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Summary

1-Hexadecene-contaminated wastewater is produced
in oil refineries and can be treated in methanogenic
bioreactors, although generally at low conversion
rates. In this study, a microbial culture able to
degrade 1-hexadecene was enriched, and different
stimulation strategies were tested for enhancing 1-
hexadecene conversion to methane. Seven and three
times faster methane production was obtained in cul-
tures stimulated with yeast extract or lactate, respec-
tively, while cultures amended with crotonate lost
the ability to degrade 1-hexadecene. Methane pro-
duction from 1-hexadecene was not enhanced by the
addition of extra hydrogenotrophic methanogens.
Bacteria closely related to Syntrophus and Smithella
were detected in 1-hexadecene-degrading cultures,
but not in the ones amended with crotonate, which
suggests the involvement of these bacteria in 1-hexa-
decene degradation. Genes coding for alkylsuccinate
synthase alpha-subunit were detected in cultures
degrading 1-hexadecene, indicating that hydrocarbon
activation may occur by fumarate addition. These

findings are novel and show that methane production
from 1-hexadecene is improved by the addition of
yeast extract or lactate. These extra electron donors
may be considered as a potential bioremediation strat-
egy of oil-contaminated sites with bioenergy genera-
tion throughmethane production.

Introduction

Linear alpha olefins (LAO) are obtained from crude oil
refinery and consist of unsaturated straight-chain hydro-
carbons containing a double bond at the primary or
alpha position (American Chemistry Council, 2006).
Global LAO consumption has increased at an average
annual rate of 5.6% from 2012 to 2016 and is
expected to continue at 3.7% average annual rate until
2021 (IHS Markit, 2017). 1-Hexadecene, a LAO with
16 carbon atoms, is abundant (i.e. 60–68%, Chevron
Phillips Chemical Company, 2013) in LAO commercial
blends that are used in the production of tanning oils,
synthetic fatty acids and drilling fluids for off-shore oil
exploration (Herman and Roberts, 2005). During 1-hexa-
decene production in petrochemical plants, contaminated
wastewater is generated, which can be treated by anaero-
bic digestion. This leads to the production of methane that
is stored and used as biofuel (Scherr et al., 2012).
Methanogenic degradation of 1-hexadecene is poorly

described, and only two enrichment cultures degrading
this compound were reported (Schink, 1985). Methano-
genic archaea resembling Methanospirillum and Metha-
nosaeta could be identified, but no information on the
bacterial composition was reported. The microbiology
and biochemistry of aliphatic hydrocarbons degradation
under methanogenic conditions have been mainly stu-
died with hexadecane as model compound, a saturated
C16 straight-chain hydrocarbon (Zengler et al., 1999;
Jones et al., 2008; Siddique et al., 2012). Syntrophic
bacteria assigned to Syntrophaceae were suggested to
degrade hexadecane to acetate and hydrogen, which
are consumed by methanogens (Gray et al., 2011;
Embree et al., 2015; Jim�enez et al., 2016; Wawrik et al.,
2016). Although still not known, it is unlikely that these
bacteria can degrade hexadecene, as the only two cul-
tures described to degrade 1-hexadecene were not able
to use hexadecane (Schink, 1985).
Alkene and alkane conversion to methane is a very

slow process – the two cultures reported by Schink
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(1985) took approximately 100 days to convert
0.174 mmol of 1-hexadecene to methane, and 810 days
of incubation were needed by a methanogenic enrich-
ment for the degradation of 0.59 mmol of hexadecane
(Zengler et al., 1999). Therefore, strategies to improve
the process efficiency are needed. For example, the
addition of easily degradable carbon sources such as
acetate, lactose or methanol improved the bioremedia-
tion of hydrocarbon-contaminated sediments (Dell et al.,
2012; Zhang and Lo, 2015).
In this work, enrichment cultures with 1-hexadecene or

hexadecane were started using anaerobic sludge as
inoculum, with no previous adaptation to petroleum
hydrocarbons. Methane was produced from 1-hexade-
cene, but not from hexadecane. To increase 1-hexade-
cene conversion rates, stimulation by addition of
hydrogenotrophic methanogens or co-substrates was
tested. Methane production, 1-hexadecene degradation
and microbial community composition were studied.

Results and discussion

An enrichment culture with the ability to degrade 1-hexa-
decene under methanogenic conditions was obtained
from anaerobic granular sludge after three successive
transfers. Methane production by culture He(3)

proceeded slowly and reached 6.9 mM after approxi-
mately 10 months of incubation (Table 1), which corre-
sponds to 96% of the stoichiometric value expected from
the initial 1-hexadecene concentration of 0.6 mM (Equa-
tion 1).

C16H32 þ 8H2O ! 12CH4 þ 4CO2 (Equation 1)

In the cultures amended with hexadecane, methane
production decreased with each transfer (Table 1). After
three successive transfers (culture H(3)), almost no
methane was produced during 10 months of incubation.
Therefore, this enrichment was not continued and further
work was performed only with 1-hexadecene-degrading
cultures.

Addition of hydrogenotrophic methanogens

The slow biodegradation of 1-hexadecene to methane
by the enriched culture He(3) was the motivation for
performing the stimulation assays. Methanogenic
biodegradation of alkanes is considered a hydrogen/
formate-dependent syntrophic process (Jim�enez et al.,
2016), and the presence of hydrogenotrophic methano-
gens in the hexadecene-degrading enrichment cultures
developed by Schink (1985) suggests that this may be
also the case for 1-hexadecene. We used

Table 1. Methane production, hydrocarbon biodegradation and 1-hexadecene concentration in the enrichment cultures.

Code
Time
(months)

Methane
(mM)

Biodegradation
(%)a

1-Hexadecene
(mM)

Before stimulation
H(1) 2.0 16.7 227 n.a.
H(2) 1.2 1.2 16 n.a.
H(3) 1.6 0.1 1 n.a.

6.9 0.1 1 n.a.
10.0 0.0 1 n.a.

Before stimulation
He(1) 2.0 8.6 120 n.d.
He(2) 1.2 5.4 75 n.d.
He(3) 1.6 0.4 5 n.d.

6.9 2.4 33 n.d.
10.0 6.9 96 n.d.

He(4) 3.0 1.2 � 0.2 16 � 2 n.d.
6.8 3.7 � 0.5 51 � 6 n.d.

He(5) 5.5 1.5 21 n.d.
After stimulation with methanogens
He-Mf(4) 3.0 1.2 � 0.2 17 � 3 n.d.

6.8 2.9 � 0.3 40 � 5 n.d.
After stimulation with yeast extract
He-WOY(7) 5.2 12.4 � 0.4 103 � 3 0.0�0.0
He-WOY(9) 2.7 7.6 � 0.6 64 � 5 n.d.
He-WOY(10) 1.9 5.5 46 n.d.

After stimulation with lactate
He-WOL(7) 5.5 6.0 � 1.2 50 � 10 0.4 � 0.0

After stimulation with crotonate
He-WOC(7) 7.0 0.5 � 0.3 4 � 2 1.0 � 0.1

n.d., not determined; n.a., not applicable.
a. Calculated considering the methane produced, and the maximum theoretical methane production expected (i.e. 7.2 and 12 mM methane from
0.6 and 1 mM of 1-hexadecene, respectively; 7.4 and 12.25 mM methane from 0.6 and 1 mM of hexadecane respectively (Dolfing et al.,
2008)).
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Methanobacterium formicicum to bioaugment our
assays, to assure that thermodynamics constrains
caused by hydrogen accumulation would not limit the
complete conversion of 1-hexadecene to methane. How-
ever, the addition of this active hydrogenotrophic partner
did not enhance methane production, as He-Mf(4) cul-
tures performed similarly to He(4) cultures with methane
reaching 2.9 � 0.3 and 3.7 � 0.5 mM in 7 months
respectively (Table 1). This corresponds to 40% and
51% of the theoretical expected methane production. No
VFA were detected in these assays. In the blanks,
where no substrate was added, methane was not pro-
duced. Addition of M. formicicum was not a successful
stimulation strategy probably due to an inhibitory effect
of 1-hexadecene towards this methanogen, or because
methanogens activity was not the limiting step in 1-hexa-
decene degradation by these cultures.

Stimulation by additional electron donors

In this study, yeast extract, lactate and crotonate were
chosen as additional electron donors to stimulate the
key players involved in 1-hexadecene biodegradation.
Two transfers were performed with 1-hexadecene and
the additional electron donors, after which the cultures
were incubated again with 1-hexadecene only (He-WOY
(7), He-WOL(7) and He-WOC(7)) (Fig. S1).
Short lag phases of one month preceded methane

production by the yeast extract- or lactate-stimulated cul-
tures, while more than 3 months were necessary to
detect methane in the non-stimulated culture He(5) and
almost no methane could be quantified in incubations
with the culture that had been previously amended with
crotonate (Fig. 1). The inability of culture He-WOC(7) to
degrade the alkene was confirmed by the quantification
of 1.0 � 0.1 mM of 1-hexadecene at the end of the

assays, which corresponds to the added concentration
at the beginning of the incubation (Table 1). In this work,
crotonate addition intended to stimulate the growth of
syntrophic bacteria, as some species can be grown in
pure culture on this substrate. For example, Syntrophus
species, Smithella propionica and some Syn-
trophomonas species are capable of fermenting croto-
nate (Beaty and McInerney, 1987; Jackson et al., 1999;
Liu et al., 1999). Our results suggest that during incuba-
tion with crotonate and 1-hexadecene (enrichment cul-
tures He-C(5) and He-C(6)), the enrichment lost its
ability to convert 1-hexadecene (as only carbon source)
to methane, probably due to a higher enrichment of
crotonate degraders over 1-hexadecene degraders.
After 5 months of incubation, complete 1-hexadecene

conversion to methane was achieved by He-WOY(7),
and 50% conversion by He-WOL(7), while He(5) pro-
duced only 21% of the expected methane (Fig. 1,
Table 1). This shows that the presence of yeast extract
or lactate during two successive generations accelerated
the methane production from 1-hexadecene, respec-
tively, 7 or 3 times, compared with the non-stimulated
culture. No VFA were detected during the incubations.
Yeast extract is known to provide micronutrients and
vitamins, and it is also a common carbon and energy
source for microorganisms (Khelaifia et al., 2013). In this
work, yeast extract was added as a non-specific co-sub-
strate to increase the microbial abundance and diversity
in the culture, as bioremediation strategies that promote
high bacterial diversity can be more efficient than those
targeting specific taxa (Dell et al., 2012). Lactate can be
converted to acetate and hydrogen by different syn-
trophic bacteria, which can be further degraded to
methane by hydrogenotrophic and acetoclastic methano-
gens (Junicke et al., 2015). Therefore, lactate addition
aimed the stimulation of syntrophic communities.
Undoubtedly, yeast extract was the best co-substrate

for accelerating 1-hexadecene biodegradation. This
effect was even more pronounced in cultures He-WOY
(9) and He-WOY(10) that could convert approximately
50% of the 1-hexadecene to methane in 2 months
(Table 1), which was much faster than all the other cul-
tures described in this work. The addition of fermented
yeast extract (addition of cofactors) did not increase
methane production (Fig. S3). This shows that the posi-
tive effect of yeast extract was due to a faster growth of
the microbial community resulting from its consumption
as additional carbon source, and not due to the pre-
sence of extra cofactors.
Biodegradation of yeast extract, lactate and crotonate

was verified in control assays prepared without 1-hexa-
decene (Fig. S2). The theoretical methane production
expected from yeast extract, lactate and crotonate was
8.7, 6.8 and 9.2 mM respectively. More than 96% of the

Fig. 1. Methane production in cultures incubated only with
1-hexadecene. He(5) – non-stimulated enriched culture, He-
WOY(7) – enrichment culture after stimulation with yeast extract,
He-WOL(7) – enrichment culture after stimulation with lactate, He-
WOC(7) – enrichment culture after stimulation with crotonate.
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theoretical methane production was attained after
48 days of incubation in yeast extract, and 77 days in
lactate and crotonate (Fig. S2a). At the end of the incu-
bations, lactate and crotonate were not detected, and
only residual amounts of yeast extract were present in
the medium (determined by soluble chemical oxygen
demand (COD) measurements, Fig. S2b). No methane
was produced in the blank assays prepared without any
added substrate.

Microbial community analysis

All 1-hexadecene-degrading cultures presented high
microbial diversity. Changes in microbial abundance and
composition were detected between non-stimulated and
stimulated cultures (Table 2 and Table S2). In the stimu-
lated cultures, the growth of bacteria was promoted over
methanogenic archaea, with relative percentages
increasing from 48% up to 87% (Table 2). Bacterial
groups Syntrophaceae, Clostridia, Synergistales and
Spirochaetes became more abundant in the cultures
degrading 1-hexadecene more efficiently, i.e. He-WOY
(7) and He-WOL(7) (Table 2).
As expected, the presence of 1-hexadecene shaped

the bacterial community already before stimulation (en-
richment He(4)), which diverged from the inoculum
sludge. Specifically, the relative percentage of Pro-
teobacteria (9%), Firmicutes (4%), Actinobacteria (4%),
Synergistetes (6%), Spirochaetes (4%) and Thermoto-
gae (7%) increased (Table 2). The methanogenic com-
munity changed as well, with Methanobacterium genus
becoming highly abundant in this enrichment (31% abun-
dance relative to the whole microbial community,
Table 2). These microorganisms are probably consum-
ing hydrogen or formate formed during 1-hexadecene
degradation by syntrophic bacteria. After stimulation with
additional electron donors, Methanobacterium and other
hydrogenotrophic methanogens were detected, namely
Methanoculleus, Methanofollis, Methanolinea and
Methanospirillum. This reinforces the role of hydrogen/
formate-consuming microorganisms during anaerobic
hydrocarbon degradation (Table 2). Those genera were
also previously found in enrichment cultures and in envi-
ronmental samples contaminated with hydrocarbons
(Embree et al., 2013, 2015; Jim�enez et al., 2016). The
only acetoclastic methanogens detected belong to
Methanosaeta genus, which was present in all samples.
Due to the scarce knowledge on 1-hexadecene-

degrading microorganisms and consequently the lack of
genomic information, the taxonomic identification was not
possible in a significant proportion (21–42%) of the
retrieved bacterial sequences. Several microorganisms
capable of syntrophic metabolism, namely Desulfomonile,
Desulfovibrio, Syntrophus, Smithella, Syntrophobacter,

Syntrophorhabdus and Syntrophomonas, could be identi-
fied (Table 2 and Table S2), suggesting the syntrophic
nature of anaerobic 1-hexadecene biodegradation. More-
over, members of the Syntrophaceae family were
enriched, particularly species related to Syntrophus and
Smithella (Table 2). These species are known as putative
alkane degraders and frequently detected in hydrocar-
bon-contaminated environments (Cheng et al., 2013;
Embree et al., 2015; Wawrik et al., 2016), although their
involvement in 1-hexadecene methanogenic degradation
has never been reported.
In our work, eight different operational taxonomic units

(OTU) were assigned to Syntrophaceae sharing only 91
to 98% identity with each other, which suggests that differ-
ent microorganisms belonging to this family were present
in the enrichment cultures (Table S3). However, accurate
taxonomic identification is difficult to obtain as the identi-
ties between the OTU sequences (291 bp) and 16S rRNA
gene sequences from Syntrophus and Smithella are quite
similar (e.g. OTU86 shared the same identity with both
genera, Table S3). This might be due to the high similarity
between the 16S rRNA gene sequences of these two gen-
era (93% identity between Smithella propionica (NR_
024989.1) and Syntrophus aciditrophicus (NR_102776.1),
Table S3). Sequences assigned to these genera were not
found in enrichments He-WOC(7), the ones that could no
longer degrade 1-hexadecene (Table S4), suggesting
once more that these microorganisms are important for 1-
hexadecene degradation.
The presence of alkylsuccinate synthase gene assA in

cultures He-WOY(7) and He-WOL(7) was detected, with
five different assA gene sequences retrieved. This shows
the potential of these microbial communities to perform
hydrocarbon activation via fumarate addition as it is
reported for alkanes. Those sequences were 83 to 84%
identical to a clone sequence from cold marine sediments
(NCBI nucleotide accession LN868298) and 76 to 78%
identical to a Smithella clone sequence (NCBI nucleotide
accession KF824850) (Table S5). These identity percent-
ages are low, which reflects the poor knowledge on the
microbiology of anaerobic 1-hexadecene degradation.
This is the first time that assA genes were detected in hex-
adecene-degrading methanogenic enrichments, and the
involvement of Syntrophus/Smithella-related species in 1-
hexadecene degradation is demonstrated.

Conclusions

This study shows that the degradation of 1-hexadecene
by a non-adapted methanogenic community is feasible,
and can be considerably enhanced by the addition of
extra electron donors. Yeast extract and lactate accele-
rated 1-hexadecene degradation, increasing methane
production rates up to 7 and 3 times respectively.
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Addition of M. formicicum did not improve methane pro-
duction from 1-hexadecene. Syntrophic bacteria and
hydrogenotrophic methanogens were enriched in 1-hexa-
decene-degrading cultures, showing the syntrophic na-
ture of this conversion. In cultures where Syntrophus
and Smithella-like microorganisms were detected, 1-hex-
adecene degradation was observed, while in cultures
where these bacteria were not detected, no degradation
occurred, suggesting their involvement in 1-hexadecene
degradation. The potential for a faster bioremediation
strategy and bioenergy recovery in alkene-contaminated
systems is highlighted.

Experimental procedures

Medium composition and cultivation

Bicarbonate-buffered mineral salt medium was prepared
as described by Stams et al. (1993) and dispensed
(50 ml) in 120-ml serum bottles. 1-Hexadecene (≥ 99%,
Sigma-Aldrich) was added at final concentrations of 0.6
or 1 mM, and hexadecane (≥ 99%, Sigma-Aldrich) was
added at 0.6 mM. Bottles were sealed with Viton rubber
stoppers and crimp seals, and flushed several times with
a mixture of N2/CO2 (80:20% v/v; 1.7 9 105 Pa) by
piercing the stopper with a needle. The medium was
reduced with 0.8 mM sodium sulfide (Na2S.9H2O). All
inoculations and transfers were performed aseptically
using sterile syringes and needles. In all the experi-
ments, the serum bottles were incubated statically, in
inverted position, at 37 °C and in the dark.

Enrichment of methanogenic cultures

Enrichments were started by adding 5 g ww (wet weight)
of anaerobic granular sludge (0.08 g g�1 ww volatile
solids (VS) concentration) from a brewery wastewater
treatment plant to the serum bottles. 1-Hexadecene or
hexadecane was added at a final concentration of
0.6 mM. Successive transfers of approximately 10% (v/
v) of the cultures to fresh medium were made in dupli-
cate after confirming microbial growth and activity based
on microscopic observations and methane measure-
ments (more than 20% of the theoretical expected). Five
and three transfers were made with 1-hexadecene or
hexadecane, respectively. Enrichments were coded He
(x) and H(x), where x represents the number of trans-
fers, and He or H the hydrocarbon added, i.e. 1-hexade-
cene or hexadecane, respectively.

Addition of hydrogenotrophic methanogen

Methanobacterium formicicum (DSM 1535T) was
obtained from the Deutsche Sammlung von Mikroorgan-
ismen und Zellkulturen (DSMZ; German Collection ofTa
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Microorganisms and Cell Cultures, Braunschweig, Ger-
many) and was pre-grown as described by Sousa et al.
(2013). Enrichment culture He(3) was transferred to four
bottles containing 1-hexadecene (0.6 mM), and two of
those were bioaugmented with M. formicicum (10% v/v).
These two enrichments series were designated He(4)
and He-Mf(4), respectively (Fig. S1). Blank assays were
prepared similarly but without any added substrate.
Methane production and volatile fatty acids (VFA) were
measured during the incubations.

Stimulation by additional electron donors

Stimulation of the enrichment He(4) was performed by
adding yeast extract (Y, 0.5 g l�1), lactate (L, 4.5 mM) or
crotonate (C, 4.5 mM) as additional electron donors,
together with 1-hexadecene (1 mM), during two conse-
cutive generations (enrichment series 5 and 6, Fig. S1
and Table S1). Co-substrate concentrations were chosen
to obtain a methane production from these compounds
up to a maximum of 75% of the theoretical methane pro-
duction expected from the 1-hexadecene added. These
extra electron donors were added to the bottles from
sterilized anoxic stock solutions. 1-Hexadecene
biodegradation to methane was evaluated in the subse-
quent cultures (enrichment series 7) with no addition of
extra electron donors or carbon source. For that, five
similar batch bottles were prepared from each stimula-
tion strategy, containing 1-hexadecene (1 mM) but with-
out (WO) additional electron donors – coded He-WOY
(7), He-WOL(7) and He-WOC(7), where Y, L and C refer
to yeast extract, lactate and crotonate respectively
(Fig. S1, Table S1). Three bottles were used to take li-
quid/gas samples for methane and VFA measurements
along the experiment. Furthermore, these bottles were
used to determine the microbial community composition
at the end of the incubations. The two other bottles were
sacrificed at the end of the incubations for 1-hexadecene
quantification, to minimize sampling errors due to the
hydrophobicity of this compound. In parallel, duplicate
batch bottles were prepared without 1-hexadecene and
containing yeast extract, lactate or crotonate (control
assays). Blank assays were performed without any car-
bon or energy source. Yeast extract, crotonate and lac-
tate concentrations were measured at the beginning and
end of the incubations. Yeast extract concentration was
determined indirectly by measuring the soluble chemical
oxygen demand (COD).
The enrichment culture He-WOY(7) was further incu-

bated with 1-hexadecene (1 mM) and yeast extract (He-
Y(8)). This enrichment series was continued for two
more generations with 1-hexadecene as the only carbon
and energy source (He-WOY(9) and He-WOY(10))
(Fig. S1). Methane production was monitored in series 8,

9 and 10, and microbial community composition was
analysed in culture He-WOY(10).
An additional experiment was performed to under-

stand the stimulation effect of yeast extract. Degrada-
tion of 1-hexadecene (1 mM) was evaluated in the
presence of yeast extract (0.5 g l�1) or fermented
yeast extract, the latter containing no carbon (verified
by COD measurements) and being mainly a source of
cofactors. Fermented yeast extract was prepared
based on DSMZ medium 119. Complete fermentation
of yeast extract (5 g l�1) by anaerobic granular sludge
(3 g VS l�1) was obtained in 120-ml batch bottles con-
taining bicarbonate-buffered mineral salt medium
(Stams et al., 1993) and a mixture of N2/CO2 (80:20%
v/v) in the headspace. Culture He-WOY(7) was used
as inoculum for this test (Fig. S1). Soluble COD and
methane measurements were performed during the
incubation to follow the complete degradation of yeast
extract. The resulting supernatant (fermented yeast
extract) was centrifuged, filtered (0.2 lm porosity) and
added to the assays at a final concentration equivalent
to 0.5 g l�1 of yeast extract. COD was determined and
a very low value of approximately 0.8 mg l�1 was
obtained. Blanks without substrate were also prepared,
and all the assays were made in duplicate. Methane
production was measured along the incubation period.

Microbial community analysis

DNA extraction and 16S rRNA genes sequencing. DNA
was isolated from the inoculum sludge and from
enrichment cultures He(4), He-WOY(7), He-WOL(7), He-
WOC(7) and He-WOY(10). Homogenized aliquots of
approximately 20 ml were collected and immediately
frozen at �20 °C. Total genomic DNA was extracted
using the FastDNA SPIN Kit for Soil (MP Biomedicals,
Solon, OH), according to the manufacturer’s instructions.
DNA was further purified and concentrated by ethanol
precipitation. 16S rRNA gene sequences were obtained
by next-generation sequencing (Illumina MiSeq, Inc. San
Diego, California). All procedures, from DNA
amplification, library preparation, sequencing to
bioinformatics data analysis were performed at RTL
(Research and Testing Laboratory, Texas, USA). DNA
amplification was made using Illumina sequencing
primers and the prokaryotic universal primer pair 515f/
806r, targeting the V4 region of the 16S rRNA gene
(Caporaso et al., 2011). Paired-end reads obtained after
sequencing were merged and submitted to pre-
processing. Chimeric sequences and sequences with
less than 100 bp were discarded. After sequence
clustering and OTU selection, microbial taxonomic
assignment was performed by submitting the sequences
to global alignment against a database of high-quality
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sequences derived from the NCBI nucleotide database.
Detailed information on the bioinformatics analysis steps
can be found at the RTL website (http://rtlgenomics.com/
amplicon-bioinformatics-pipeline).
All sequencing reads were submitted to the European

Nucleotide Archive (ENA) under the study accession
number PRJEB22083 (http://www.ebi.ac.uk/ena/data/vie
w/PRJEB22083).

Alkylsuccinate synthase alpha-subunit (assA) gene
amplification, cloning and sequencing. PCR amplification
of gene fragments coding for the alpha-subunit of
alkylsuccinate synthase was performed in DNA samples
from He-WOY(7) and He-WOL(7). The primer set 7766f/
8543r and Taq DNA polymerase kit (Thermo Fisher
Scientific, Waltham, MA) were used, as described
elsewhere (Netzer et al., 2013). The size of PCR
amplicons was checked in agarose gel 1% (w/v) and
purified using the PCR Clean-Up kit NucleoSpin Extract
II (Macherey-Nagel, D€uren, Germany) prior ligation into
the pGEM Easy Vector Systems (Promega, Madison,
WI). Plasmids containing the insert sequences were
cloned into Escherichia coli NZY5a competent cells
(Nzytech Genes and Enzymes, Lisbon, Portugal)
following the manufacturer’s instructions. Plasmids from
ampicillin-resistant transformants were amplified with the
pGEM-T vector-targeted sequencing primers SP6 and
T7. Sequencing reactions were carried out at Macrogen
Europe (Amsterdam, the Netherlands). Vector and
primer sequences were removed from partial forward
and reverse sequences, which were further assembled
using the Contig Assembly Program application included
in the BIOEDIT, version 7.0.9 software package (Huang,
1992; Hall, 1999). Sequences were run against the
NCBI Nucleotide Sequence Database using BLAST
(Altschul et al., 1990) (http://www.ncbi.nlm.nih.gov/blast/).
The obtained sequences were submitted to the ENA
under accession numbers ERZ477561 and ERZ477854
(study accession number PRJEB22123).

Analytical methods

Methane concentration in the bottles’ headspace was
determined by gas chromatography (Chrompack 9000)
equipped with a flame ionization detector (FID) and a
Carbowax 20M (80-120 mesh, 2 m 9 2 mm) column.
Nitrogen was used as carrier gas at 30 ml min�1. Injec-
tion port, column and detector temperatures were
110 °C, 35 °C and 220 °C respectively. Liquid samples
were centrifuged, filtered (0.2-lm filter) and stored at
�20 °C. Crotonate, lactate and VFA were quantified by
high-performance liquid chromatography (HPLC Jasco
equipment) using a Varian MetaCarbTM 67H column
(30 9 6.5 mm). The mobile phase was 5 mM H2SO4 at

a flow rate of 0.6 ml min�1, and the column temperature
was set to 60 °C with an UV detection at 210 nm. Yeast
extract concentration was indirectly quantified by mea-
suring the soluble chemical oxygen demand (COD),
which was determined spectrophotometrically using COD
cuvette test kits (Hach-Lange GmbH, Dusseldorf, Ger-
many) and a DR 2800 spectrophotometer (Hach-Lange
GmbH, Dusseldorf, Germany). For 1-hexadecene analy-
sis, the whole content of the batch assays was acidified at
pH 2.0 with HCl and preserved at 4 °C. Each sample was
sequentially extracted three times with hexane using sepa-
ratory funnels, according to the procedure described by
U.S. Environmental Protection Agency (USEPA, 1996).
Tetradecane (C14) was used as surrogate to evaluate 1-
hexadecene extraction efficiency. The extracts were
cleaned using Sep-Pak Florisil� cartridges (Waters, Mil-
ford, MA) and evaporated in TurboVap� LV (Biotage, Upp-
sala, Sweden). 1-Hexadecene concentration in the
extracts was determined using a gas chromatograph with a
flame ionization detector (GC-MS Varian� 4000), equipped
with a VF-1 ms column (30 m 9 0.025 mm). Helium was
used as carrier gas at a flow rate of 1 ml min�1. The col-
umn’s temperature was kept at 60 °C for 1 min and further
increased to 290 °C at 8 °C min�1. Detector and injector
temperatures were 300 and 285 °C respectively. Unde-
cane (C11) was used as internal standard.
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