribute search: null
8 attribute search arguments: []
9 attribute evaluation: null

10 attribute evaluation arguments: []
11 metric: errorRate
12 estimated errorRate: 0.005789022298456261
13 training time on evaluation dataset: 0.205 s
14
15 You can use the chosen classifier in your own code as follows:
16
17 Classifier classifier = AbstractClassifier.forName("weka.classifiers.trees.RandomForest", new String[]{"-I",
18 "10", "-K", "0", "-depth", "0"});
19 classifier.buildClassifier(instances);
20
21
22 Correctly Classified Instances 4628 99.2281 %
23 Incorrectly Classified Instances 36 0.7719 %
24 Kappa statistic 0.9846
25 Mean absolute error 0.084
26 Root mean squared error 0.1456
27 Relative absolute error 16.8096 %
28 Root relative squared error 29.1268 %
29 Total Number of Instances 4664
30
31 === Confusion Matrix ===
32
33 a b <-- classified as
34 2324 8 | a = False
35 28 2304 | b = True
36

Sensors 2020, 20, 1176 23 of 27

37 === Detailed Accuracy By Class ===
38
39 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
40 0.997 0.012 0.988 0.997 0.992 0.985 1.000 1.000 False
41 0.988 0.003 0.997 0.988 0.992 0.985 1.000 1.000 True
42 Weighted Avg. 0.992 0.008 0.992 0.992 0.992 0.985 1.000 1.000
43
44 Time taken to build model: 582.64 s
45
46 Time taken to test model on training data: 0.28 s

Appendix A.2. A Log Trace of Hyperparameter Optimization with Auto-WEKA for the Agots Synthetic Dataset

1 Options: -seed 123 -timeLimit 10 -memLimit 8192 -nBestConfigs 10 -metric errorRate -parallelRuns 2
2
3 === Classifier model (full training set) ===
4
5 best classifier: weka.classifiers.trees.RandomForest
6 arguments: [-I, 10, -K, 1, -depth, 0]
7 attribute search: weka.attributeSelection.BestFirst
8 attribute search arguments: [-D, 2, -N, 6]
9 attribute evaluation: weka.attributeSelection.CfsSubsetEval

10 attribute evaluation arguments: []
11 metric: errorRate
12 estimated errorRate: 0.007228915662650603
13 training time on evaluation dataset: 0.025 s
14
15 You can use the chosen classifier in your own code as follows:
16
17 AttributeSelection as = new AttributeSelection();
18 ASSearch asSearch = ASSearch.forName("weka.attributeSelection.BestFirst", new String[]{"-D", "2", "-N", "6"});
19 as.setSearch(asSearch);
20 ASEvaluation asEval = ASEvaluation.forName("weka.attributeSelection.CfsSubsetEval", new String[]{});
21 as.setEvaluator(asEval);
22 as.SelectAttributes(instances);
23 instances = as.reduceDimensionality(instances);
24 Classifier classifier = AbstractClassifier.forName("weka.classifiers.trees.RandomForest", new String[]{"-I",
25 "10", "-K", "1", "-depth", "0"});
26 classifier.buildClassifier(instances);
27
28
29 Correctly Classified Instances 824 99.2771 %
30 Incorrectly Classified Instances 6 0.7229 %
31 Kappa statistic 0.9855
32 Mean absolute error 0.072
33 Root mean squared error 0.1298
34 Relative absolute error 14.4096 %
35 Root relative squared error 25.9564 %
36 Total Number of Instances 830
37
38 === Confusion Matrix ===
39
40 a b <-- classified as
41 415 0 | a = False
42 6 409 | b = True
43
44 === Detailed Accuracy By Class ===
45
46 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
47 1.000 0.014 0.986 1.000 0.993 0.986 1.000 1.000 False
48 0.986 0.000 1.000 0.986 0.993 0.986 1.000 1.000 True
49 Weighted Avg. 0.993 0.007 0.993 0.993 0.993 0.986 1.000 1.000
50
51 Time taken to build model: 550.29 s
52
53 Time taken to test model on training data: 0.04 s

Appendix A.3. A Log Trace of Hyperparameter Optimization with AutoSklearn for the Agots Synthetic Dataset

1 automl = autosklearn.classification.AutoSklearnClassifier(
2 time_left_for_this_task=600,
3 per_run_time_limit=60,
4 ml_memory_limit=8192,
5 n_jobs=2,
6 tmp_folder=’/tmp/autosklearn_agots_tmp’,
7 output_folder=’/tmp/autosklearn_agots_out’,
8 delete_tmp_folder_after_terminate=False,
9 delete_output_folder_after_terminate=False,

10 disable_evaluator_output=False
11)
12
13 *** Statistics:
14 auto-sklearn results:

Sensors 2020, 20, 1176 24 of 27

15 Dataset name: 83635e2c0977166dc0122ff29795dd92
16 Metric: accuracy
17 Best validation score: 0.890909
18 Number of target algorithm runs: 100
19 Number of successful target algorithm runs: 83
20 Number of crashed target algorithm runs: 3
21 Number of target algorithms that exceeded the time limit: 5
22 Number of target algorithms that exceeded the memory limit: 9
23
24 *** Models:
25 [(0.200000, SimpleClassificationPipeline({’balancing:strategy’: ’weighting’,
26 ’categorical_encoding:__choice__’: ’one_hot_encoding’, ’classifier:__choice__’: ’adaboost’,
27 ’imputation:strategy’: ’median’, ’preprocessor:__choice__’: ’extra_trees_preproc_for_classification’,
28 ’rescaling:__choice__’: ’none’, ’categorical_encoding:one_hot_encoding:use_minimum_fraction’: ’False’,
29 ’classifier:adaboost:algorithm’: ’SAMME’,
30 ’classifier:adaboost:learning_rate’: 0.290012331833807,
31 ’classifier:adaboost:max_depth’: 1,
32 ’classifier:adaboost:n_estimators’: 245,
33 ’preprocessor:extra_trees_preproc_for_classification:bootstrap’: ’False’,
34 ’preprocessor:extra_trees_preproc_for_classification:criterion’: ’entropy’,
35 ’preprocessor:extra_trees_preproc_for_classification:max_depth’: ’None’,
36 ’preprocessor:extra_trees_preproc_for_classification:max_features’: 0.5067944315035667,
37 ’preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes’: ’None’,
38 ’preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease’: 0.0,
39 ’preprocessor:extra_trees_preproc_for_classification:min_samples_leaf’: 16,
40 ’preprocessor:extra_trees_preproc_for_classification:min_samples_split’: 2,
41 ’preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf’: 0.0,
42 ’preprocessor:extra_trees_preproc_for_classification:n_estimators’: 100},
43 dataset_properties={
44 ’task’: 1,
45 ’sparse’: False,
46 ’multilabel’: False,
47 ’multiclass’: False,
48 ’target_type’: ’classification’,
49 ’signed’: False})),
50 ...
51]
52
53 *** Predict:
54 Accuracy score 0.8313253012048193

References

1. Borelli, E.; Paolini, G.; Antoniazzi, F.; Barbiroli, M.; Benassi, F.; Chesani, F.; Chiari, L.; Fantini, M.; Fuschini, F.;
Galassi, A.; et al. HABITAT: An IoT Solution for Independent Elderly. Sensors 2019, 19, 1258. [CrossRef]
[PubMed]

2. Ameer, S.; Shah, M.A.; Khan, A.; Song, H.; Maple, C.; ul Islam, S.; Asghar, M.N. Comparative Analysis of
Machine Learning Techniques for Predicting Air Quality in Smart Cities. IEEE Access 2019, 7, 128325–128338.
[CrossRef]

3. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.H.; Rivera, C.C. SmartFall: A Smartwatch-Based Fall
Detection System Using Deep Learning. Sensors 2018, 18, 3363. [CrossRef] [PubMed]

4. Park, D.; Kim, S.; An, Y.; Jung, J. LiReD: A Light-Weight Real-Time Fault Detection System for Edge
Computing Using LSTM Recurrent Neural Networks. Sensors 2018, 18, 2110. [CrossRef]

5. Manic, M.; Amarasinghe, K.; Rodriguez-Andina, J.J.; Rieger, C. Intelligent buildings of the future:
Cyberaware, deep learning powered, and human interacting. IEEE Ind. Electron. Mag. 2016, 10, 32–49.
[CrossRef]

6. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

7. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.;
Migimatsu, T.; Cheng-Yue, R.; et al. An empirical evaluation of deep learning on highway driving. arXiv
2015, arXiv:1504.01716.

8. Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Deepcare: A deep dynamic memory model for predictive
medicine. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 30–41.

9. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey.
Pattern Recognit. Lett. 2019, 119, 3–11. [CrossRef]

http://dx.doi.org/10.3390/s19051258
http://www.ncbi.nlm.nih.gov/pubmed/30871107
http://dx.doi.org/10.1109/ACCESS.2019.2925082
http://dx.doi.org/10.3390/s18103363
http://www.ncbi.nlm.nih.gov/pubmed/30304768
http://dx.doi.org/10.3390/s18072110
http://dx.doi.org/10.1109/MIE.2016.2615575
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1016/j.patrec.2018.02.010

Sensors 2020, 20, 1176 25 of 27

10. Ribeiro, M.; Grolinger, K.; Capretz, M.A. Mlaas: Machine learning as a service. In Proceedings of the 2015
IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11
December 2015; pp. 896–902.

11. Li, L.E.; Chen, E.; Hermann, J.; Zhang, P.; Wang, L. Scaling machine learning as a service. In Proceedings of
the International Conference on Predictive Applications and APIs, Boston, MA, USA, 24–25 October 2017;
pp. 14–29.

12. Bengio, Y. Gradient-based optimization of hyperparameters. Neural Comput. 2000, 12, 1889–1900. [CrossRef]
13. Friedrichs, F.; Igel, C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64, 107–117.

[CrossRef]
14. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms.

In Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 2;
Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 2951–2959.

15. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

16. Konečnỳ, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for
improving communication efficiency. arXiv 2016, arXiv:1610.05492.

17. Konečnỳ, J.; McMahan, H.B.; Ramage, D.; Richtárik, P. Federated optimization: Distributed machine learning
for on-device intelligence. arXiv 2016, arXiv:1610.02527.

18. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. TIST 2019, 10, 12.
[CrossRef]

19. Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.;
Ramage, D. Federated learning for mobile keyboard prediction. arXiv 2018, arXiv:1811.03604.

20. Hitaj, B.; Ateniese, G.; Pérez-Cruz, F. Deep Models Under the GAN: Information Leakage from Collaborative
Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17), Dallas, TX, USA, 30 October–3 November 2017; pp. 603–618.

21. Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and federated learning. In Proceedings of the 2019 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019; pp. 739–753.

22. Ngatchou, P.; Zarei, A.; El-Sharkawi, A. Pareto multi objective optimization. In Proceedings of the 13th
International Conference on, Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10
November 2005; pp. 84–91.

23. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15:1–15:58.
[CrossRef]

24. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359.
[CrossRef]

25. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
26. Yogatama, D.; Mann, G. Efficient transfer learning method for automatic hyperparameter tuning.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, Reykjavik,
Iceland, 22–25 April 2014; pp. 1077–1085.

27. Perrone, V.; Jenatton, R.; Seeger, M.; Archambeau, C. Scalable Hyperparameter Transfer Learning.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC,
Canada, 3–8 December; Curran Associates Inc.: Red Hook, NY, USA; pp. 6846–6856.

28. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic Model
Selection and Hyperparameter Optimization in WEKA. In Automated Machine Learning: Methods, Systems,
Challenges; Springer International Publishing: Cham, Switzerland, 2019; pp. 81–95. [CrossRef]

29. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench; Morgan Kaufmann: San Francisco, CA, USA, 2016.
30. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm

Configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization,
Rome, Italy, 17–21 January 2011; Springer: Berlin/Heidelberg, Germany, 2011; LION’05, pp. 507–523.
[CrossRef]

http://dx.doi.org/10.1162/089976600300015187
http://dx.doi.org/10.1016/j.neucom.2004.11.022
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1007/978-3-030-05318-5_4
http://dx.doi.org/10.1007/978-3-642-25566-3_40

Sensors 2020, 20, 1176 26 of 27

31. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust
Automated Machine Learning. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015;
pp. 2962–2970.

32. Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK,
USA, 4–8 August 2019; pp. 1946–1956.

33. Golovin, D.; Solnik, B.; Moitra, S.; Kochanski, G.; Karro, J.; Sculley, D. Google Vizier: A Service for Black-Box
Optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, 13–17 August 2017; Association for Computing Machinery: New York, NY,
USA; KDD ’17, pp. 1487–1495. [CrossRef]

34. Hsu, C.H.; Chang, S.H.; Liang, J.H.; Chou, H.P.; Liu, C.H.; Chang, S.C.; Pan, J.Y.; Chen, Y.T.; Wei, W.;
Juan, D.C. Monas: Multi-objective neural architecture search using reinforcement learning. arXiv 2018,
arXiv:1806.10332.

35. Dong, J.; Cheng, A.; Juan, D.; Wei, W.; Sun, M. DPP-Net: Device-aware Progressive Search for Pareto-optimal
Neural Architectures. In Proceedings of the 2018 European Conference on Computer Vision—Part XI,
Munich, Germany, 8–14 September 2018; ECCV 2018, pp. 540–555.

36. Cheng, A.C.; Dong, J.D.; Hsu, C.H.; Chang, S.H.; Sun, M.; Chang, S.C.; Pan, J.Y.; Chen, Y.T.; Wei, W.;
Juan, D.C. Searching toward Pareto-Optimal Device-Aware Neural Architectures. In Proceedings of the
International Conference on Computer-Aided Design, Marrakech, Morocco, 19–21 March 2018; Association for
Computing Machinery: New York, NY, USA; ICCAD ’18. [CrossRef]

37. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture Search
for Mobile. arXiv 2018, arXiv:1807.11626.

38. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On multi-access edge computing: A survey
of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. Tutor.
2017, 19, 1657–1681. [CrossRef]

39. Zanzi, L.; Giust, F.; Sciancalepore, V. M2EC: A multi-tenant resource orchestration in multi-access edge
computing systems. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference
(WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [CrossRef]

40. Baresi, L.; Mendonça, D.F.; Quattrocchi, G. PAPS: A Framework for Decentralized Self-management at
the Edge. In Processings of the Service-Oriented Computing–17th International Conference, ICSOC 2019,
Toulouse, France, 28–31 October 2019; pp. 508–522. [CrossRef]

41. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA 2.0: Automatic Model
Selection and Hyperparameter Optimization in WEKA. J. Mach. Learn. Res. 2017, 18, 826–830.

42. Laptev, N.; Amizadeh, S.; Billawala, Y. A Benchmark Dataset for Time Series Anomaly Detection.
Available online: https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-
detection (accessed on 17 January 2020).

43. Huch, F.; Golagha, M.; Petrovska, A.; Krauss, A. Machine learning-based run-time anomaly detection in
software systems: An industrial evaluation. In Proceedings of the 2018 IEEE Workshop on Machine Learning
Techniques for Software Quality Evaluation, MaLTeSQuE@SANER 2018, Campobasso, Italy, 20 March 2018;
pp. 13–18. [CrossRef]

44. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset
and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information
Systems Security and Privacy, ICISSP 2018, Funchal, Madeira, Portugal, 22–24 January 2018; pp. 108–116.
[CrossRef]

45. Laptev, N. AnoGen: Deep Anomaly Generator. Outlier Detection De-constructed (ODD) Workshop.
Available online: https://research.fb.com/publications/anogen-deep-anomaly-generator/ (accessed on 20
August 2018).

46. Tax, D.M.J.; Duin, R.P.W. Combining One-Class Classifiers. In Multiple Classifier Systems; Kittler, J., Roli, F.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 299–308.

47. Thomas, A.; Gramfort, A.; Clémençon, S. Learning Hyperparameters for Unsupervised Anomaly Detection.
In Proceedings of the Anomaly Detection Workshop, ICML 2016, New York, NY, USA, 24 June 2016.

http://dx.doi.org/10.1145/3097983.3098043
http://dx.doi.org/10.1145/3240765.3243494
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/WCNC.2018.8377292
http://dx.doi.org/10.1007/978-3-030-33702-5_39.
https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection
https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection
http://dx.doi.org/10.1109/MALTESQUE.2018.8368453
http://dx.doi.org/10.5220/0006639801080116
https://research.fb.com/publications/anogen-deep-anomaly-generator/

Sensors 2020, 20, 1176 27 of 27

48. Baldi, P. Autoencoders, Unsupervised Learning and Deep Architectures. In Proceedings of the 2011
International Conference on Unsupervised and Transfer Learning Workshop—Volume 27, Bellevue, WA,
USA, 2 July 2011, UTLW’11; pp. 37–50.

49. Zhou, C.; Paffenroth, R.C. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
13–17 August 2017; pp. 665–674.

50. Cao, Y.; Smucker, B.J.; Robinson, T.J. On using the hypervolume indicator to compare Pareto fronts:
Applications to multi-criteria optimal experimental design. J. Stat. Plann. Inference 2015, 160, 60–74.
[CrossRef]

51. Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.; McKinstry,
J.L.; Melano, T.; Barch, D.R.; et al. Convolutional networks for fast, energy-efficient neuromorphic computing.
Proc. Natl. Acad. Sci. USA 2016, 113, 11441–11446, [CrossRef] [PubMed]

52. Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. [DL] A Survey of FPGA-Based Neural Network Inference
Accelerators. ACM Trans. Reconfigurable Technol. Syst. 2019, 12, 1–26. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jspi.2014.12.004
http://dx.doi.org/10.1073/pnas.1604850113
http://www.ncbi.nlm.nih.gov/pubmed/27651489
http://dx.doi.org/10.1145/3289185
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Multi-Objective Optimization Approach
	Anomaly Detection Datasets and Generation Tools
	Automated Benchmarking and Trade-Off Analysis
	Binary Classification with Traditional Machine Learning Methods
	One-Class Classification with Traditional Machine Learning Methods
	One-Class Classification with Deep Learning-Based Methods

	Transferability of Pareto Fronts to Different Contexts

	Evaluation
	Traditional Machine Learning Trade-Offs
	Traditional One-Class Classification Methods Versus Deep Learning-Based Autoencoders
	Transferability of the Pareto Front to Similar Datasets: The Machine Learning Models
	Transferability of the Pareto front to Similar Datasets: The Hyperparameters
	Transferability of the Pareto front to a Different Target Device

	Conclusions
	
	 A Log Trace of Hyperparameter Optimization with Auto-WEKA for the Yahoo Dataset
	A Log Trace of Hyperparameter Optimization with Auto-WEKA for the Agots Synthetic Dataset
	A Log Trace of Hyperparameter Optimization with AutoSklearn for the Agots Synthetic Dataset

	References

