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Abstract

Chemotherapy-induced mucositis is characterized by diarrhoea and villous

atrophy. However, it is not well-understood why diarrhoea arises, why it only

occurs with some chemotherapeutics and how it is related to villus atrophy.

The objectives in this study were to determine (i) the relationship between

chemotherapy-induced diarrhoea and villus atrophy and to (ii) establish and

validate a rat diarrhoea model with clinically relevant endpoints. Male Wistar

Han IGS rats were treated with saline, doxorubicin, idarubicin, methotrexate,

5-fluorouracil, irinotecan or 5-fluorouracil+irinotecan. After 72 h, jejunal

tissue was taken for morphological, apoptotic and proliferative analyses, and

faecal water content and change in body weight were determined. All treat-

ments except methotrexate caused a similar reduction (≈42%) in villus height,

but none of them altered mucosal crypt cell proliferation or apoptosis.

Doxorubicin, idarubicin, irinotecan and 5-fluorouracil+irinotecan caused body

weight reduction, but only irinotecan and idarubicin caused diarrhoea. No

direct correlation between diarrhoea and villus height or body weight loss was

observed. Therefore, studies of the mechanisms for chemotherapy-induced

diarrhoea should focus on functional factors. Finally, the irinotecan and

idarubicin diarrhoea models established in this study will be useful in

developing supportive treatments of this common and serious adverse effect in

patients undergoing chemotherapy.
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1 | INTRODUCTION

Cancer is the second largest cause of global premature
death before the age of 70.1 The last decades have seen

substantial improvements in drug treatment of cancer
with the introduction of immunotherapy and selective or
targeted therapies such as hormones and protein kinase
inhibitors. Nonetheless, cytotoxic chemotherapeutics are
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still the most common pharmacological treatment, due to
their broad application for many cancers and cost
efficiency.2

Chemotherapeutics induce desired toxic effects in
proliferating cancer cells by targeting general cellular
functions, such as DNA replication, mitosis and pivotal
signal transduction pathways. This means that normal
cell growth and development throughout the body
are also affected by nontargeted mediated toxic
effects. The entire intestinal epithelium is continuously
renewed every 4–5 days from rapidly dividing stem cells
in the crypts of the intestinal epithelium.3 The conse-
quence is off-target gastrointestinal (GI) toxicity or
chemotherapeutics-induced mucositis. It affects up to
80% of all cancer patients undergoing chemotherapy
(over 1 million patients annually in the United States and
Europe4,5), as well as patients treated with some of the
targeted antineoplastic drugs.6,7 Clinically, it is primarily
associated with a crippling diarrhoea,8 but anorexia, pain,
nausea and sepsis are also common. The diarrhoea
severely reduces the quality-of-life in patients, often
necessitates a dose reduction that delimit the therapeutic
effectiveness, can be fatal and its management is
associated with substantial health care costs.9 For some
especially GI toxic drugs, such as 5-fluorouracil (5-FU)
and irinotecan (IRI), about one third are severe cases,
that is, diarrhoea grades 3 and 410 which means more
than seven bowel movements above normal per day and
even hemodynamic disturbances.

Key symptoms of diarrhoea include loose stool
consistency, increased frequency and/or urgency of
bowel movements and faecal incontinence, with or
without pain. Diarrhoea arises because of the following:
(i) an increased fluid and electrolyte secretion, (ii) a
reduced fluid and electrolyte absorption, (iii) an
increased intestinal motility and/or (iv) exudative
diarrhoea, in which disruption of the epithelium causes
leakage of water, electrolytes, mucus, proteins and
cells.11,12 Causes of gut dysregulation of fluid flux and
motility include infection, inflammation, allergies,
bacterial imbalance, malabsorption and, as mentioned,
chemotherapy. In the latter, diarrhoea typically occurs
within days from onset of treatment and tapers off after a
few days or weeks. Chemotherapy directly induces
diarrhoea by altering gut integrity, motility and normal
secretory functions and possibly indirectly, by affecting
the gut microbiota.13

Chemotherapy-induced diarrhoea (CID) is currently
treated with drugs that decrease intestinal motility,
intravenous fluids to substitute for hypovolemia, to set
the intestines at rest and by treatment postponement and
dose reduction.14 Frequently, these strategies need to
be combined. However, CID is notoriously difficult to

prevent and treat. It occurs only with some chemothera-
peutics, for reasons that are largely unknown13,15

A better understanding of the underlying mechanisms is
therefore necessary for improved supportive care.

We have previously shown that three mechanistically
different chemotherapeutics, doxorubicin (DOX), 5-FU
and IRI, cause a similar 30% reduction in villus height
but differ considerably with respect to their effects on the
mucosal barrier.16 The epithelial permeability of manni-
tol is increased 2.5-fold for 5-FU, 1.3-fold for IRI and
reduced 0.5-fold for DOX. As mentioned, 5-FU and IRI
are also the two chemotherapeutics that cause the most
outspoken diarrhoea clinically, especially in combination
with each other.8 Consequently, we were interested if our
observations regarding the role of the mucosal barrier
with different chemotherapeutics in rats agreed with CID
in patients. We were also interested in determining the
relationship between chemotherapy-induced villus
atrophy and epithelial stem cell death and proliferation.
Taken together, this is expected to improve the in-depth
knowledge of the pathology of mucositis in general and
for diarrhoea in particular. It would also enable us to
establish a rat model for CID for development and
evaluation of new supportive treatment strategies for this
common and serious side effect.

The primary objectives of this rat in vivo study were
to evaluate the effect of a single dose of five chemothera-
peutics and one combination—DOX, idarubicin (IDA),
methotrexate (MTX), 5-FU, IRI and 5-FU + IRI—on
body weight loss, jejunal villus atrophy (villus height,
crypt depth, programmed cell death and proliferation)
and diarrhoea, as well as the relationship between villus
height reduction and diarrhoea and body weight loss. A
secondary objective was to validate and further establish
the in vivo rat diarrhoea model for future evaluation of
intervention strategies using clinically relevant experi-
mental endpoints. Rats were dosed with saline (control)
or chemotherapeutics. At 72 h, when villus atrophy in
rodents is most extensive,17,18 jejunal segments were
excised for morphological and immunohistochemical
analyses, and the total colonic luminal faeces was desic-
cated for analysis of water content. The rat was selected
as model species as it is considered to be translationally
relevant, and it is well-established in preclinical studies
of CID.19

2 | MATERIALS AND METHODS

2.1 | Chemicals

Atropine sulphate, Accustain formalin solution (10%,
neutral buffered), dimethyl sulfoxide, ethanol, phosphate

DAHLGREN ET AL. 537



buffered saline (PBS, pH 7.4) tablets and Inactin (thiobu-
tabarbital sodium) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium chloride was purchased
from Merck KGaA (Darmstadt, Germany). 5-FU Teva
(solution for injection, 50 mg/ml), IRI Actavis (solution
for infusion, 20 mg/ml) and MTX Ebewe (solution for
injection, 100 mg/ml) were purchased from Apoteket AB
(Stockholm, Sweden). DOX HCl and IDA HCl were
purchased from Toronto Research Chemicals (Toronto,
Canada). Transferrin Ki67 antibody (ab16667), horserad-
ish peroxidase - DAB detection IHC kit (ab64261)
and TUNEL Assay Kit - HRP-DAB (ab206386) were
purchased from Abcam, Cambridge, UK.

2.2 | Study drugs

Five chemotherapeutics were used in this study. 5-FU
(solution, 50 mg/ml), IRI (solution 20 mg/ml) and MTX
(solution, 100 mg/ml) were obtained in ready-to-use
form. Stock solutions (100 mM) of DOX hydrochloride
and IDA hydrochloride in dimethyl sulfoxide were pre-
pared and diluted to 5 mg/ml in saline on the day of drug
administration (final dimethyl sulfoxide concentration
<5%). Inactin (50 mg/ml) and atropine (0.1 mg/ml) were
dissolved in saline and used within the recommended
stability time.

2.3 | Animals

The study was conducted in accordance with the Basic &
Clinical Pharmacology & Toxicology policy for experi-
mental and clinical studies.20 The study was approved
by the local ethics committee for animal research
(5.8.18-17 754/2019) in Uppsala, Sweden. Conventional

male Wistar Han IGS rats (strain code 273) weighing
between 240 and 440 g (6–10 weeks) were procured from
Charles River Co. (France). They were delivered to the
animal laboratory facility at Uppsala University, Sweden,
at least 1 week before the experiment. Before and during
the experiments, the rats were kept in enriched cages
with free access to food and water at a 12:12 h light–dark
cycle, 21–22�C, 60% relative humidity.

2.4 | Study design

This study included seven experimental study groups
(each n = 6). Five groups received a single dose of one of
five chemotherapeutics, one group received a fixed-dose
combination of 5-FU and IDA and the control group
received saline. Table 1 shows the drugs, doses, adminis-
tered volumes, administration routes and corresponding
human doses. Doses were selected based on clinical
relevance, our previous experience and published data.21

Prior to dosing with IRI alone, or with a combination of
5-FU + IRI, each rat received a subcutaneous injection of
atropine (0.02 mg) to avoid some of the immediate but
transient cholinergic side effects of IRI.22,23

The rats were weighed on day 0 and at 72 h, to moni-
tor the change in body weight induced by the different
drug treatments. At 72 � 2 h, the study was terminated
by an intraperitoneal injection of a 5% w/v inactin
solution (180 mg/kg). Immediately thereafter, the proxi-
mal jejunum was excised for morphological, apoptotic
and proliferative analyses. The entire colon and its
contents were removed and evaluated for faecal matter
water contents, as described below. A study protocol was
established before this study. It included information
on rat ID and body weight, dose(s), dosing time and

TAB L E 1 Dose, volume, administration route and corresponding and commonly used clinical dose for a control and six experimental

study groups (n = 6 in each)

Group Abbreviation
Dose
(mg/kg)

Volume
(ml) Route

Corresponding
clinical dose
(mg/m2)50

Commonly used
clinical dose
(mg/m2) Reference

Control - Saline 1 i.v. - - -

Doxorubicin DOX 10 0.4–0.7 i.v. 60 40–75 51

Idarubicin IDA 2 0.1–0.2 i.v. 12 10–12 52

Methotrexate MTX 40 0.1–0.2 i.v. 240 600–3000 53

5-Fluorouracil 5-FU 200 1–2 i.v. 1120 1300 54

Irinotecan IRI 200 2–3 i.p. 1120 125–350 55

5-Fluorouracil +
Irinotecan

5-FU + IRI 133 + 133a 1 + 2a i.p. 800 + 800 1000 + 125 56

Note: The two irinotecan formulations were administered intraperitoneally (i.p.) because the dosing volume was too large for intravenous (i.v.) administration.
aThe two doses and volumes are for 5-fluorouracil and irinotecan, respectively.
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volumes, sampling times, type of body samples and
sample handling procedure. A humane endpoint was
defined, and animal well-being was monitored twice
daily to avoid unnecessary suffering. Confounders were
not controlled for in the study.

2.5 | Diarrhoea

The colon was removed in its entirety, and the luminal
contents emptied into 50 ml Falcon tubes. The tubes
were thereafter placed in an oven at 50�C, for at least
24 h until all water evaporated. Diarrhoea was expressed
as percent colonic faecal water content (wet weight - dry
weight) /wet weight � 100. Water content of 55%–70% is
normal, and faecal pellets are solid. About 70%–80%
corresponds to an increased water content but with still
solid pellets, and at 80% and above, pellets are loose and
watery.

2.6 | Morphological and histochemical
analysis of the jejunum

Tissue samples were rinsed with room temperature saline
and fixed in 10% formaldehyde for 24 h, then transferred
to 70% ethanol. They were then embedded in paraffin
and microtome-sliced (Microm Cool-Cut HM 355 S) at
5 μm and dried overnight. Sections were deparaffinized
and serially rehydrated (submersion for 3 min � 2 in
solutions of xylene, 100% ethanol, 95% ethanol, 80%
ethanol, 70% ethanol followed by distilled water) prior to
the stainings described below.

Haematoxylin–eosin staining of the tissue sections
was carried out according to standard practice.24 The
histological jejunal samples were analysed for villus
height and crypt depth, to quantify villus atrophy and
crypt proliferation, respectively. Ten villi and crypts were
measured (Figure 1) for each rat and the mean value
selected.

To monitor cell proliferation, immunohistochemistry
with the Ki67 antibody with a horseradish peroxidase/
DAB detection kit was performed according to the manu-
facturer’s guidelines. In short, slides were washed in PBS
with Tween-20, and peroxidase activity was blocked
using H2O2 block. A DIVA-decloaking chamber was used
to retrieve crosslinked antigens. Nonspecific background
staining was blocked using Protein Block solution.
Primary Ki67 antibody was added in a 1:1000 dilution of
PBS-Tween, incubated for 1 h at 37�C and thereafter
exposed to with biotinylated goat antirabbit antibodies
and streptavidin peroxidase at room temperature for
10 min. DAB was added to the slides for 2 min and
rinsed. PBS was used for in between washing steps.

Finally, slides were counterstained with haematoxylin,
dehydrated and mounted.

To detect programed cell death (e.g. apoptosis), the
samples were stained with a TUNEL Assay Kit according
to the manufacturer’s instructions.

All images were acquired using a Zeiss Axio Vert
microscope equipped with a Zeiss Axiocam 208 colour
camera and Zeiss A-Plan 10x/0,25 Ph1 objective. Villus
height and number of stained cells per crypt (TUNEL)
determinations were performed in Fiji ImageJ, and DAB
was automatically quantified with a macro (supporting
information S1).

2.7 | Statistics

Data are presented for each individual animal and as
group mean � SD. Data collected included villus height,
crypt depth, apoptotic cells per crypt, proliferation
(% stained sample area), colonic water content (%) and
body weight reduction (%). The values were compared
against the saline control using a one-way, unpaired
ANOVA, with a post hoc Dunnett’s comparison test.
All comparisons were tested for normality of residuals
and equality of group variance with the tests Shapiro–
Wilk and Brown–Forsythe, respectively. If group variance
was not equal, regular ANOVA analysis was replaced by
a Brown–Forsythe ANOVA test with a Dunnett T3 post
hoc test. If a nonnormal distribution appeared, the

F I GURE 1 Ten measurements of villus height (finger-like

protrusions) and crypt depth (area between villus bottom and

submucosa) were used to determine the mean for each rat. The

arrows show the height of each villus and crypt. Scale

bar = 100 μm.
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nonparametric Kruskal–Wallis test with Dunn’s multiple
comparisons post hoc test was applied. A p-value <0.05
was regarded significant in all analyses. Statistic tests and
graphs were made in GraphPad Prism 9.1.2. The sample
size (n = 6) was selected based on previous experience of

the effect and variability (body weight loss, villus length
and permeability) following chemotherapy treatment to
rats.16 The total number of rats used in the study was 42.

3 | RESULTS

3.1 | Body weight

The percent change in body weight from dosing at time
0 until 72 h afterwards is shown in Figure 2. Control rats
gained on average 2.0% body weight over the 3 days,
while there was significant body weight reduction in
groups dosed with DOX (8.9 � 3.2%) and IRI
(16.3 � 2.2%) alone.

3.2 | Villus height and crypt depth

Figure 3A–G displays representative pictures of the
jejunal mucosa from the seven different treatment groups
(Table 1). Figure 4A,B shows the mean (�SD) jejunal
villus height and crypt depth at 72 h following dosing
with saline (control), DOX, IDA, MTX, 5-FU, IRI or
5-FU + IRI (Table 2). The villus height decreased
significantly for all chemotherapeutics compared with
the control (442 � 40 μm). The mean reduction was
similar (36%–49%) for all treatments except MTX (20%).
For crypt depth, there was a significant 32% increase for
IRI compared with the control (148 � 22 μm).

F I GURE 2 The mean (�SD) and individual body weight loss

72 h after dosing with saline (control) or with doxorubicin

(DOX, 10 mg/kg), idarubicin (IDA, 2 mg/kg), methotrexate

(MTX, 40 mg/kg), 5-fluorouracil (5-FU, 200 mg/kg), irinotecan

(IRI, 200 mg/kg), or 5-FU + IRI (133 + 133 mg/kg). The dotted

line indicates no change in body weight (0%) after 72 h. For details

of the treatments, see Table 1. *Significance, p-value < 0.05–0.0001,
was evaluated against control, Kruskal–Wallis test, with a post hoc

Dunn’s comparison test.

F I GURE 3 Haematoxylin–eosin staining of the rat jejunal mucosa 72 h after dosing with (A) saline, (B) doxorubicin - DOX, (C)

idarubicin - IDA, (D) methotrexate - MTX, (E) 5-fluorouracil - 5-FU, (F) irinotecan - IRI, and (G) 5-FU + IRI. For details of the treatments,

see Table 1.
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3.3 | Diarrhoea

Figure 5 shows mean (�SD) percent of colonic faecal
water at 72 h posttreatment with saline (control), DOX,
IDA, MTX, 5-FU, IRI or 5-FU + IRI (Table 2). There
were significant increases in water content compared
with the control (63.5 � 3.4%) following dosing with IDA
(78.6 � 10.7%) and IRI (85.2 � 12.3%). Diarrhoea was
consistently observed with IRI, whereas three animals
in the IDA group had none. 5-FU (60.6 � 5.3%) and
MTX (72.5 � 8.9%) alone did not cause diarrhoea and
neither did the combination of 5-FU + IRI (69.1 � 3.3%)
administered at a lower dose (133 + 133 mg/kg).

3.4 | Proliferation and programmed cell
death

Figure 6A,B shows represenative pictures of the stainings
for proliferation (Ki67-DAB) and programmed cell death

(TUNEL), respectivly. Figure 6C,D shows the mean
(�SD) jejunal crypt proliferation and programmed cell
death for the control rats and 72 h after dosing with
DOX, IDA, MTX, 5-FU, IRI and 5-FU + IRI (Table 2).
There was no difference compared with control animals
with regard to either proliferation (2.6 � 2.9% of sample
stained) or programmed cell death (0.25 � 0.18 cells
per crypt).

4 | DISCUSSION

Antineoplastic drug therapy is notorious for its side
effects, in particular chemotherapy-induced intestinal
mucositis. It is characterized by morphological changes,
such as villus atrophy, together with severe diarrhoea.
Villus atrophy arises as a result of stem cell death in the
crypts of the mucosal epithelium of the small intestine.
Under normal conditions, proliferating progenitor stem

F I GURE 4 The mean (�SD) and individual (A) villus height and (B) crypt depth, measured 72 h after dosing with saline (control) or

with doxorubicin (DOX, 10 mg/kg), idarubicin (IDA, 2 mg/kg), methotrexate (MTX, 40 mg/kg), 5-fluorouracil (5-FU, 200 mg/kg), irinotecan

(IRI, 200 mg/kg) or 5-FU + IRI (133 + 133 mg/kg). For details of the treatments, see Table 1. *Significance, p-value < 0.05–0.0001, was
evaluated against controls, one-way, unpaired ANOVA, with a post hoc Dunnett’s comparison test.

TAB L E 2 The mean (�SD) body weight loss, diarrhoea, villus length and crypt depth, proliferation and cell death, 72 h after dosing

with saline (control) or with doxorubicin (DOX, 10 mg/kg), idarubicin (IDA, 2 mg/kg), methotrexate (MTX, 40 mg/kg), 5-fluorouracil (5-FU,

200 mg/kg), irinotecan (IRI, 200 mg/kg) or 5-FU + IRI (133 + 133 mg/kg)

Group
Weight
loss (%)

Diarrhoea
(% water
content)

Villus length
(μm)

Crypt depth
(μm)

Proliferation
(% tissue
staining)

Cell death
(cells/crypt)

Control �2.0 � 1.7 63.5 � 3.4 442 � 40 148 � 22 2.6 � 2.9 0.25 � 0.18

DOX 8.9 � 3.2** 75.0 � 8.3 270 � 59**** 191 � 24 3.4 � 1.8 0.87 � 0.78

IDA 3.8 � 1.8 78.6 � 11.0** 285 � 35**** 185 � 22 6.1 � 5.1 0.085 � 0.085

MTX �3.6 � 5.5 72.5 � 8.9 354 � 44** 164 � 19 2.1 � 2.0 0.066 � 0.074

5-FU 1.2 � 1.0 60.6 � 5.3 268 � 39**** 130 � 28 3.0 � 2.0 0.19 � 0.21

IRI 16.4 � 2.2**** 85.2 � 12.0*** 244 � 41**** 204 � 57* 1.8 � 1.5 0.44 � 0.25

5-FU + IRI 4.8 � 1.5 69.1 � 3.3 224 � 46**** 137 � 46 2.0 � 1.5 0.34 � 0.11

Note: Significance (in bold), p-value was evaluated against controls, one-way, unpaired ANOVA with a post hoc Dunnett’s comparison test or Kruskal–Wallis
test, with a post hoc Dunn’s comparison test.
*p < 0.051. **p < 0.01. ***p < 0.005. ****p < 0.001.
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cells replace the continuous shedding of intestinal epithe-
lial cells from the tip of the villi about every 4–5 days.3

When this renewal process is compromised, the height of
the villi is reduced. Following chemotherapy to rodents,
maximum histological injury occurs after about
3 days.17,18 In our study, DOX, IDA, 5-FU, IRI and
5-FU + IRI decreased villus height by 36%–49% after
72 h, in agreement with similar studies.25

However, clinically, these drugs have different GI
toxicity profiles, especially with regard to incidence and
severity of diarrhoea.26 As such, this would indicate that
CID is not primarily a result of villus atrophy. The
current study corroborates this as we clearly show that
the occurrence, and severity of diarrhoea was not related
to the villus atrophy induced by the different drugs.
Diarrhoea was most pronounced for IRI and to some
extent for IDA, while it did not occur for DOX, MTX,
5-FU and 5-FU + IRI, despite similar effects for all study
drugs on villus height reduction.

We must therefore look for other mechanisms that
can contribute to CID. One hypothesis is that the
incidence of CID may be related to unspecific leakage
from a compromised mucosal barrier, that is, exudative
diarrhoea.12,16 However, reported rat data show that
in vivo leakage of mannitol across the jejunal epithelium
has the following rank order: 5-FU > IRI > DOX, when
administered at the same doses and time point as in this
study.16 As this study showed no diarrhoea for DOX and
5-FU, but severe diarrhoea for IRI, it seems that jejunal
leakage of mannitol and diarrhoea are not correlated.
Rather, an inverse association is implied, as 5-FU actually
reduced diarrhoea in the rats in our study. It is possible
that permeability data from the colon would provide
different results or that a correlation would be observed
if a barrier marker other than mannitol were used.16

We suggest that future studies should focus on other
permeability markers, include both the small and large
intestine and look for other possible causes of CID as a
function of the drug mechanism of action.27 Other

F I GURE 5 The mean (�SD) and individual colonic faecal

water contents (%) that reflects diarrhoea, determined 72 h after

dosing with saline (control) or with doxorubicin (DOX, 10 mg/kg),

idarubicin (IDA, 2 mg/kg), methotrexate (MTX, 40 mg/kg),

5-fluorouracil (5-FU, 200 mg/kg), irinotecan (IRI, 200 mg/kg) or

5-FU + IRI (133 + 133 mg/kg). For details of the treatments, see

Table 1. *Significance, p-value < 0.05–0.0001, was evaluated against

controls, one-way, unpaired ANOVA, with a post hoc Dunnett’s
comparison test.

F I GURE 6 Representative pictures

of the stainings for (A) proliferation

(Ki67-DAB) and (B) programmed cell

death (TUNEL). Scale bar = 100 μm.

The mean (�SD) and individual jejunal

crypt (C) proliferation and

(D) programmed cell death

(e.g. apoptosis) determined 72 h after

dosing with saline (control) or with

doxorubicin (DOX, 10 mg/kg),

idarubicin (IDA, 2 mg/kg), methotrexate

(MTX, 40 mg/kg), 5-fluorouracil (5-FU,

200 mg/kg), irinotecan (IRI, 200 mg/kg)

or 5-FU + IRI (133 + 133 mg/kg). For

details of the treatments, see Table 1.
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possible causes of CID are discussed below, for example,
differences in disposition routes of the cancer drug,
microbiota, immunological response, ubiquitylation that
affects key protein function(s) and dysregulation of GI
physiology including water secretion and gut motility.

Biliary secretion can lead to high intestinal luminal
concentration of chemotherapeutics close to the epithe-
lial stem cells, which causes local toxicity and thereby
triggers diarrhoea. For instance, both DOX and IRI (and
their metabolites) are biliary secreted to a large extent in
the rat.28,29 On the other hand, oral administration of the
inactive metabolite of IRI, SN-38G—which is trans-
formed by luminal bacteria in the GI lumen to the active
form, SN-38—does not induce any intestinal damage.30

Furthermore, DOX does not give rise to an exceptionally
high incidence or severity of mucositis, despite its high
biliary secretion. Finally, oral dosing of 5-FU results in
lower incidence of CID than intravenous dosing.26 Thus,
it seems that biliary secretion is not a primary determi-
nant of GI toxicity with chemotherapy. Still, chemothera-
peutics could indirectly contribute to CID by altering the
number and diversity of luminal bacteria. For instance,
IRI- and 5-FU-induced CID is associated with changes in
the gut microbiome in the rat,31,32 and germ-free or
antibiotic-treated mice sometimes experience less
outspoken CID.33,34 Future studies with this model will
focus on these processes in colon.

Chemotherapy also induces an immune response
associated with release and activation of a number of
pro-inflammatory cytokines that contribute to mucosi-
tis.26 The selectivity of inhibition, the upregulation of
important signalling pathways, protein modifications by
ubiquitylation and alterations in metabolism are evident.
For instance, DOX affects gene expression and biological
pathways in human organoids from the small and large
intestine.35 Notably, the genes are involved in the cell
cycle regulation, the p53 signalling pathway and
oxidative stress, and there are significant differences
between small and large intestinal organoids. This type of
advanced in vitro-based mechanistic studies of the
inflammatory response may improve understanding of
the incidence and severity of diarrhoea induced by differ-
ent chemotherapeutics.35 However, advanced neuroendo-
crine feedback loops—which need to be considered for
any complete understanding—are not present in this
in vitro system.

Chemotherapeutics could modify intestinal transit
and fluid secretion/absorption by interfering with the
enteric nervous system36 and/or by disturbing hormonal
regulation of intestinal functions.37,38 Regarding motility,
there was no correlation clinically between degree of
diarrhoea and small intestinal transit time following
fluoropyrimidine dosing.39 However, colonic motility and

transit time may still be involved, but the impact of dif-
ferent chemotherapeutics on mucosal secretory functions
is currently not well-established.10 Future experiments
will investigate changes in ion and water fluxes across
the small and large intestinal mucosa following different
chemotherapies and dosing schedules of them.

In our study, body weight loss was the parameter
most relevant as a clinical reflection of patient status.
Many different factors may contribute to body weight
loss, such as diarrhoea, endocrine processes, malabsorp-
tion, cachexia and effects contributing to less intake of
water and nutrients, like nausea, pain or malaise. This
study did not aim to establish a causative correlation
between body weight loss and any of these parameters.
Generally, we found no correlation between diarrhoea
and bodweight loss. Nonetheless, IRI induced the largest
effect on both diarrhoea and body weight loss in this
study. The connection between the two is further
supported by the finding that oral administration of
probiotics reduces both IRI-induced body weight loss and
severe diarrhoea incidence in rats.40

As discussed above, there is an incomplete mechanis-
tic understanding of the pathology and development of
diarrhoea following treatment with different chemothera-
peutics and their dosing regimens.10 Identification of the
pathophysiological changes induced by chemotherapy is
fundamental for the development of supportive interven-
tions for this GI condition, which currently lacks any
effective prevention and treatment.41 To fill these knowl-
edge gaps and enable a high degree of clinical translation,
an in vivo model is needed that captures the major
physiological and pathophysiological factors and their
neuroendocrine feedback signalling. Collectively, these
determine the severity of diarrhoea and progress of local
inflammation. The combination of all these factors is
particularly important when evaluating mechanisms and
supportive interventions targeted toward the complex
physiological, biochemical and microbiological environ-
ment of the GI tract.19 For this purpose, the rat is a useful
in vivo model. Accordingly, our study showed that a
single dose of 200 mg/kg of IRI to Wistar rats gave a
consistent and severe diarrhoea after 72 h, which is in
accordance with reported data from Dark Agouti rats.23

The same IRI dose also caused a substantial body weight
reduction that was most likely related to the diarrhoea.
This experimental, albeit clinically relevant rat diarrhoea,
model may be useful for evaluation of new strategies for
prevention and treatment of IRI-induced diarrhoea in
particular and potentially for CID in general.

However, it should be mentioned that 5-FU did not
give rise to diarrhoea in our rat model, despite its high
clinical incidence.26 This is possibly related to dose and a
higher metabolic clearance in rat. All single doses were
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selected to optimize GI symptoms on the basis of
experience, published data and clinical relevance, while
avoiding unnecessary animal suffering. Different
mechanisms of drug-induced diarrhoea, as discussed
above, may not be perfectly reflected in rat or in the
specific rat strain used for this study. To evaluate the
latter, we will replicate this rat diarrhoea study in
Sprague Dawley rats.

Another important aspect of in vivo diarrhoea models
is time from dosing. One way to account for this is to moni-
tor diarrhoea on a daily basis. Indeed, most reported rat
studies rely on this method of qualitative quantification, in
which severity and incidence is based on scoring of faecal
texture and perianal staining of the coat.32,42,43 An obvious
advantage with this monitoring approach is that this
enables repeated observations from each animal. However,
qualitative scoring lacks a quantitative determinations of
diarrhoea and is highly variable, as opposed to determina-
tion of faecal water contents in this study. It should also be
highlighted that we have been unsuccessful in correlating
colonic faecal water content to the scoring proposed in the
qualitative determination of diarrhoea: It is only in the
most extreme cases of diarrhoea that we observed any clear
signs of it by external monitoring of the rat faeces. We pre-
fer and advocate the method of diarrhoea quantification in
our study, especially in cases where subtle differences and
response to treatments are investigated or in cases where
chemotherapy leads to an increased colonic faecal water
content without any qualitative signs of diarrhoea. The
quantification method is also expected to provide more
conclusive dose–response data for any drug development
project, and a lower variability enables the use of less ani-
mals. Still, the two methods are nonexclusive and could be
combined.

Villus atrophy is related to an imbalance in crypt cell
death and proliferation. Peak apoptosis after anthracy-
cline dosing occurs within the first 24 h,44 and mitosis is
reduced between 6 and 96 h.45 Other groups have seen
an increase in proliferation and reduced apoptosis
between 72 and 96 h after 5-FU dosing using the BrdU
and caspase3 activity assays, respectively.46–48 However,
in our study, using the Ki67 and TUNEL assays, we were
unable to detect any significant changes in proliferation
and programmed cell death at 72 h, most likely as the
renewal process is robust and rather fast.49 These
methods and time points are consequently not suitable
for investigating CID treatments.

This study and diarrhoea model have an obvious limi-
tation, as partly discussed above. The clinical pattern of
CID for the various drugs was not fully reproducible. This
may be due to drug dosing, timing of diarrhoea, body
weight loss and villous status assessments as well as
intestinal sampling from only the proximal jejunum.

Furthermore, the healthy and young Wistar rat per se
may only partly reflect the GI sensitivity to chemothera-
peutics seen in elderly humans. Thus, the experimental
in vivo model needs to be refined, expanded with respect
to diarrhoea-inducing cancer drugs and further corrobo-
rated prior to use in investigations of strategies for
prevention and supportive treatment of CID. It is also
encouraged to validate all preclinical rat data also in
female rats to enable optimal translation value of the
model. Nonetheless, the irinotecan-induced diarrhoea
from rat in this study corresponds very well to what is
observed in humans as well as in other preclinical models
such as mouse,19 emphasizing the usefulness of rodents
for studying CID in humans.

5 | CONCLUSION

This in vivo study established an experimental, albeit
clinically relevant diarrhoea model in Wistar rats by
using a single dose of 200 mg/kg of irinotecan and a time
point of 72 h. It also showed that villus atrophy was
pronounced and similar in degree following dosing of
five different chemotherapeutics at clinically relevant
doses and combinations. However, diarrhoea was only
observed with two of them, irinotecan and idarubicin.
Consequently, small bowel villus atrophy itself was not
predictive of diarrhoea. Future studies should investigate
other mechanisms in both the small and large intestine
for chemotherapy-induced diarrhoea. Improved under-
standing of this relationship would contribute to develop-
ment of supportive treatments for this common and
serious adverse drug effect.
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