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ABSTRACT

Bradyarrhythmia is a common heart rhythm abnormality comprising number of diseases and is asso-
ciated with decreased heart rate due to the failure of action potential generation and propagation at the
sinus node. Permanent pacemaker implantation is often used therapeutically to compensate for
decreased heart rate and cardiac output. The vast majority of bradyarrhythmia cases are attributable
either to aging or to structural abnormalities of the cardiac conduction system, caused by underlying
structural heart disease. However, there is a subset of bradyarrhythmia primarily caused by genetic
defects in the absence of aging or underlying structural heart disease. These include several genes that
play principal roles in cardiac electrophysiology, heart development, cardioprotection, and the structural
integrity of the membrane and sarcomere. Recent advances in the functional analysis of mutations using
a heterologous expression system and genetically engineered animal models have provided significant
insights into the underlying molecular mechanisms responsible for inherited arrhythmia. In this review,
current understandings of the genetic and molecular basis of inherited bradyarrhythmia are presented.
© 2015 Japanese Heart Rhythm Society. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bradyarrhythmia is a serious electrical disorder of the heart
with the potential to be life threating. The condition is caused by
an electrical dissociation in the cardiac conduction system (CCS)
comprising the sinus bradycardia, the sinoatrial (SA) exit block and
the atrioventricular block (AVB). It often manifests as abnormally
suppressed cardiac output in affected individuals, requiring per-
manent pacemaker implantation in order to compensate for
decreased heart rate. The CCS is equipped with a sophisticated
histological structure and specialized cellular function in order to
maintain proper impulse generation and propagation. The
mechanical burden and scars resulting from structural heart dis-
ease are a major cause of bradyarrhythmia. Accumulation of con-
nective tissue such as collagen is almost always associated with
progression of heart failure, as it promotes dissociation between
electrically coupled cardiomyocytes [1]. Collagen deposition is
associated with aging and underlying structural heart disease,
reflected by the increased incidence and prevalence of bradyar-
rhythmia associated with these factors [1,2]. In the absence of
underlying structural disease or aging, bradyarrhythmia may occur
primarily due to genetic defects. In this review, we aim to describe
the current understanding of inherited bradyarrhythmia with a
focus on diverse genetic backgrounds and molecular physiology
(Fig. 1 and Table 1).

2. Modulation mechanisms of heart rate and genetic exacer-
bation factors: physiological regulation of sinus rhythm

In the CCS, the sinoatrial node (SAN) is the primary pacemaker
component and functions as a resource for automaticity; that is,
spontaneous depolarization with regular intervals. Histologically,
the SAN is intramurally embedded at the junction of the right
atrium and the superior vena cava and lies along the crista ter-
minalis [3]. The SAN displays heterogeneous cellular morphology,
action potential configuration, and electrophysiological character-
istics [4]. The SAN’s major pacemaker site is situated at its center,
however; this site may shift peripherally depending on various
interventional factors such as electrolyte concentrations, auto-
nomic nervous stimuli, and temperature [3]. The underlying
mechanisms of this pacemaker shift remain undetermined, how-
ever; the pacemaker tends to shift to the site where electrical
activity is least suppressed by extrinsic factors [3]. The molecular
mechanisms underlying myocyte firing in the central SAN are
characterized by the SAN’s unique gene expression profile, with
minimal expression of KCNJ2 (inwardly rectifying K channel,
Kir2.1) and SCN5A (cardiac Na channel, Nav1l.5) and higher
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Fig. 1. Molecular modules involved in inherited bradyarrhythmia. Abnormalities in
multiple pathways involving membrane ion channels, SR ion channels, sarcomere
components, cardiac hormones, and membrane anchor proteins are associated
with inherited bradyarrhythmia.

expression of HCN4 (the pacemaker channel). The absence of
KCNJ2 expression allows the resting membrane potential depo-
larized to enable spontaneous depolarization, while the absence of
SCN5A expression can prevent rapid upstroke of action potential.
Abundant expression of the HCN4 pacemaker channel promotes
spontaneous, slow depolarization in response to phase 4 hyper-
polarization. The peripheral SAN, on the other hand, partially
shares the gene expression profile and electrophysiological char-
acteristics of the atrial myocytes [3]. The major role of excitation in
the peripheral SAN is the rapid transmission of the sinus impulse
to surrounding atrial myocytes. An abundant expression of SCN5A
causes fast upstroke of action potential in phase 0 and this gives
rise to rapid electrical conduction in the peripheral SAN. Thus,
loss-of-function mutations in SCN5A could result in SA exit block,
an electrical conduction blockade between the central SAN and
surrounding atrial myocytes [5].

The mechanism of cyclic activation in voltage-gated ion chan-
nels involves the action of the pacemaker current on the cell
membrane and is known as a membrane clock. Recently, a grow-
ing body of evidence has implicated the involvement of additional
complementary mechanisms in this process, in particular, the
rhythmic spontaneous release of Ca2™ by the sarcoplasmic reti-
culum (SR), which is referred to as a calcium clock. The calcium
clock functions collaboratively with the membrane clock to form a
unified, automatic system, known as a coupled-clock pacemaker
system [6]. Genetic defects in the genes involved in membrane and
calcium clocks can potentially cause SA disorders.

2.1. HCN4

In mammals, the hyperpolarized-activated cyclic nucleotide-
gated channel (HCN) family is comprised of four distinct genes,
HCNT1, 2, 3 and 4; that are expressed in a wide variety of excitable
cells (HCN4 is predominantly expressed in the central SAN) [7].
HCN4 slowly becomes permeable for K* and Na* in response to
hyperpolarization, thus giving rise to slow diastolic depolarization
resulting in automaticity [7]. Since the first description of an HCN4
mutation in familial sick sinus syndrome (SSS) [8], twenty-two
further mutations have been reported. Patch-clamp analysis of
these mutations using a heterologous expression system with
Xenopus oocytes or cultured cell lines have shown that reduced
peak current densities or a hyperpolarizing shift of the voltage-
dependence of activation are the major causes of disease [9,10].
Indeed, these loss-of-function properties decrease the slope of
diastolic depolarization, resulting in sinus bradycardia. Some HCN4
mutations disrupt the cyclic-nucleotide binding domain (cNBD) to
which cyclic nucleotide cAMP and cGMP bind directly in response
to p-adrenergic stimuli [8,9,11]. However, the molecular
mechanisms of HCN4 mutations are not yet fully elucidated; for
example, G482R has been reported in multiple families associated
with sinus bradycardia and left ventricular noncompaction cardi-
omyopathy [7,12]; however, the molecular mechanism underlying
left ventricular noncompaction remains unknown.

2.2. SCN5A

The cardiac Na channel o subunit Nav1.5 encoded by SCN5A
is associated with auxiliary B-subunits NavB1 and Navfp3 [13].
Activation of the sodium channel initiates a rapid influx of Na*,
giving rise to the phase 0 upstroke of cardiac action potential,
which in turn triggers depolarization of neighboring cardio-
myocytes [13]. As this Na* influx determines the slope and
amplitude of phase 0, mutations in SCN5A may affect cardiac
conduction velocity. The genetic defects in SCN5A are associated
with multiple diverse inherited arrhythmias referred to as car-
diac sodium channelopathy and include type-3 long QT
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Table 1
Genes responsible for inherited bradyarrhythmia.

Gene name Protein name Inheritance Atrial phenotypes Conduction Ventricle Additional phenotypes Function
mode diseases phenotypes
Ion channels
HCN4 HCN4 AD Sinus bradycardia LVNC, BrS Loss
SCN5A Nav15 AD, AR Sinoatrial block, AF, PCCD, AVB LQT3, BrS, DCM Loss
Atrial standstill
SCN1I0OA  Navl.8 AD? AF? ? BrS? Association with conduction parameters ?
in ECG, episodic pain syndrome
SCN1B Navp1 AD BBB BrS Epilepsy Loss
KCNJ2 Kir2.1 AD LQT7(ATS), SQT, Periodic paralysis, dysmorphic features
BrS
CACNA1D Cavl3 AD Sinus bradycardia Congenital deafness Loss
KCNK17  TASK-4 AD PCCD, AVB, BBB  IVF? Gain
TRPM4 TRPM4 AD PCCD, AVB, BBB  BrS Gain
Ca%* handling proteins on the sarcoplasmic reticulum
RYR2 Ryanodine receptor AD Sinus bradycardia CPVT, ARVC Loss
2
CASQ2 Calsequestrin AR Sinus bradycardia CPVT Loss
Gap junction channel
GJA5 Connexin40 AD PCCD, AVB, BBB Loss
Cardiac hormone
NPPA ANP AD Atrial standstill, Bia- Loss
trial dilatation
Transcription factors
TBX5 Tbx5 AD ASD, AF AVB VSD Hand anomalies (heart-hand syndrome) Loss/gain
Nuclear membrane component
LMNA Lamin A/C AD PCCD, AVB DCM Laminopathies including muscular dys- Loss
trophy and Hutchinson-Gilford progeria
syndrome
Membrane adaptor protein
ANK2 Ankyrin-B AD Sinus bradycardia PCCD LQT4 Loss
Sarcomere protein
MYH6 Atrial myosin heavy AD Sinus bradycardia, AF, HCM, DCM Loss

chain ASD

AD, autosomal dominant; AR, autosomal recessive; LQT, long QT; AVB, atrioventricular block; BrS, Brugada syndrome; BBB, bundle branch block; LVNC, left ventricular non-
compaction; CPVT, catecholaminergic ventricular tachycardia; ATS, Andersen-Tawil syndrome; ASD, atrial septal defect; VSD, ventricular septal defect; PCCD, progressive
cardiac conduction defect; AF, atrial fibrillation; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; IVF, idiopathic ventricular fibrillation.

syndrome, Brugada syndrome, SSS, atrial fibrillation (AF), pro-
gressive cardiac conduction defect (PCCD), dilated cardiomyo-
pathy (DCM) and sudden infant death syndrome [13]. Patients
with SCN5A mutations often display mixed arrhythmic pheno-
types of cardiac sodium channelopathy, known as overlap syn-
drome [14]. As mentioned above, the molecular basis for SSS
resulting from SCN5A mutations is an exit block at the periph-
eral SAN, caused by decreased conduction velocity from the
central SAN [5]. Likewise, impaired sodium channel function
may cause a conduction block within the CCS, referred to as AVB
or bundle branch block (BBB). The presence of SCN5A mutations
may distinctly affect the clinical outcomes associated with
several arrhythmias. In Brugada syndrome, SCN5A mutations are
associated with prolonged interatrial conduction times and AF
induction; however, they do not appear to be related to spon-
taneous AF episodes, among other clinical variables [15]. In SSS,
SCN5A mutation carriers exhibit significantly early onset as well
as profound male predominance, thus resembling Brugada
syndrome with a considerably earlier age of onset [16].

2.3. Mutations in genes responsible for calcium regulation

The third gene responsible for SSS is ANK2, which encodes the
anchor protein ankyrin-B, thus linking integral membrane proteins
to the underlying spectrin-actin cytoskeleton of cardiomyocytes
[17]. Genetically engineered Ank2 heterozygote knockout mice
develop sinus bradycardia and exercise-induced aberrant ven-
tricular tachycardia due to a Ca®?*-handling abnormality [18].
Immunohistochemical analysis of cardiomyocytes from these mice
showed mislocalization of the Na*/Ca®?* exchanger, Na* /K-
ATPase, and the IP3 receptor [19,20]. Biophysical analysis of SAN
cells using a patch-clamp identified reduced currents in the Na™*/
Ca%* exchanger and L-type Ca®?* channels [17]. These observa-
tions suggest that human ANK2 mutations may predispose indi-
viduals to SAN dysfunction as a result of the biophysical dis-
turbance of multiple proteins involved in Ca?*-handling.

The Cav voltage-gated Ca?* channels, Cavl.2 and Cav1.3,
mediate L-type Ca?* current essential for normal cardiac pace-
maker activity and conduction in both the SAN and the atrioven-
tricular node. Cav1.3 activates more rapidly and under more
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hyperpolarized membrane potentials when compared with Cav1.2
[21]. These properties allow Cavl3 to contribute more sig-
nificantly to the diastolic depolarization of SAN cells. Loss-of-
function mutations in the CACNA1D encoding Cav1.3 cause SAN
dysfunction with congenital deafness, attributable to the loss of
rapid activation kinetics and negative activation thresholds of
Cav1.3 in humans [22], which is consistent with the phenotypes
observed in mice with genetic inactivation of CACNAID [23].
Genes responsible for sinus bradycardia via abnormal Ca2*
regulation include the ryanodine receptor RYR2 and the calse-
questrin CASQ2, both of which are known to be causative genes for
catecholaminergic polymorphic ventricular tachycardia (CPVT)
[24-26]. CPVT-related mutations in these genes affect Ca?* reg-
ulation by disrupting its storage and release from the SR during
periods of exercise or emotional stress, resulting in sinus brady-
cardia and fatal ventricular tachyarrhythmia [27]. Postma et al.
found a markedly lower resting heart rate in CPVT probands and
their family members with RYR2 mutations when compared with
those of non-carrier family members [25]. They further reported
that CPVT patients with CASQ2 mutations develop sinus brady-
cardia, consistent with observations in Casq2 homozygote knock-
out mice [24]. The identification of gene mutations contributing to
Ca%™* release and storage in the SR served to reinforce the critical
role of calcium clocks in the maintenance of normal sinus rhythm.

3. Genetic basis for atrial standstill
3.1. SCN5A

SCN5A is abundantly expressed throughout the ventricular
working myocardium and the CCS, as well as in the atrium [13].
Certain SCN5A mutations cause conduction block in the entire
atrium, leading to atrial standstill and SSS [16,28]. A retrospective
study of patients who experienced cardiac device-lead capture
issues, including atrial standstill, showed a high prevalence of loss-
of-function SCN5A mutations [29].

3.2. NPPA

Mutations in NPPA, the gene encoding atrial natriuretic peptide
(ANP), are associated with certain atrial arrhythmias [30,31]. A
deletion mutation in NPPA has been identified in an AF family
spanning three generations. Affected members exhibited a tran-
sition from paroxysmal to chronic AF accompanied by atrial arrest
in their forties [30]. Another mutation, R150Q, has previously been
described in six AF families and is characterized by progressive,
extreme biatrial dilatation and atrial standstill [31]. ANP is a cir-
culating hormone that, via stimulation of the intracellular second
messenger cGMP, plays a primary physiological role in the reg-
ulation of intravascular blood volume and vascular tone by means
of natriuresis, diuresis, and vasodilatation. Moreover, cGMP sig-
naling triggered by ANP has been shown to shorten both atrial
conduction times and the effective refractory period, thus pro-
viding an arrhythmia substrate by direct modulation of cardiac ion
channel properties [32,33]. However, the electrophysiological
effect of these NPPA mutations on the cardiomyocytes themselves
remains elusive.

4. Genetic basis of conduction block
4.1. LMNA

The LMNA gene encodes the ubiquitous inner-nuclear mem-
brane protein lamin A/C, responsible for maintaining the structural

integrity and stability of the nuclear envelope. LMNA is further
involved in various nuclear functions such as gene replication and
chromatin organization [34]. Mutations in LMNA result in lami-
nopathy, a wide spectrum of phenotypes with at least eleven
distinct diseases [34]. Of these, progressive conduction block with
DCM is the most frequently described cardiac phenotype [35].
LMNA-related DCM leads to severe and progressive damage to the
heart, resulting in a higher risk of sudden cardiac death [36]. Male
carriers have a worse prognosis due to the high prevalence of
malignant ventricular arrhythmias and end-stage heart failure
[37,38]. Knock-in mice for H222P-LMNA display male pre-
dominance for high mortality and progression of heart failure and
provide a satisfactory mouse model for laminopathy [39].

4.2. Mutations in sodium channel complex genes

SCN1B mutations have been reported in patients with cardiac
conduction abnormalities associated with Brugada syndrome [40].
SCN1B encodes the auxiliary Na* channel subunit Navp1 that
increases the current density of Nav1.5 [13].

A new gene responsible for cardiac conduction is SCN10A that
encodes the neuronal Na* channel Nav1.8. Several genome-wide
association studies (GWAS) have demonstrated that variation of
SCN10A has a significant impact on resting heart rate, PR duration,
and QRS intervals in the general population [41] despite the
extremely low level of SCN10A expression in the heart. The precise
mechanisms underlying SCN10A variation modulation of cardiac
conduction properties and arrhythmia triggers, such as BrS and AF,
are not fully elucidated. A possibility is that mediation could be
directed by the activities of the autonomic nervous system, in
which SCN10A is predominantly expressed [42-44].

4.3. GJA5 (Cx40)

Additional electrical modulators for rapid electrical propaga-
tion in the CCS are gap junction channels formed by connexins
(Cx) [45]. In the heart, three major Cx subtypes are expressed;
namely Cx40, Cx43, and Cx45; that together form a hexameric Cx
complex (connexon) at the cell membrane [45]. Gap junction
channels are composed of two connexons between two adjacent
cardiomyocytes and allow for rapid electrical conduction by pas-
sing signal molecules and ions. Of the three Cx subtypes, the high
conductance Cx40 is exclusively expressed in the atrium and CCS
[45]. A GJA5 gene mutation, Q58L, has been reported to be asso-
ciated with progressive familial conduction block and sudden
cardiac death [46]. Heterologously expressed mutant Cx40 shows
a profound reduction in gap junction conductance, as well as
defective formation of membrane plaques. When the structural
analysis of Cx26 is compared with Cx40, residue Q58 of Cx40 is
expected to form symmetric hydrogen bonds to the same residue
of the opposite monomer in parallel [47]. Therefore, Q58L-Cx40 in
all likelihood has a structural abnormality that prevents assembly
of two Cx40 hexamers.

4.4. KCNjJ2

KCNJ2 is the gene responsible for encoding the inward rectifier
potassium channel Kir2.1 and is the major regulator of excitability
and resting membrane potential in most cardiomyocytes, with the
exception of nodal cells [48]. To date, over 40 loss-of-function
mutations in KCNJ2 have been identified in approximately 70% of
patients with Andersen-Tawil syndrome, a condition diagnosed
using the clinical triad of periodic paralysis, dysmorphic features,
and ventricular arrhythmia [49]. However, KCNJ2 mutation carriers
do not always present with the clinical triad [50] and conduction
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abnormalities, such as first-degree AVB and BBB, have been
documented in 23% of cases [51].

4.5. TRPM4

TRPM4 encodes the Ca®*-activated transient receptor potential
cation channel subfamily M member 4 and is preferentially
expressed in Purkinje fibers and the right ventricle [52]. The first
responsible loci for progressive familial conduction block was
found in 19q13 [53] and was identified as TRPM4 [54]. Further
genetic screening of various conduction disturbances has shown a
high prevalence of TRPM4 mutations in the right BBB (26%; 5 of 19
probands) and AVB (12%; 3 of 26 probands) [55]. Mutations in
TRPM4 have been further identified in cases of Brugada syndrome
(4.4%; 11 in 248 probands) [56].

4.6. KCNK17

A mutation in the KCNK17 gene encoding the pH-sensitive
cardiac two-pore domain potassium channel (K2P) TASK-4 has
been identified as a contributor to progressive and severe cardiac
conduction disorder combined with idiopathic ventricular fibril-
lation by whole exome sequencing [57]. Mutant TASK-4 channels
generated a three-fold increase in currents, while surface expres-
sion unchanged. Overexpression of the mutant TASK-4 leads to
hyperpolarization and strong inhibition of the upstroke velocity in
the spontaneously beating cardiomyocyte cell line HL-1. Strong
expression of KCNK17 has been observed in human Purkinje cells.
These results support the likelihood that TASK-4 is functionally
relevant for cardiac conduction disorders [57]. However, no spe-
cific TASK-4 blockers are available and mice do not functionally
express the KCNK17 gene; thus, little is known regarding the
function and role of TASK-4 in the heart.

5. Genes involved in cardiac development and bradycardia

Development of the CCS is a complex biological process with
the potential to be wrought with problems. Several transcription
factors, including homeodomain proteins and T-box proteins, are
essential for CCS morphogenesis and the activation or repression
of key regulatory genes [58]. Of the cardiogenic transcription fac-
tor genes; GATA4, NKX2-5, TBX3, and TBX5 play key roles in the
development of the primary and second heart fields, while
mutation results in congenital heart diseases such as patent fora-
men ovale, itself often associated with conduction disorders [59].
Holt-Oram syndrome is an inherited, multi-organ anomaly caused
by TBX5 mutation [60]. As TBX5 promotes the expression of several
genes involved in the development of the upper limbs, varying
degrees of upper limb abnormalities have been recognized in
Holt-Oram syndrome cases. Approximately 75% of probands have
cardiac anomalies, whereas about 40% of affected family members
present only with ECG abnormalities and without heart mal-
formations [61]. Common ECG abnormalities include first degree
AVB and bradycardia [61], which is in line with the preferential
expression of TBX5 in the endocardial cushion region during the
developmental stage. The vast majority of TBX5 mutations in Holt-
Oram syndrome are truncation mutations that often delete the T-
box domain and result in haplo-insufficiency of T-box activity. In
contrast, most missense mutations result in less severe anomalies
as the full protein structure is well preserved. A missense muta-
tion, G125R, has been identified in a family suffering from faint
digit abnormalities and a higher prevalence of AF without heart
malformation [62]. AF is believed to be associated with the
increased expression of NPPA, GJA5, KCNJ2, and TBX3 [62].

6. Advanced genetic and genomic technologies

Many of the causative genes described here were identified
using a candidate gene approach, in which genes are selected
based on findings of preceding genetic linkage analysis or mole-
cular pathway information [63]. Considering that the human
genome encodes at least 20,000 protein-coding genes, the candi-
date gene approach focuses only on a small fraction of the genome
with the remainder unanalyzed. Genome-wide association studies
(GWAS) using single nucleotide polymorphisms (SNPs) can sig-
nificantly expedite linkage analysis by narrowing the regions of
interest for further directed sequencing. GWAS has been used in
the cardiac electrophysiological field and has resulted in the
identification of several new loci involved in long QT syndrome, a
key role for calcium signaling pathways in myocardial repolar-
ization [64], and many other ECG parameters [41,65].

GWAS on heart rate revealed the genetic heterogeneity of heart
rate regulation and 21 loci were identified; including HCN4, gap
junction gene GJA1, and the atrial a-myosin heavy chain (a-MHC)
gene MYH6 [41]. A rare MYHG6 variant, R721W, that predisposes
individuals to SSS susceptibility has been previously identified
[66]; however, the disease-causing MYH6 mutations for familial
SSS and their underlying mechanisms remain unknown. We
screened nine genotype-negative probands with SSS families for
mutations in MYH6 and identified an in-frame 3-bp deletion that
was predicted to delete one residue (delE933) at the highly con-
served coiled-coil structure within the binding motif of myosin-
binding protein C in one patient [66]. Irregular fluorescent
speckles retained in the cytoplasm with substantially disrupted
sarcomere striation have been observed in neonatal rat cardio-
myocytes transfected with a-MHC mutants carrying delE933 or
R721W. In addition to sarcomere impairments, delE933 o-MHC
exhibited electrophysiological abnormalities both in vitro and
in vivo. The atrial cardiomyocyte cell line HL-1 stably expressing
delE933 a-MHC showed a significantly slower conduction velocity
on multielectrode array when compared with those of wild-type
a-MHC or control plasmid transfected cells. Furthermore, targeted
morpholino knockdown of MYH6 in zebrafish resulted in sig-
nificantly reduced heart rate that could be rescued by co-
expressed wild-type human a-MHC and not by delE933 a-MHC.
These data reinforces the relevance of MYH6 in sinus node func-
tion and suggests that structural damage to the sarcomere and
functional impairment of atrial action potential propagation may
underlie familial SSS with MYH6 mutations [66].

7. Conclusions

It is now clear that a number of genes are involved in inherited
bradyarrhythmia. Recent genetic studies have demonstrated that
inherited arrhythmia is attributable to many genes with diverse
functions. While the precise underlying mechanisms remain to be
elucidated; these genetic defects may disrupt important cardiac
functions including electrophysiological properties, development,
cardioprotection, and the structural integrity of the membrane and
sarcomere, ultimately leading to bradyarrhythmia. However, there
are a large number of patients suffering from bradyarrhythmia
whose etiologies remain unknown. As we have recently identified
a novel MYH6 mutation based on the most advanced genomic
findings using GWAS to investigate SSS [66], new technologies
such as next generation sequencing may provide the opportunity
to identify new genes for inherited bradyarrhythmia as well as
novel insights into the molecular mechanisms behind cardiac
rhythm regulation.
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