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Diosgenin, a naturally occurring steroid saponin found abundantly in legumes and yams, is a precursor of various synthetic
steroidal drugs. Diosgenin is studied for the mechanism of its action in apoptotic pathway in human hepatocellular carcinoma
cells. Based on DAPI staining, diosgenin-treated cells manifested nuclear shrinkage, condensation, and fragmentation. Treatment
of HepG2 cells with 40 μM diosgenin resulted in activation of the caspase-3, -8, -9 and cleavage of poly-ADP-ribose polymerase
(PARP) and the release of cytochrome c. In the upstream, diosgenin increased the expression of Bax, decreased the expression of
Bid and Bcl-2, and augmented the Bax/Bcl-2 ratio. Diosgenin-induced, dose-dependent induction of apoptosis was accompanied
by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1, as well as generation of the
ROS. NAC administration, a scavenger of ROS, reversed diosgene-induced cell death. These results suggest that diosgenin-induced
apoptosis in HepG2 cells through Bcl-2 protein family-mediated mitochndria/caspase-3-dependent pathway. Also, diosgenin
strongly generated ROS and this oxidative stress might induce apoptosis through activation of ASK1, which are critical upstream
signals for JNK/p38 MAPK activation in HepG2 cancer cells.

1. Introduction

Diosgenin is a steroidal saponin, which is found in a variety
of plants including fenugreek (Trigonella foenum graecum),
roots of wild yam (Dioscorea villosa), Solanum incaunm, and
Solanum xanthocarpum [1]. It has been reported to have
various effects, such as a hypocholesterolemic action in rat,
or an antioxidant activity in HIV patients with dementia
[2, 3]. Diosgenin has been shown to exert anticancer effects
against a wide variety of tumor cells, including breast cancer,
colorectal cancer, osteosarcoma, and leukemia [4–7]. The
antitumor effects of diosgenin have been demonstrated to be
mediated through activation of p53, immune-modulation,
cell cycle arrest, modulation of caspase-3 activity, and induc-
tion of TRAIL death receptor DR5 [8–10]. A recent study has
shown that diosgenin inhibited proliferation and induced
apoptosis in HepG2 cells by inhibiting signal transducer and
activator of transcription (STAT3) signaling pathway [11].

Apoptosis is a programmed cell death process that
controls normal development and homeostasis in organisms.
The loss of apoptotic control contributes to the survival of
tumor cells, and the enhancement of cancer cell apoptosis
is one approach of controlling cancer by anticancer agents
[12]. At the biochemical level, apoptosis is mediated by the
activation of a class of cysteine proteases called caspases.
In mammalian cells, caspase activation mainly occurs either
through death receptor activation or mitochondrial mem-
brane permeabilization [13]. The mitochondrial pathway
of apoptosis is regulated principally by the Bcl-2 protein
family. In response to apoptotic signals, Bax, a proapoptotic
member of the Bcl-2 family, is redistributed from the cytosol
to the mitochondria. Conversely, overexpression of Bcl-2
protects apoptosis. Therefore, the ratio of expression of
the proapoptotic Bax protein and the antiapoptotic Bcl-2
protein ultimately determines cell death or survival in this
mitochondrial death pathway [14, 15].
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One of the well-known intracellular signaling pathways
for apoptosis is the kinase cascade, which has been identified
as a transducing pathway of apoptotic signals initiated by
outside stimuli, mitogen-activated protein (MAP) kinases,
and their upstream kinases such as MAP kinase kinases [16].
Many stimuli such as anticancer drugs, irradiation, TNF-α,
and chemopreventive agents prompt cells to produce ROS
[17, 18]. It has been shown that ROS induces a number of
events including mitogen-activated protein kinases (MAPKs)
signal transduction pathways in mediating apoptosis [19,
20].

Apoptosis signal-regulating kinase (ASK)-1 is a member
of the ROS-sensitive MAP kinase kinases and it acts as a
redox sensor of cells [21]. ASK 1 is activated in response
to TNF-α, Fas, and oxidative stress. Overexpression of
inactive ASK1 can inhibit TNF-α or Fas-ligand-induced
cell death [22]. On the other hand, constitutively active
ASK1 overexpression has been shown to cause apoptosis
through mitochondrial-dependent caspase activation [23].
Thus, ASK1 appears to be a key player in the MAPK (p38
MAPK/JNK) control of cell death and cell survival.

Diosgenin has been shown to target multiple pathways of
tumorigenesis, including proliferation, apoptosis, angiogen-
esis, invasion, and tumor-induced immunosuppression in
various tumor cells and in vivo cancer models [1]. However,
no reports exist in the literature elaborating the effect of
diosgenin on ROS-ASK1-MAPK signaling cascade in HepG2
cells. In this study, we investigated the involvement of ASK1
in the apoptotic process of HepG2 cells treated with a
chemopreventive agent, diosgenin. Here, we demonstrated
that diosgenin strongly generated ROS and this oxidative
stress induced apoptosis through activation of ASK1, which
are critical upstream signals for p38 MAPK/JNK activation
in HepG2 cancer cells.

2. Material and Methods

2.1. Cell Culture and Drug Treatment. Human hepatoma cell
line (HepG2) was cultured in RPMI (Gibco) supplemented
with 10% fetal bovine serum (Gibco). The cells were cultured
at 37◦C in a humidified chamber with 95% air and 5%
CO2. All experiments were performed in plastic tissue culture
flasks (Falcon). HepG2 cells were seeded on 24 well plates
or 100 mm culture dishes. After plating, cells were allowed
to adhere overnight and were then treated with chemical.
Diosgenin was purchased from Sigma and stored at −20◦C.
Diosgenin stock solutions were made in ethanol (100%) and
diluted in medium prior to use.

2.2. Determination of Cell Viability (MTT Assay). Cell via-
bility was determined by the MTT [3-(4,5-dimethylthiazol-
2yl)-2,5-diphenyltetrazolium bromide] assay. The cells were
seeded in 24-well plates at a density of 4 × 104 cells/well
and treated with Diosgenin at various concentration (0–
40 μM) for 24 h and 48 h. After the exposure period, media
were removed. Thereafter, the medium was changed and
incubated with MTT (0.1 mg/mL) for 3 h. The viable cell
number per dish is directly proportional to the production

of formazan, which was solubilized in isopropanol, and
measured spectrophotometrically at 570 nm.

2.3. Apoptosis Assays. Fluorescence-associated cell sorting
(FACS) analysis was performed to discriminate between
intact and apoptotic cells. Staining for FITC-labeled annexin
V binding to membrane phosphatidylserine and propid-
ium iodide (PI) binding for cellular DNA was performed
according to the protocol provided by the manufacturer
(Boehringer Mannheim). Briefly, cells (1 × 106 cells) were
suspended in buffer containing FITC-conjugated annexin
V and PI at appropriate concentrations. The samples were
analyzed by FACS Vantage using Cell Quest Software (Beck-
ton Dickinson) and 20,000 events from each sample were
acquired to ensure adequate data.

2.4. DAPI Staining. Cells (1 × 105) were plated onto 18 mm2

coverslips in flasks and cultured with complete medium.
After they were treated with diosgenin, the cells were fixed
with 4% formaldehyde for 20 min at room temperature and
were then washed with PBS. Cold methanol was added for
another 20 min at room temperature followed by washes
with PBS by three times. The membrane permeable fluores-
cent dye DAPI (2 μg/mL), which binds to chromatin of cells,
was added to the fixed cells, and the cells were examined by
an inverted Olympus IX70 microscope (Japan). Apoptotic
cells were identified by condensation and fragmentation of
nuclei. For each experiment, nuclei from 10 random fields of
each coverslip were examined at ×200 magnification.

2.5. Western Blot Analysis. After the indicated diosgenin
treatment, the medium was removed, and the cells were
rinsed with PBS twice. After the addition of 0.6 mL of cold
RIPA buffer (10 mM Tris pH 7.5, 100 mM NaCl, 1 mM
EDTA, 0.5% Na-deoxycholate, 0.1% SDS, 1% Triton X 100)
and protease inhibitors, cells were scraped followed at 4◦C.
Cell lysate was then subjected to a centrifugation of 14,000 ×
g for 15 min at 4◦C. Resultant protein samples were separated
by an SDS-PAGE gel and transferred onto a polyvinylidine
difloride membrane (PVDF, Millipore) membrane. Mem-
brane was stained by ponceu to confirm uniform transfer
of all samples and then incubated in blocking solution
(PBS with 0.05% tween 20 and 5% non fat dry-milk)
for 1 h at room temperature. The antibodies used in this
study, caspase-3, caspase-8, caspase-9, Bcl-2, Bax, Bid and
cytochrome c were obtained from Santa Cruz Biotechnology
Inc (Santa Cruz, CA), and p38, JNK, phospho-p38, and
phosphor-JNK were purchased from Upstate Cell Signaling.
The membrane was reacted firstly with desired primary
antibodies for 1 h at room temperature. Membrane was
then incubated with appropriate horseradish peroxidase-
conjugated secondary antibody (Zymed) for 1 h, washed
with PBST, and developed using the ECL kit.

2.6. ROS Assay. Intracellular generation of ROS was mea-
sured with carboxy-H2DCFDA (Invitrogen), which is a cell-
permeable and nonfluorescent dye when loaded onto the
cells. This compound is oxidized by ROS to fluorescent
carboxydichlorofluorescein (DCF) inside the cells. Briefly,



Evidence-Based Complementary and Alternative Medicine 3

0

20

40

60

80

100

120

24 hr
48 hr

0 10 20 30 40

∗∗ ∗∗
∗∗ ∗∗

∗∗ ∗∗

∗∗

Concentrations of diosgenin (μM)  

C
el

l v
ia

bi
lit

y 
(%

)

(a)

Control Diosgenin 20

Diosgenin 30 Diosgenin 40

(b)

Figure 1: Cytotoxic Effect of diosgenin in HepG2 cells. (a) Cells were treated with diosgenin by dose-dependent manner for 24 and 48 h. The
ratios of cell viability were measured by MTT assay. Data are presented as mean ± SD of six replicates from three independent experiments.
∗∗P < 0.01 compared to control. (b) Nuclear alterations were observed by DAPI staining and fluorescence microscopy (×100). After cells
were treated with diosgenin (0–40 μM) for 48 h, marked morphological changes of cell apoptosis such as condensation of chromatin and
nuclear fragmentations were found clearly using DAPI staining.

the cells seeded in 6-well plates (2 × 105 cells/well) and
treated with or without diosgenin were incubated with
5 μM carboxy-H2DCFDA for 15 min at 37◦C. Then the
cells were washed with phosphate buffered saline (PBS)
twice, trypsinized, and resuspended in OptiMem I medium.
The fluorescence resulting from the rate of oxidation of
the dye in the cells was measured using a FACS with an
excitation wavelength of 480 nm and an emission wavelength
of 530 nm. The generation of ROS in HepG2 cells was also
verified by fluorescence microscopy (Nicon, Japen). Cells
grown to confluence were treated with or without diosgenin
in the presence of 5 μM carboxy-H2DCFDA for the indicated
time and resuspended in fresh OptiMem I medium after
washing. During fluorescence imaging, the illumination level
was reduced to minimal level to prevent photosensitization
of the fluorescent probe.

2.7. Statistical Analysis. All experiments were performed in
triplicates and the results were expressed as mean ± S.D.
Statistical significances were analyzed by one-way analysis of
variance (ANOVA) with Duncan test. P value ≤ 0.05 was
considered statistically significant (STATSTICA 2.0, USA).

3. Results and Discussion

3.1. Cytotoxic Effect of Diosgenin on HepG2 Cells. A previous
study has shown that diosgenin inhibited proliferation and
induced apoptosis in HepG2 cells [11]. To confirm whether
diosgenin influences the viability of hepatoma cells, HepG2
cells were challenged with diosgenin (0–40 μM). Cytotoxicity

is measured by MTT assay following a brief during exposure.
Diosgenin markedly induced cell death in HepG2 cells in a
dose- and time-dependent manner as compared with vehicle
controls (Figure 1). Apoptosis is initially characterized by
morphological features, such as chromatin condensation,
nuclear fragmentation, and membrane blebbing [24]. In
the current study, morphological changes of cell apoptosis
such as condensation of chromatin and nuclear fragmen-
tation were clearly observed by DAPI staining after 24 h of
diosgenin (Figure 1). Cell death was also assessed with flow
cytometry after double staining with annexin V and PI. We
challenged the cells with increasing doses of diosgenin at 24 h
of treatment. According to Figure 2(a), the combined early
and late apoptotic cells (Annexin V positive) were elevated in
a dose-dependent fashion. Consistent with the progression of
apoptosis, late apoptotic cells become dominant at later time,
because we observed gradual diminution of early apoptotic
cells and increment of the late apoptotic cells after 48 h
(Figure 2(b)). These findings demonstrate that diosgenin
induced the apoptosis of HepG2 cells in both dose- and time-
dependent manners.

3.2. Effect of Diosgenin on Activation of Caspases and Bcl-
2 Family. Caspase activation is generally considered to be
a key hallmark of apoptosis. Mitochondria are involved in
a variety of key events leading to apoptosis, as releasing of
caspase activators, the production of reactive oxygen species
(ROS), and participation in regulation of both pro- and
anti-apoptotic bcl-2 family proteins [8]. In the next series
of experiment, we assessed the effect of diosgenin on the
cascade of caspases that are crucial initiators and effectors in
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Figure 2: FACS analyses of Annexin V and PI staining. HepG2 cells was treated with diosgenin (0–40 μM) for 24 h (a) and 40 μM for 0, 24,
48 h (b). Lower right quadrant, early apoptosis cells, that is, Annexin V-FITC-positive/PI-negative cells; upper right quadrant, necrosis or
late-apoptotic cells, that is, Annexin V-FITC-positive/PI-positive cells.

various cell death pathways. As shown in Figure 3(a), dios-
genin treatment activated caspase-3, caspase-8 and caspase-9
(as shown by decreased procaspase-9 and -8 levels) followed
by subsequent PARP cleavage.

Bcl-2 family proteins are crucial for apoptosis commit-
ment, mainly via the control of the mitochondrial pathway
which is frequently triggered in response to chemother-
apeutic agents [25]. Elevated levels of Bcl-2 in tumor
cells may contribute to chemoresistance by stabilizing the
mitochondrial membrane against apoptotic insult. Bax and
Bak are the critical effectors of apoptosis acting downstream
of the both the prosurvival and BH3-only members [26].
The BH3-only proteins (Bid, Bim, Puma, Noxa) are pro-
apoptotic and act as sensors of specific types of cellular stress
[27]. Thus, Bcl-2 family proteins may be good therapeutic
targets.

To investigate the cellular mechanism underlying
diosgenin-induced apoptosis in HepG2 cells, we analyzed
the expression of apoptosis-regulated genes; including
pro-survial Bcl-2, pore-forming Bax and pro-apoptotic Bid
proteins. As illustrated in Figure 3(b), the expression level
of Bcl-2 was gradually down-regulated as the diosgenin
concentration increased. In addition, diosgenin significantly
induced the activation of Bax and Bid. Bid functions to
receive death signals in the cytosol from upstream events and
is cleaved to truncated Bid (tBid; 15). Upon translocation of
Bid to mitochondria, it induces the release of cytochrome
c. From subsequent experiments, we observed a higher
expression of cytochrome c. Cytochrome c release is not a
specific sign of apoptosis, which also occurs during necrotic
cell death [28]. However, our results also revealed the
increased levels of caspases and Bax and the decreased levels
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Figure 3: Effects of diosgenin on caspases (a), Bcl-2 family proteins, and cytochrome c (b). Cells were incubated without or with 20 μM,
30 μM, and 40 μM of diosgenin for 24 h. Total cell lysates were analyzed by immunoblotting with antibody against caspase-3 (pro and
cleavage), procaspase-8, procaspase-9, PARP, Bcl-2, Bax, Bid, and cytochrom c.
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Figure 4: Diosgenin generated ROS in HepG2 cells. (a) Diosgenin generated ROS in HepG2 cells. Cells were treated with different
concentrations of diosgenin (20–40 μM) plus 40 μM of DCFH-DA for 24 h, and ROS productions were determined by FACS analysis. (b)
For observation of intracellular ROS by fluorescence microscope, cells were treated with diosgenin (20–40 μM) and then incubated with
DCFH-DA.

of Bcl-2 and Bid. These results indicate that diosgenin leads
to a shift from antiapoptosis to proapoptosis by altering the
function of the proteins in the Bcl-2 family, which results in
the release of cytochrome c from mitochondria.

3.3. Diosgenin-Induced Apoptosis by the Generation of Reactive
Oxygen Species (ROS). As reactive oxygen species (ROS)
generation is an important role in apoptosis, we investigated
the ability of diosgenin to generate ROS. Cells were exposed

to diosgenin (0–40 μM) for 24 hr and analyzed for the
present of ROS by flow cytometry The generation of ROS
by diosgenin was increased in dose-dependent manner
(Figure 4(a)). We also confirmed intracellular ROS produc-
tion by fluorescence microscope after staining with carboxy-
H2DCFDA, ROS were generated by treatment of diosgenin
(Figure 4(b)). To examine whether diosgenin-generated ROS
induce apoptosis in HepG2 cells, we measured cell death
after treatment of diosgenin only or with NAC. NAC is
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Figure 5: Diosgenin-generated ROS induced apoptosis in HepG2 cells. (a) The cells were pretreated with/without NAC (10 mM) at least
2 hr before the treatment of 40 μM diosgenin. After 24 h, quantitative assessment of the percentage of cell viability was determined by MTT
assay. ∗∗P < 0.01 compared to control, ##P < 0.01 compared to diosgenin 40 μM-treated group. (b) Also cells were pretreated with/without
NAC (10 mM) at least 2 h before the treatment of diosgenin. ROS production was confirmed by fluorescence microscope.

a potent antioxidant that can inhibit oxidative stress by
directly scavenging ROS and replenishing GSH [29]. If
ROS production mediates diosgenin-induced cell death,
we expect that NAC should have the ability to inhibit
diosgenin-induced cell death. As shown in Figure 5(a),
diosgenin (40 μM) increased cell death, whereas removing
diosgenin-generated ROS by NAC led to decreasing cell
death. Also, the decrement of intracellular ROS by treating
NAC was observed after DCFH-DA staining (Figure 5(b)).
These results indicate that diosgenin induced cell death of
HepG2 cells by the generation of ROS.

3.4. Diosgenin-Activated MAPKs and ASK1. Intracellular
MAPKs are the major oxidative stress-sensitive signal trans-
duction pathways [16]. The major enzymes belonging
to MAPKs are the extracellular signal regulating kinase
1/2(ERK1/2 or p44/42 MAPK), c-Jun N-terminal kinase
(JNK), and p38 MAPK. JNK and p38 are stress-activated
MAP kinases that are preferentially activated by cytotoxic
stress, such as X-ray/UV irradiation, heat/osmotic shock, and
oxidative/nitrosative stress [19, 30]. To identify the signaling
pathways involved in diosgenin-induced cell death, HepG2
cells were treated with 40 μM diosgenin, and activation of
MAPKs was determined by Western blotting. As illustrated
in Figure 6(a), p38 MAPK and JNK activation in HepG2 cells
was induced by diosgenin.

Next, we measured the phosphorylation levels of ASK1
for determining ASK1 activation. Our results showed that
ASK1 phosphorylation was increased at 60 min, and sus-
tained to 240 min by diosgenin (Figure 6(b)). ASK1 is an

upstream kinase of JNK and p38 MAPK [31]. JNK and p38
MAPK are activated through ASK1 in response to various
extracelluar stimuli [21, 32]. The binding of ASK1 to TNF
receptor-associated factor or death domain-associated pro-
tein stimulates ASK1 function, whereas the ASK1 inhibitory
proteins such as thioredoxin downregulate proapoptotic
activity of ASK1 [33, 34]. Recent studies have suggested that
ROS-mediated ASK1 activation is involved in a variety of
disorders, such as inflammation [13, 14], neurodegeneration
[15, 16], and cardiac hypertrophy and remodeling [18, 19]. It
has already been reported that EGCG and berberine executed
apoptotic cell death via an ASK1 and JNK/p38 cascade, which
is induced by NAC-sensitive intracellular oxidation or ROS
[35–37]. In this study, diosgenin activated JNK, p38 MAPK
and ASK1 as well as ROS generation. Therefore, further
studies on the mechanisms of regulation of ASK1 activity and
the development of ASK1-targeting drugs may contribute to
the treatment of various diseases caused by oxidative stress.

4. Conclusion

In conclusion, the present data showed that diosgenin
induced apoptosis in HepG2 cells through Bcl-2 pro-
tein family- (Bcl-2, Bax, and Bid)-mediated mitochondria/
caspase-3-dependent pathway. Also, diosgenin strongly gen-
erated ROS and this oxidative stress might induce apoptosis
through activation of ASK1, which are critical upstream
signals for JNK/p38 MAPK activation in HepG2 cancer cells.
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Figure 6: Effects of diosgenin on MAPK (a) and ASK1 (b).
Cells were treated with varying concentrations of diosgenin (20–
40 μM) for 24 h. Total cell lysates were analyzed by immunoblotting
with antibody against phospho-p38, p38, phospho-JNK, JNK,
phosphoASK1, and ASK1.
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