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Abstract: Particle morphology is of great significance to the grain- and macro-scale behaviors of
granular soils. Most existing traditional morphology descriptors have three perennial limitations,
i.e., dissensus of definition, inter-scale effect, and surface roughness heterogeneity, which limit
the accurate representation of particle morphology. The inter-scale effect refers to the inaccurate
representation of the morphological features at the target relative length scale (RLS, i.e., length scale
with respective to particle size) caused by the inclusion of additional morphological details existing
at other RLS. To effectively eliminate the inter-scale effect and reflect surface roughness heterogeneity,
a novel spherical harmonic-based multi-scale morphology descriptor Rinc is proposed to depict the
incremental morphology variation (IMV) at different RLS. The following conclusions were drawn:
(1) the IMV at each RLS decreases with decreasing RLS while the corresponding particle surface is,
in general, getting rougher; (2) artificial neural network (ANN)-based mean impact values (MIVs)
of Rinc at different RLS are calculated and the results prove the effective elimination of inter-scale
effects by using Rinc; (3) Rinc shows a positive correlation with the rate of increase of surface area
RSA at all RLS; (4) Rinc can be utilized to quantify the irregularity and roughness; (5) the surface
morphology of a given particle shows different morphology variation in different sections, as well as
different variation trends at different RLS. With the capability of eliminating the existing limitations
of traditional morphology descriptors, the novel multi-scale descriptor proposed in this paper is very
suitable for acting as a morphological gene to represent the multi-scale feature of particle morphology.

Keywords: multi-scale morphology descriptor; spherical harmonic analysis; incremental morphology
variation; inter-scale effect; surface roughness heterogeneity; X-ray micro-tomography

1. Introduction

Particle morphology, an intrinsic characteristic for granular soils, plays a significant role in the
grain-scale and, consequently, macro-scale mechanical behaviors of granular soils. Many research
findings, either experimental or numerical, proved that the fabric evolution and fabric anisotropy
in grain-scale, as well as the compressibility, crushability, shear strength, dilatancy and small strain
stiffness in macro-scale, can be highly influenced by the morphology features of granular particles [1–8].
Therefore, the precise and quantitative representation of particle morphology is the prerequisite of
further geological and geo-mechanical investigations of granular soils.

To estimate particle morphology like sphericity and roundness, researchers, in early years,
compared the microscopic view of particles with the standard charts developed by Krumbein and
Sloss [9]. Although quite convenient for a small number of particles, this chart comparing method
is very subjective and is not suitable for a population of particles. In recent years, the development
of optical equipment and imaging techniques boosted the accuracy and efficiency of representation
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of particle morphology. For instance, Cho et al. [3] utilized a stereomicroscope to investigate the
effects of particle shape on packing density, as well as the mechanical properties of sandy soils.
Altuhafi and COOP [10] adopted the QicPic apparatus to correlate soil behavior to the particle
microscopic morphology variation. Zheng and Hryciw [11] proposed stereophotography to obtain
three-dimensional (3D) surfaces of 600 randomly selected soil particles. Zhao and Wang [12] introduced
a framework to quantify the 3D morphology of Leighton Buzzard sand (LBS) particles based on X-ray
micro-tomography (µCT). To quantitatively represent particle morphology in a smaller relative length
scale (RLS), many advanced mathematical methods were developed, such as the Fourier series [13,14],
the fractal dimension [15,16], wavelet analysis [17], and spherical harmonic analysis (SHA) [18–20].

Due to the multi-scale nature of particle morphology, the quantitative representation should be
conducted in different RLS. In general, particle morphology can be divided by RLS into general form
(GF), local roundness (LR), and surface texture (ST) (or roughness in a smaller RLS). Many descriptors
were proposed to describe particle morphology to some specific RLS. Although yielding a lot of
interesting findings, the limitations of these traditional descriptors are obvious and are listed below.

The first is dissensus of definition. There still remains the dissensus of definitions for the descriptors,
leading to an inconsistent set of descriptors utilized by different researchers [21–23]. This makes the
representation of particle morphology hard to unify and compare. To address this issue, Blott and
Pye [21] re-examined the basic concepts of particle shape and suggested descriptors for accurate shape
representation. The second is the inter-scale effect. The estimation of morphology descriptors is actually
based on the “observation length scale”, which that means techniques with different resolutions will
yield different values for the same particle surface [3,23,24]. That is, the inter-scale effects from smaller
RLS will lead to an incorrect representation of particle morphology at the target RLS. For instance,
the local roundness of a given particle might be significantly underestimated if the surface texture is
not appropriately removed, as the surface texture will lower the evaluation of local curvature for a
surface point. To avoid the inter-scale effect from smaller RLS, Zhao and Wang [12] proposed a cut-off

method to remove morphology information of surface texture, while Zheng and Hryciw [23] adopted
a combined locally weighted regression smoothing (LOESS) and K-fold cross-validation method to
remove the roughness details and obtain the mean particle surface. These methods can effectively
eliminate the inter-scale effect of smaller RLS, but that of large RLS still exists. Moreover, the extension
of these methods to other RLS, especially smaller RLS, is hard to conduct. The third is surface roughness
heterogeneity. The formation history (such as particle breakage, chipping, and abrasion subjected
to loads or transportation) and the mineralogical composition of granular materials lead to different
surface roughness at different locations. Unlike the shearing of rock joint surfaces, the inter-particle
contact among granular particles occurs in very small areas, which makes the effect of this heterogeneity
more obvious and dominant. These three perennial issues widely exist, and they limit the accurate
representation of particle morphology at different RLS.

This paper proposes a novel spherical harmonic (SH)-based multi-scale morphology descriptor
that could effectively eliminate inter-scale effects with a uniform format of definition across all RLS
and that could reflect surface roughness heterogeneity. Section 2 presents a combined X-ray µCT
and SHA technique to acquire morphological data of 4155 LBS particles and then to decompose each
particle surface into a series of sub-surfaces at different RLS. Section 3 discusses the effect of SH
decomposition and the inter-scale effect on particle morphology representation by selected traditional
descriptors. Section 4 then introduces the multi-scale morphology descriptor proposed and discusses
its characteristics and advantages. Particularly, an artificial neural network is introduced to correlate
the multi-scale morphology descriptor with the SH-based invariants. Finally, Section 5 presents the
conclusion remarks.
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2. Morphological Data Acquisition and SH-Based Particle Surface Decomposition

2.1. Data Acquisition by X-ray µCT

X-ray µCT as a powerful tool to visualize and characterize the grain-scale mechanical behavior of
granular soils was widely adopted in many researches, including grain morphology [12,22,25],
grain-scale kinematics [26–29], and fabric evolution [30,31]. Due to its three-dimensional,
high-resolution, and non-destructive merits, X-ray µCT is utilized in this paper to acquire data
of particle morphology. Specifically, LBS with a diameter range of 400–800 µm are utilized to form
a dry cylindrical sample with a diameter and a height of 8 mm and 16 mm, respectively. Then, the
sample is scanned within a synchrotron-based µCT scanner at the BL13W beamline of the Shanghai
Synchrotron Radiation Facility (SSRF). An X-ray energy of 25 KeV and voxel size of 6.5 µm are used
for the CT scanning, since this setting can provide a good contrast between solid particles and void
spaces [31].

Once a raw CT image of the sample is acquired, a series of image processing steps and analyses are
generally required to extract the surface of each particle. The image processing procedure, in general,
is carried out in five steps. Firstly, a series of raw projection images obtained from synchrotron µCT
scans at different rotation angles is transformed to gray-scale CT slices on free software PITRE [32]
from SSRF [33]. Secondly, an anisotropic diffusion filter method [34] is conducted on those gray-scale
CT slices obtained to remove unexpected noise. This filter technique can maintain the original
boundaries and enhance the contrast among different phases while dramatically eliminating the
noise in the background. Thirdly, an intensity value threshold [35] is utilized on filtered CT slices to
convert them into binary images. Fourthly, a marker-based watershed algorithm is adopted on binary
images to extract individual particles and store them in a three-dimensional labeled image (Figure 1a).
Lastly, the intrinsic MATLAB function bwprim is applied to extract particle boundary voxels for each
particle in the LBS sample (Figure 1b), while regionprops3 is utilized to calculate volume and surface
area of each particle. A more detailed description of the experimental device and the image processing
can be found in Cheng and Wang [31], in which the sample data were used to study the fabric evolution
of granular soils under shear.
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Figure 1. Image obtained from micro-tomography (µCT) reconstruction: (a) three-dimensional (3D)
labeled image; (b) an individual particle.

In order to eliminate the over-segmentation effect, particles with average values of the major and
the minor principal axis lengths less than 0.4 mm are removed, and the remaining 4155 LBS particles
are extracted for further analysis.
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2.2. Spherical Harmonic-Based Particle Surface Decomposition

Based on the extracted CT data of individual particles, the particle surface can be decomposed
by SHA into a series of sub-surfaces at different RLS. Here, we briefly introduce the SHA procedure
for particle surface decomposition. A more detailed description can be found in Zhou et al. [20].
By adopting SH functions, the polar radius of a unit sphere can be extended in different frequencies
to match the particle surface points, with different frequencies relating to different RLS. The main
functions are shown as follows:

r(θ,ϕ) =
∞∑

n=0

n∑
m=−n

Cm
n Ym

n (θ,ϕ), (1)

where r(θ,ϕ) is the polar radius from the particle center, Cm
n is the spherical harmonic coefficient,

and Ym
n (θ,ϕ) is the spherical harmonic function as given by Equation (2).

Ym
n (θ,ϕ) =

√
(2n + 1)(n−m)!

4π(n + m)
Pm

n (cosθ)e−iωϕ, (2)

where n and m are the frequency and the order of the associated Legendre function Pm
n (x),

Pm
n (x) =

(−1)m

2nn!
(1− x2)

m/2 dn+m

dxn+m (x2
− 1)

n
. (3)

Based on the spherical harmonic coefficient Cm
n , the given particle surface can be reconstructed using

Equation (1). In addition, the second-order norm of these coefficients expressed by Equation (4) reflects the
energy contained in each frequency [36] and, hence, can be utilized to partition and group RLS range.

Ln = ‖Cm
n ‖2 =

√√
n∑
−n

(Cm
n ×Cm∗

n ), (4)

where ‖ ∗ ‖2 is the second-order norm, and * is the conjugate transpose. Note that Ln is an SH invariant
with respect to particle translation and rotation. Since L0 is related to particle size, all the second-order
norms are divided by L0 to eliminate the particle size effect. L1 is only related to particle shift and,
hence, ignored in the classification. In addition, SHA was already proven to accurately describe the
morphology information of LR and ST when the maximum SH frequency is 15 or greater [22,37–39] and,
hence, SH frequency n = 15 is chosen in this paper for further analysis. Figure 2 depicts the multi-scale
features of particle morphology and the averaged second-order norms for all the 4155 particles in each
frequency. Based on different Ln/L0 values in each frequency, particle surface can be decomposed into a
series of sub-surfaces containing morphological genes at three different RLS, i.e., general form (GF) at
n = 2 to 4, local roundness (LR) at n = 5 to 8, and surface texture (ST) n = 9 to 15 [23,39–41]. In order to
discuss the inter-scale effect at finer RLS, ST is further divided into first-level surface texture (1L-ST)
n = 9 to 12 and second-level surface texture (2L-ST) n = 13 to 15. Therefore, with Cm

n calculated and
Equation (1), any given particle surface can be decomposed into a series of sub-surfaces at different
RLS. For instance, the corresponding LR-level sub-surface can be reconstructed by SH frequency n = 8
with the first 81 coefficients of Cm

n .
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Figure 2. Particle morphology at different relative length scale (RLS): (a) schematic diagram; (b) averaged
second-order norms for each spherical harmonic (SH) frequency.

2.3. Verification

The precise SH reconstruction of particle surface from µCT data is the premise of spherical
harmonic-based decomposition. For the verification, particle volumes and surface areas obtained
by µCT and SHA are compared using the Z value (Equation (5) in a statistical approach, t-test [42].
In detail, the calculation of particle volume and surface area for µCT data is conducted using MATLAB
functions regionprops3 and isosurface, while these values for SHA data are evaluated using the sum
of the micro-surface areas of all faces and the sum of the micro-volumes of all the tetrahedrons,
respectively (detailed calculation procedure given by Zhou et al. [20]). The Z value, as shown in
Equation (5), is related to means (µ) and standard deviations (σ) of two distributions, and it can be
utilized to evaluate the divergence of SHA reconstruction from µCT data.

Z =

∣∣∣µ1 − µ2
∣∣∣√

σ2
1 + σ2

2

, (5)

where µ1 and µ2 are the means of two distributions, while σ1 and σ2 are the standard deviations. For all
4155 LBS particles, the mean and standard deviation of particle volume from µCT data are 0.1136 and
0.0454, while those from SHA are 0.1132 and 0.0453, respectively. Similarly, the mean and standard
deviation of particle surface area are 1.5419 and 0.4375 for µCT data, and 1.5923 and 0.5203 for SHA.
Figure 3 compares their cumulative frequency distributions from µCT and SHA. Solid lines show the
volume and surface area distributions from µCT scans, while dotted lines are from SHA. The Z value is
0.0062 for particle volume and 0.0741 for particle surface area, and they are all within 1.96, which reflects a
sufficiently close match between these two distributions with a confidence level of 95% [43].
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3. Inter-Scale Effect of Traditional Morphology Descriptors

The traditional morphology descriptors listed in Table 1 are selected at different target RLS to
illustrate their sensitivity to the SH decomposition of particle surface and to further discuss their
inter-scale effects. The definitions of these descriptors are based on the recommendations from Blott
and Pye [21]. As mentioned above, most existing particle morphology descriptors can be classified by
the target RLS into four different groups, namely, GF, LR, ST, and overall shape parameters. To be more
exact, (a) GF, such as aspect ratio, is related to the three principle dimensions of a granular particle,
(b) LR is considered to be a measure of the sharpness of corners and edges for a particle, (c) average
texture (AT) is the averaged absolute distance of surface points to the mean surface, which can show
the morphology variation of ST in a very general way, and (d) overall shape parameters are those that
can be influenced independently by features at different RLS.

Based on SHA, particle surface is decomposed into a series of sub-surfaces at different RLS.
Then, the chosen traditional morphology descriptors are calculated on each sub-surface and this
procedure is repeated for all the 4155 LBS particles. Figure 4 shows the variation of particle morphology
descriptors with increasing SH frequency. It is found that all the descriptors show a similar trend of
decreasing values with an increasing SH frequency except the average texture, which has an opposite
trend. This result shows that the “observation length scale” has a significant effect on the estimation of
traditional morphology descriptors, proving the existence of the inter-scale effect.

Table 1. Definitions of morphology descriptors.

Group Descriptor Formula Definition References

General form
Elongation E = I

L
Ratio of the second principal dimension (I) over the first

principal dimension (L) [21,44]
Flatness F = S

I
Ratio of the third principal dimension (S) over the second

principal dimension
Aspect ratio AR = E+F

2 The mean value of elongation and flatness
Local

roundness Roundness R =
∑

Rc
nc×Rinsc

Ratio of all corner curvature radii (Rc) to the largest inscribed
sphere radius (Rinsc) [20,45]

Surface
texture Average texture Ra =

∑
|Zi |
n

The arithmetic average of the target surface departure from the
mean surface [46]

Overall shape
parameter

Sphericity S = 3
√

36πV2

SA

Ratio of the surface area (SA) of a sphere with the same volume
(V) as the given particle to surface area of this particle [20,47]

Ratio of volume
to surface area

V
SA

Ratio of particle volume to particle surface area [48]

Convexity Cx = V
VCH

Ratio of particle volume over its convex hull volume (VCH) [49]

However, a big difference in the degree of variation exists in different descriptors, with the largest
and smallest variations seen in roundness and V/S ratio, respectively. To be more exact, the aspect
ratio (Figure 4a) can be affected by LR-level morphology information, and it shows little sensitivity to
high-level morphologies like ST. The LR, from Figure 4b, is highly sensitive to the morphology variation
of 1L-ST and 2L-ST and shows a decreasing trend with an increasing SH frequency. The average texture
for the ST-level morphology information, as shown in Figure 4c, is sensitive to the smaller RLS such as
2L-ST and witnesses a positive correlation with the SH frequency. The remaining three overall shape
parameters (Figure 4d,e,f) reflect the general variation of particle shape. Thus, morphology information
from all the different RLS can affect the estimation of these descriptors. Therefore, the inter-scale effect
exists in particle morphology representation on all length scales from GF to high-level ST.
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4. A Novel Multi-Scale Morphology Descriptor

To effectively eliminate the inter-scale effect on representing particle morphology at different
RLS and to reflect the surface roughness heterogeneity, a novel spherical harmonic-based multi-scale
roughness descriptor is proposed in this paper.
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4.1. Definition

For any point on a given particle surface, its normal vectors on reconstructed sub-surfaces
with different RLS can be calculated. Then, the angle difference of normal vectors on decomposed
sub-surfaces at target and preceding RLS can reflect the morphology variation at this target RLS.
For example, the angle difference between normal vectors of sub-surfaces at LR and 1L-ST can depict
the morphology variation of 1L-ST at a given surface point. The calculation of this angle difference at a
given point, as illustrated in Figure 5, is given by Equation (6).

∆θ∗iv = arccos(
⇀
nv,

⇀
nvp), (6)

where
⇀
nv is the normal vector at the point on the target sub-surface and

⇀
nvp is the normal vector

on the preceding sub-surface.
⇀
nv and

⇀
nvp can be determined based on the normal vectors of all the

triangulated faces sharing the same vertex (i.e., the target point) on the sub-surfaces as follows:

⇀
nv = norm(

k∑
i

αi ×
⇀
n f i), (7)

where
⇀
n f i is the normal vector of face i, αi is the angle-related weight for this face i (i.e., the angle of

the vertex on face i), and k is the number of faces that share the vertex (k = 4 in this case).Materials 2020, 13, 3286 9 of 19 
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Therefore, based on the angle difference ∆θ∗i between normal vectors on two sub-surfaces,
the descriptor Rinc can depict the incremental morphology variation (IMV) and is defined as follows:

Rinc =

NS∑
i
(∆θ∗i )

nS ×
π
2

(
∆θ∗i ≥ ∆θ∗min

)
, (8)
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where NS is the number of vertices after filtering, nS is the number of vertices on the target surface
region, and ∆θ∗min is the filter threshold based on the instrumental resolution (i.e., 6.5 µm in this study)
to eliminate the non-physical angle differences introduced by the algorithm, as given in Equation (9).

∆θ∗min = 2× arcsin(
√

2× PLmin
2× ri

), (9)

where PLmin is the minimum pixel length (6.5 µm in this study), and ri is the polar radius of the target
point. The value of Rinc varies from 0 to 1, and a larger value denotes greater morphology variation.
Specifically, 0 denotes that no IMV occurs at the corresponding RLS, and 1 depicts an overall angle
variation of π/2 for all the surface points, which, however, cannot be reached for LBS particles due to
the surface continuity.

4.2. Variation of Rinc with SH Decomposition

Since Rinc is estimated by the angle difference between normal vectors of the target sub-surface
and the corresponding preceding sub-surface, it can be utilized to depict the IMV of a given particle at
each RLS and, hence, can act as a morphological gene for the given particle. Different parts of this
gene represent morphology variation at different RLS. Table 2 illustrates the variation of Rinc with
SH decomposition for a sphere, a cube, and two LBS particles. For a sphere, Rinc is equal to 0 at all
RLS because no IMV occurs across different RLS. Unlike the sphere, Rinc values for the cube and two
particles show IMV at all RLS. Since Rinc at SH frequency n = 4 shows the morphology variation from a
sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 is
more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF
for a given particle. Specifically, the cube has large corners which produce large angle differences
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8,
n = 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part
on the morphological gene corresponds to different target RLS with a uniform format of definition
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency,
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any
smaller RLS, as long as particle data provided can meet that resolution.Materials 2020, 13, 3286 11 of 19 
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Table 2. Variation of Rinc with SH decomposition.

Particle n = 4 n = 8 n = 12 n = 15

Sphere
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any 
smaller RLS, as long as particle data provided can meet that resolution.  
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
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IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any 
smaller RLS, as long as particle data provided can meet that resolution.  

Table 2. Variation of Rinc with SH decomposition. 

Partic
le 

n = 4 n = 8 n = 12 n = 15 

Spher
e 

 
Rinc = 0 

 
Rinc = 0 

 
Rinc = 0 

 
Rinc = 0 

Cube 

 
Rinc = 0.2877 

 
Rinc = 0.1608 

 
Rinc = 0.1308 

 
Rinc = 0.0738 

Partic
le 

0006 

 
Rinc = 0.2003 

 
Rinc = 0.1303 

 
Rinc = 0.1051 

 
Rinc = 0.0658 

Partic
le 

0036 

 
Rinc = 0.2839 

 
Rinc = 0.1500 

 
Rinc = 0.1076 

 
Rinc = 0.0748 

 

Rinc = 0

Cube

Materials 2020, 13, 3286 10 of 19 

 

a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any 
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any 
smaller RLS, as long as particle data provided can meet that resolution.  
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any 
smaller RLS, as long as particle data provided can meet that resolution.  
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
IMV needed from a sphere to the target GF. Therefore, Rinc at n = 4 can reflect the irregularity of GF 
for a given particle. Specifically, the cube has large corners which produce large angle differences 
and, hence, the cube has an overall larger Rinc than these two LBS particles. Moreover, Rinc at n = 8, n 
= 12, and n = 15 depict the IMV of LR, 1L-ST, and 2L-ST, respectively. Figure 6 illustrates the 
cumulative distribution of Rinc at different RLS for all the 4155 LBS particles. By using Rinc, each part 
on the morphological gene corresponds to different target RLS with a uniform format of definition 
(Equation (8)). From the figure, the IMV at different RLS decreases with the increasing SH frequency, 
meaning that the IMV at small RLS is lower than that at large RLS, while the overall surface is still 
getting rougher with decreasing RLS. Due to the limitation of CT resolution, the discussion of Rinc is 
limited to n = 15, i.e., the 2L-ST. However, the Rinc proposed can be utilized to represent IMV at any 
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
is more visually irregular than Particle 0006, and it shows a larger Rinc at n = 4 which means a larger 
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a sphere to sub-surface of n = 4, it can be utilized to reflect the IMV of GF. From Table 2, Particle 0036 
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4.3. Estimating Rinc Using Artificial Neural Network (ANN)

To verify the elimination of inter-scale effects, ANN is introduced to correlate Rinc with the
SH-based invariants, based on which the mean impact value (MIV) is then calculated. MIV was first
proposed by Dombi et al. [50] to reflect the variation of weighted matrix in ANN. The MIV of Rinc at
different RLS can reflect the contribution of morphology variation at each RLS to the estimation of Rinc
and, hence, can be utilized to verify the effective elimination of inter-scale effects by Rinc. To calculate
the MIV of Rinc, an ANN model is established with Levenberg–Marquardt (LM) algorithm [51].
The input and output parameters are the second-order norms of SH frequencies of 1 to 15 and Rinc at
different RLS, respectively. The size of the hidden layer is set to be two-thirds of the sum of input and
output parameters [52] to accelerate the training and avoid over-fitting. Table 3 depicts the training
performance of ANN with mean squared error (MSE) and regression R value. As can be seen from
the table, all MSEs are extremely close to 0 while the R values are greater than 0.97, which reflect the
feasibility and accuracy of the ANN model established. In addition, another ANN model is trained
with the same input parameters as but different V/S ratio to the output parameter. Since V/S ratio is one
of the overall shape parameters that can be independently influenced by morphology information at all
RLS, comparisons with MIV results of V/S ratio can further verify the elimination of inter-scale effects.
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Table 3. Training performance of artificial neural network (ANN). MSE—mean squared error.

Data Set Samples MSE (×10−4) R

Training 3323 5.0937 0.9715
Validation 416 4.6397 0.9746

Testing 416 5.2094 0.9709

Based on the ANN model established, each item of the input second-order norms is increased
and decreased by 10% to obtain two outputs, and this procedure is repeated for all the samples.
The difference between the two output datasets obtained is the impact value (IV). Then, the MIV
is calculated by averaging the IV for all samples, as expressed in Equation (10). The absolute MIV
represents the relative significance of independent variables with respect to dependent variables, and a
greater MIV value reflects a higher influence.

MIVXi =
1
n

∣∣∣∣∣∣∣∣
n∑
j

Y(Xi × 110%) −Y(Xi × 90%)

Y(X)

∣∣∣∣∣∣∣∣, (10)

where Xi × 110% means the i-th item of input data increases by 10% while the others remain unchanged,
is the output by ANN, and n is the number of samples.

Figure 7 shows the MIV results of Rinc and V/S ratio. Solid lines in Figure 7a illustrate the Rinc
at different RLS from GF (n = 4) to 2L-ST (n = 15). The abscissa denotes the SH frequencies which
correspond to different RLS, while the ordinate depicts the MIV that can show the significance of each
SH frequency in the estimation of Rinc. As can be seen from the figure, Rinc at different RLS shows a
generally higher level of sensitivity to the corresponding RLS without inter-scale effects from other RLS.
For example, Rinc at n = 4, based on the angle difference between normal vectors of sub-surfaces at n = 0
and n = 4, is highly sensitive to the SH frequency range from n = 2 to n = 4 and, thus, dominates the
GF of the given particle. Similarly, Rinc at n = 8 dominates the LR; Rinc at n = 12 and n = 15 dominate
the 1L-ST and 2L-ST, respectively. Furthermore, it is found that the estimation of Rinc will be slightly
affected by GF, and this influence becomes lower for the reconstructed particle surface with a higher
n value. Since, for a given sand particle, the GF is the same for all reconstructed particles with varying
n values, the GF-related effects can be ignored. The MIVs of V/S ratio in Figure 7b, on the other hand,
show an overall low sensitivity without any dominant RLS, which means that morphology information
on all RLS can contribute to the evaluation of V/S ratio with similar weights. Therefore, by reflecting
the incremental morphology variation at the target RLS without inter-scale effects from other RLS,
the Rinc proposed is very suitable for acting as a morphological gene to represent the multi-scale feature
of particle morphology.
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4.4. Variation of Rinc against Incremental Surface Area

It is interesting to examine the influence of IMV represented by Rinc on the increase of particle surface
area. The rate of the increase of surface area at the target RLS for a given particle can be expressed as follows:

RSA =
SAv − SAp

SAp
, (11)

where SAv and SAp are the surface area of particle at the target RLS and the preceding RLS, respectively.
Figure 8 depicts the relationship of Rinc and RSA at different RLS. It can be seen that Rinc vs. RSA

shows a similar pattern of positive correlation for all RLS, and the degree of data scatter actually
decreases with the decreasing RLS (note the different scales adopted in different sub-figures of Figure 8).
This result clearly suggests that the IMV represented by Rinc is the cause for the increase of particle
surface area. The correlations in Figure 8 can be fitted using Equation (12).

Rinc = α + β× ln(RSA), (12)

where α and β are scale-related parameters, and their values for different RLS are listed in the table of
the corresponding figure. The correlation indices r2 for all RLS are larger than 0.83, which reflects the
feasibility of Equation (12).
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4.5. Variation of Rinc against Traditional Descriptors at Target RLS

To help better understand the descriptor Rinc proposed in this paper, we correlate Rinc with
traditional descriptors at different target RLS, as shown in Figure 9. As can be seen from the figure,
Rinc shows a negative correlation with aspect ratio and sphericity while a positive one with average
texture at the corresponding RLS. Specifically, Rinc at n = 4, as discussed above, reflects the IMV of
GF, and a larger Rinc at n = 4 leads to a smaller aspect ratio. The intercept on the ordinate axis is
around 1 which means that Rinc at n = 4 equal to 0 depicts a sphere. In addition, sphericity shows a
similar variation trend with aspect ratio. This intercept on the ordinate axis is also around 1 which
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depicts that, for a sphere, Rinc = 0 at all RLS. Average textures of both 1L-ST and 2L-ST, on the other
hand, illustrate an opposite variation trend, i.e., increasing with increasing Rinc at the corresponding
RLS. Furthermore, from Figure 9b, roundness is poorly correlated to Rinc at n = 8. This is because
the estimation of roundness is based on the curvature radius of all corners, as well as the maximum
inscribed circle [20,53,54] and, hence, roundness focuses on the convex part for a given particle.
Unlike roundness, Rinc at n = 8 reflects the IMV from GF to LR, and it contains morphology variation
of both convex and concave parts for a given particle.
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Obviously, Rinc (Equation (8)) can be utilized to evaluate morphology variation for any local 
region of the particle surface at a target RLS. This value represents the IMV at an individual point i 
when nS = 1, while it represents the IMV of the whole particle when the target surface region is equal 
to the entire particle surface.  

Three local points P1, P2, and P3 are selected randomly from a given particle surface, and eight 
parts of the surface are obtained by dividing the given particle with the three Cartesian coordination 
planes across the particle center (i.e., the XOY, YOZ, and XOZ planes), as shown in Figure 10, are 
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4.6. Surface Roughness Heterogeneity by Rinc

Obviously, Rinc (Equation (8)) can be utilized to evaluate morphology variation for any local
region of the particle surface at a target RLS. This value represents the IMV at an individual point i
when nS = 1, while it represents the IMV of the whole particle when the target surface region is equal
to the entire particle surface.

Three local points P1, P2, and P3 are selected randomly from a given particle surface, and eight
parts of the surface are obtained by dividing the given particle with the three Cartesian coordination
planes across the particle center (i.e., the XOY, YOZ, and XOZ planes), as shown in Figure 10, are used
to illustrate the surface roughness heterogeneity. Table 4 lists the surface roughness heterogeneity
quantified by different Rinc values at different RLS. For the whole particle, the Rinc values are 0.2003 for
GF, 0.1303 for LR, and 0.1051 and 0.0658 for 1L-ST and 2L-ST. However, the three local points show
different Rinc values at all RLS, reflecting the roughness heterogeneity of particle morphology. A similar
phenomenon can be seen from the Rinc of all the local surfaces at different RLS. Specifically, the local
surface S1 shows a higher Rinc than S2 for the GF, LR, and 2L-ST, but a lower value for the 1L-ST.
This observation implies that the Rinc at different RLS are independent of each other, meaning that a
given surface may be smooth at one RLS but rough at other RLS.
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Table 4. Surface roughness anisotropy by Rinc for a given particle. 

 Rinc n = 4 (GF) Rinc n = 8 (LR) Rinc n = 12 (1L-ST) Rinc n = 15 (2L-ST) 
Whole Particle 0.2003 0.1303 0.1051 0.0658 

Local points 
P1 0.1522 0.0878 0.1425 0.1251 
P2 0.1683 0.1852 0.1444 0.1093 
P3 0.3550 0 0.0526 0.1033 

Local surfaces 

S1 0.2051 0.1163 0.0964 0.0806 
S2 0.1803 0.1079 0.1063 0.0692 
S3 0.1713 0.1203 0.1580 0.0726 
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Figure 10. Visualization of local points and surfaces.

Table 4. Surface roughness anisotropy by Rinc for a given particle.

Rinc n = 4 (GF) Rinc n = 8 (LR) Rinc n = 12 (1L-ST) Rinc n = 15 (2L-ST)

Whole Particle 0.2003 0.1303 0.1051 0.0658

Local points
P1 0.1522 0.0878 0.1425 0.1251
P2 0.1683 0.1852 0.1444 0.1093
P3 0.3550 0 0.0526 0.1033

Local surfaces

S1 0.2051 0.1163 0.0964 0.0806
S2 0.1803 0.1079 0.1063 0.0692
S3 0.1713 0.1203 0.1580 0.0726
S4 0.1786 0.1235 0.0725 0.0625
S5 0.2988 0.1336 0.0821 0.0675
S6 0.1954 0.1171 0.0945 0.0583
S7 0.1427 0.1683 0.1451 0.0686
S8 0.2416 0.1567 0.0838 0.0477

5. Conclusions

A combined X-ray µCT and SHA technique was utilized to decompose the given particle surface
into a series of sub-surfaces at different RLS. A total number of 4155 LBS particles were used to create a
large dataset of particle surfaces with different target RLS.
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Four groups of traditional morphology descriptors were selected at different RLS to investigate the
effect of SH decomposition and the inter-scale effect. It was found that the inter-scale effect, either from
large scale or from small scale, affects the estimation of particle morphology at all RLS.

To effectively eliminate the inter-scale effect and precisely represent the morphology variation of a
given particle at different RLS, a novel spherical harmonic-based multi-scale morphology descriptor
Rinc was proposed. It is concluded that, firstly, by investigating the variation of Rinc against RLS,
the particle surface is, in general, rougher with decreasing RLS, but the IMV at each RLS shows a
decreasing trend. Secondly, ANN-based MIVs of Rinc at different RLS are calculated and the results
show a general high level of sensitivity to the corresponding RLS without inter-scale effects from
other RLS, which proves the effective elimination of the inter-scale effect. Thirdly, by introducing
the increase rate of surface area RSA, the Rinc proposed shows a positive correlation with RSA at all
RLS, and it can be expressed by Rinc = α + β× ln(RSA), where α and β are scale-related parameters.
Fourthly, by correlating Rinc with traditional descriptors at target RLS, Rinc at the corresponding RLS
can be utilized as an alternative method to quantify the irregularity and roughness for a given particle.
Lastly, the surface roughness heterogeneity was investigated using Rinc, and it was found that the
surface morphology of a given particle shows different IMV in different sections, as well as different
variation trends at different RLS.

Therefore, with the merits of (1) having a uniform format of definition across all RLS, (2) effectively
eliminating the inter-scale effects, and (3) reflecting the surface roughness heterogeneity, the Rinc
proposed in this paper is very suitable for acting as a morphological gene to represent the multi-scale
feature of particle morphology.
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Abbreviations

ANN Artificial neural network
CT Computed tomography
GF General form
IMV Incremental morphology variation
LBS Leighton Buzzard Sand
LOESS locally weighted regression smoothing
LR Local roundness
MIV Mean impact value
RLS Relative length scale
SH Spherical harmonics
SHA Spherical harmonic analysis
SSRF Shanghai Synchrotron Radiation Facility
ST Surface texture
V/S ratio Ratio of volume to surface area
µCT Micro-tomography
1L-ST First-level surface texture
2L-ST Second-level surface texture
3D Three-dimensional
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