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Summary
Whole-genome sequencing (WGS) and whole-exome sequencing studies have become increasingly available and are being used to iden-

tify rare genetic variants associated with health and disease outcomes. Investigators routinely use mixed models to account for genetic

relatedness or other clustering variables (e.g., family or household) when testing genetic associations. However, no existing tests of the

association of a rare variant with a binary outcome in the presence of correlated data control the type 1 error where there are (1) few

individuals harboring the rare allele, (2) a small proportion of cases relative to controls, and (3) covariates to adjust for. Here, we address

all three issues in developing a framework for testing rare variant association with a binary trait in individuals harboring at least one risk

allele. In this framework, we estimate outcome probabilities under the null hypothesis and then use them, within the individuals with at

least one risk allele, to test variant associations. We extend the BinomiRare test, which was previously proposed for independent obser-

vations, and develop the Conway-Maxwell-Poisson (CMP) test and study their properties in simulations. We show that the BinomiRare

test always controls the type 1 error, while the CMP test sometimes does not. We then use the BinomiRare test to test the association of

rare genetic variants in target genes with small-vessel disease (SVD) stroke, short sleep, and venous thromboembolism (VTE), in whole-

genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program.
Introduction

Whole-genome sequencing (WGS) and whole-exome

sequencing studies are becoming increasingly available to

public health researchers, for example, from the National

Heart, Lung, and Blood Institute (NHLBI) Trans-Omics

for Precision Medicine (TOPMed) program,1 National Hu-
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to assess pathogenicity in large population-based studies of

rare variant alleles reported from small family-based

studies. For example, Amininejad et al.3 studied the associ-

ation of genetic variants within genes associated with

monogenic immunodeficiency disorders with Crohn dis-

ease. Wright et al.4 assessed the pathogenicity and pene-

trance of rare variants identified in clinical studies in the

population-based UK Biobank. Tuijnenburg et al.5 studied

rare genetic variants within NGKB1 for association with

primary immunodeficiency disease. Do et al.6 studied risk

of myocardial infarction in individuals with rare LDLR

and APOA5 alleles. Kendall et al.7 studied cognitive out-

comes in individuals with rare copy-number variants.

These studies demonstrate that there is an interest in

testing single rare genetic variant associations with a

wide range of health outcomes, including binary outcomes

such as disease or affection status.

Testing rare variant associations with binary traits is

challenging. It was previously shown that likelihood-based

tests such as the Wald, Score, and likelihood ratio tests

poorly control the type 1 error when testing for rare variant

associations with a binary trait.8,9 The Score test perfor-

mance depends on the case-control ratio, and for rare var-

iants, even a small imbalance causes ‘‘inflation’’ (i.e., too

many false-positive results). A few approaches have been

used previously to study rare variant associations in a set

of unrelated individuals. Amininejad et al.3 used a permu-

tation approach to test for association of rare genetic vari-

ants with Crohn disease. Wright et al.4 used Fisher’s exact

test. While it is possible to adjust for covariates in the per-

mutation approach and when using Fisher’s exact test to

some extent through stratification,10 they do not have

the full flexibility of covariate adjustment of a generalized

linear model (i.e., they still require the identification of

distinct groups in which no additional adjustment is

required). Further, permutation tests may also be computa-

tionally intensive if low p values are desired, because the

number of required permutations may be large, although

there are ways to reduce this computational burden.10

Alternatively, Tuijnenburg et al.5 used amethod called Bev-

iMed,11 implementing a Bayesian model to estimate poste-

rior disease probabilities. The BinomiRare test has also

been proposed as a powerful method to test for rare variant

associations that can account for covariates.9 The Bino-

miRare test uses standard methods to compute the disease

probabilities in the entire dataset, under the null hypothe-

sis of no association between a specific genetic variant and

the binary outcome. Then, for each specific genetic

variant, it uses the estimated probabilities in individuals

harboring at least one copy of the rare variant to test the

hypothesis that the disease probabilities under the null

are the true outcome probabilities in these individuals.

The null hypothesis is rejected if the number of individuals

with both the rare variant and the outcome is inconsistent

with their outcome probabilities. However, the previously

published version of this method assumed the sample con-

tains only unrelated individuals. Currently, there is no sin-
2 Human Genetics and Genomics Advances 2, 100040, July 8, 2021
gle-variant test that is generally appropriate for testing rare

variants when individuals are correlated (e.g., due to

known or cryptic genetic relatedness). Notably, the saddle

point approximation to compute p values (henceforth

SPA12) was first developed to improve the calibration of

the Score test when there is case-control imbalance and

was then extended in the SAIGE framework for the settings

where related individuals are used.13 However, it does not

reliably control the type I error rate when the number of

individuals harboring the rare variant is very small (i.e.,

tens of individuals14). Therefore, there is a need for a statis-

tical test that is well-calibrated when the number of indi-

viduals with the rare allele is low, individuals are poten-

tially related, and there is case-control imbalance.

The previously published version of the BinomiRare

test14 is useful in the presence of case-control imbalance,

allows for covariate adjustment, controls the type I error

rate for any number of individuals with the rare allele,

and can also be used when combining heterogeneous

studies, and here we expand its framework for testing

rare variant associations when study individuals are corre-

lated. We developed two tests: first, we extended the Bino-

miRare test to the mixed models setting by applying it on

conditional probabilities computed with a mixed model,

rather than on marginal probabilities. Second, we devel-

oped the Conway-Maxwell-Poisson (CMP) test, which fol-

lows the same framework by using estimated (conditional)

disease probabilities like the BinomiRare. For a given rare

variant it uses the estimated disease probabilities in indi-

viduals with the rare allele to fit the parameters of the

CMP distribution, under the null. It then tests whether

the observed number of individuals with both one or

more copies of the rare allele and the outcome is consistent

with this distribution. We study these tests using synthetic

simulations with varying outcome probabilities, variant

allele frequencies, and strengths of correlation between

individuals due to genetic relatedness. We apply the

BinomiRare test to test rare variant associations in

known disease-causing genes for specific disorders: the

NOTCH3 gene and small vessel disease (SVD) ischemic

stroke, the DEC2 (also known as BHLHE41) gene and short

sleep, and the F5 gene and venous thromboembolism

(VTE).
Material and methods

Statistical approach
LetDi be an indicator of the disease, or another binary outcome, of

participant i, with value 1 if the person is affected and 0 otherwise,

where i ¼ 1; .; n and the n individuals may be correlated. Let xi

be a p31 vector of covariate values for the ith participant, and gi
be their count of minor alleles for a specified genetic variant. Un-

der the logistic disease model for correlated data:

logit
�
pi
�¼xT

i aþ gibþ bi; i ¼ 1;.; n

with pi ¼ PrðDi ¼ 1jxi; gi; biÞ being the conditional outcome prob-

ability in the sample (regardless of the population probability),



Figure 1. Step 1 of testing genetic asso-
ciation using the proposed framework
A null model of association between
the binary outcomes and covariates of
interest is fitted, accounting for genetic
relationship. Then, estimated conditional
outcome probabilities are extracted to be
used in the testing step.
and bi is the ith entry of the vector

b ¼ ðb1;.; bnÞT � Nð0; PK
k¼1

s2kVk Þ of correlated random effects

with possibly K variance components s2k ; k ¼ 1; .; K and Vk

modeling the correlation structure corresponding to a particular

source of correlation. While the methods proposed here can be

applied for an arbitrary KR1, we simplify presentation by focusing

on the scenario of a single correlation matrix modeling genetic

relatedness, possibly cryptic, so that b � Nð0; s2gGÞ, with G being

any genetic relationshipmatrix (GRM), or possibly kinshipmatrix,

and s2g is the corresponding variance component.

We assume that the genetic variant is rare, so that the minor

allele frequency (MAF) is low and that individuals harboring the

minor allele are overwhelmingly heterozygotes. While having ho-

mozygotes does not invalidate our approach, it also does not in-

crease statistical power. Our approach first estimates a disease

probability for each individual in the sample under the null hy-

pothesis of no association between the genetic variant and disease

status, (i.e., under the assumption that b ¼ 0) by not including

any variant of interest in the regression (step 1, demonstrated in

Figure 1), and then considers individuals with at least one copy

of the rare variant (in short, with the rare allele), testing whether

the number of diseased individuals with the rare allele is consis-

tent with their estimated disease probabilities (step 2, demon-

strated in Figure 2).

Step 1: Estimating disease probabilities under the null hypothesis

At step 1, we fit a null model under the assumption b ¼ 0, using

the existing penalized quasi-likelihood algorithm for logistic

mixed models.15 This approach is implemented in multiple soft-

ware, including the GENESIS R package,16 GMMAT,17 and

SAIGE.13 In both GENESIS and GMMAT, the vector of fixed effects

a and the variance component s2g are estimated using an imple-

mentation of an AI-REML (average information restricted

maximum likelihood) algorithm on top of the penalized quasi-

likelihood (PQL) approach,17 but the proposed tests do not

depend on the specific algorithm used for estimating the outcome
Human Genetics and Gen
probabilities. From the fitted null model,

we obtain estimates ba; bb and an estimated

disease probability vector by plugging

them in to obtain bpi ¼ expitðxT
i baþbbiÞ;

i ¼ 1; .; n, where expit is the inverse of

the logit function. If the variance compo-

nent s2g is estimated as 0, so is bb ¼ 0; and

the analysis reverts to the independent in-

dividual settings.

Step 2: Testing the association between a ge-

netic variant and disease status

Suppose that we obtained disease proba-

bility estimates bpi; i ¼ 1; .; n, under

the null as described above. Denote nc as

the number of individuals harboring at
least one copy of the rare variant allele (i.e., those with g > 0),

so that
Pn
i¼1

1ðgi > 0Þ ¼ nc. Without loss of generality, assume that

participants i ¼ 1; .;nc have the rare allele. Let nd be the number

of diseased individuals with rare allele:

nd ¼
Xnc
i¼1

1ðdi ¼1Þ ¼
Xn

i¼1

1ðdi ¼1; gi > 0Þ:

Let dpnc
¼ ðcp1 ; .; cpnc ÞTdenote the vector of estimated disease

probabilities for individuals with the rare variant. Despite dpnc
be-

ing estimated, we treat it as fixed. For testing, we assess the good-

ness-of-fit of the estimated model to the observed disease status in

the individuals with the rare allele by testing the null hypothesis:

H0 : pnc
¼ cpnc

;

where pnc
is the true, unknown, vector of outcome probabilities

among those with the rare allele.

The p value for testing the null hypothesis of no variant-disease

association is given by:

p� value¼Pr

�
nd diseased individuals among those with the rare

allele or more extreme

����cpnc
�

(Equation 1)

This is a two-tailed p value, because nd can appear to be lower or

higher than expected. When only a single person carries the rare

variant (i.e., nc ¼ 1), the calculation is trivial; Equation 1 reduces

to the single individual fitted probability bpi if they are an affected

individual, and 1� bpi if they are a control individual. When

nc > 1, there are two special cases that are already developed. Ifbpi for all individuals with the rare allele are equal, and outcomes

for all those individuals are independent, then nd � Binomialðn;bpiÞ, and the p value is the tail area (possibly two tails) of the stan-

dard binomial distribution (i.e., a binomial exact test). If the bpi for
omics Advances 2, 100040, July 8, 2021 3



Figure 2. Step 2 of testing genetic associations using the proposed framework
Based on estimated outcome probabilities, variants are inspected one at a time. For a given variant, individuals harboring the rare allele
are identified, and a test of the null hypothesisH0 : Pnc ¼ cpnc is performed testing whether nd is consistent with the outcome probabilities
within individuals with the rare allele, based on the null model.
the individuals with the rare allele differ but independence still

holds, the distribution is the Poisson-binomial distribution, and

the test is the previously proposed BinomiRare test for indepen-

dent data.9 In the general case, an arbitrary sum of binomial vari-

ables, possibly correlated, has the CMP-binomial distribution,

which can be approximated by the CMP distribution18,19 when

the number of individuals with the rare allele is ‘‘large enough’’

(see Appendix A).

In addition to the p value above, we also study the mid-p value,

which was previously shown to improve properties of discrete

tests20 and to be less conservative. The mid-p value is always

smaller than the p value, because when summing the tail area

probabilities, it accounts for only half of the probability of the

observed event nd, whereas the p value uses it as it is, without

dividing in half.

BinomiRare and CMP tests using conditional

probabilities
In Appendix A, we show that the distribution of nd in the general

case can be approximated by the CMP distribution and develop

the CMP test. However, because approximations may not work

well in practice for low nc, we also attempt a different approach.

Note that for two individuals i and j, we have that Di and Dj

were independent if the true conditional disease probabilities

were known. In other words, given conditional disease probabili-

ties, knowing the disease status of individual i does not inform

of the disease status of individual j. Therefore, we consider using

the BinomiRare test, which was developed for independent

data—with the conditional probabilities. We note that this inde-
4 Human Genetics and Genomics Advances 2, 100040, July 8, 2021
pendence may not hold when probabilities are estimated, and

therefore it is not trivially true that the BinomiRare is appropriate

in this setting. Both the CMP and the BinomiRare tests for corre-

lated data are available in the GENESIS R package for genetic asso-

ciation analysis.21
Simulation study: Testing rare variant associations using

BinomiRare and CMP in a sample of trios
We carried out a simulation study to evaluate the performance of

BinomiRare and CMP tests in samples of correlated individuals. In

each simulation, we generated 3,000 individuals as 1,000 trios

(two parents and one offspring), as follows. For 1,000 pairs of par-

ents, and each of two chromosomal copies, we generated 20 inde-

pendent ‘‘non-causal’’ genetic variants by first sampling MAFs

from a uniform U½0:05; 0:5� distribution and setting MAF

˛f0:05; 0:02; 0:01; 0:001g for one ‘‘causal’’ variant, followed by

sampling of genetic variants using a binary distribution based on

these MAFs. For each parent, allele count was the sum of the

two sampled alleles. For each variant independently, an offspring

inherited one allele from each of the parents. The parental allele

was sampled at random with equal probabilities from the two al-

leles. We used the 21 (1 causal and 20 non-causal) simulated geno-

types to generate a variable mimicking a principal component

(PC), as a weighted sum of all allele counts, with weights sampled

from a standard normal distribution Nð0;1Þ: Next, we simulated

probability of disease using a mixed logistic model:

logit½pðDi ¼1Þ� ¼b0 þ PCi 3bpc þ gibg þ bi; i ¼ 1; .; n:



Here, expðb0Þ˛f0:01; 0:05; 0:5g is the probability of disease in in-

dividuals without the rare allele (gi ¼ 0Þ with genetic PC and bi
equal to zero. bpc models the association of the PC with disease

probability, bg is the effect of the (causal) variant of interest, and

b ¼ ðb1;.; bnÞT , representing the correlation across individuals,

is sampled from a multivariate normal distribution b � MVT �
Nð0;s2g KÞ, with the correlation matrix K being a block diagonal

kinship matrix, having twice the kinship coefficient between a

child and each of their parents (i.e., 0.5). We set s2g˛f0:06; 0:6g:
In all simulations we had bpc ¼ 0:1. The variant effect was

varied from zero when evaluating type 1 error rate to bg ¼
logðOdds RatioÞ˛flogð2Þ; logð3Þ; logð4Þg when evaluating power.

We then sampled disease status for each individual from a binary

distribution with the computed disease probability. Finally, we

applied the BinomiRare and CMP tests and computed p values

and mid-p values. We performed 1x107 replicates to estimate

type 1 error rate and 1x105 replicates to estimate power. We esti-

mated type 1 error rate and power for p value threshold for

declaring significance f1x10�2; 1x10�3; 1x10�4g. For tests that

did not, empirically, control the type I error rate for a given p value

threshold (i.e., the proportion of simulations passing the

threshold was higher than the threshold), we computed a cali-

brated threshold, defined as a value for which the proportion of

simulations with p value less than this value was the desired

threshold. We then used this calibrated threshold to estimate

power, specifically power at an ‘‘honest alpha’’ (Supplemental ma-

terial and methods). Our main results are those focused on simu-

lations in which the variance component had a non-zero estimate,

but we analyzed all simulations.
The TOPMed whole-genome sequencing study
Whole-genome sequencing was performed via TOPMed and the

NHGRI’s CCDG programs, using DNA from blood at multiple

sequencing centers using Illumina X10 technology at an average

sequencing depth of >303. Studies and samples were sequenced

inmultiple phases. Periodically, the TOPMed Informatics Research

Center (IRC) performed variant calling on the combined TOPMed

andCCDG samples, resulting inmultiple releases of data ‘‘freezes.’’

Details regarding sequencingmethods and quality control are pro-

vided elsewhere22 and in the TOPMed website.

We used three TOPMed multi-ethnic datasets: a dataset of SVD

stroke in the Women’s Health Initiative (WHI), a study of short

sleep, and a study of VTE, with the latter two comprised of individ-

uals from multiple TOPMed cohorts. We performed data analysis

to demonstrate the BinomiRare test. The approaches for data anal-

ysis were similar. GRMs were constructed based on the analytic da-

tasets of each of the analyses, using all genetic variants withminor

allele frequency R 0.001. Logistic mixed models under the null

were fit and adjusted for age, sex, and self-reported race/ethnic

group, and, for short sleep, also for parent study/cohort. SVD

stroke and short sleep analyses used TOPMed freeze 5b release,

while the VTE analysis used TOPMed freeze 8 genotype release.

All participants providedwritten informed consent at their recruit-

ment centers.
The TOPMed WHI stroke dataset
The WHI is a long-term health study following postmenopausal

women aged 50–79 years who were recruited from 1993 through

1998 from 40 clinical centers throughout the United States.23 In

the present analysis, we focus on a subset of 5,358 WHI partici-

pants who were sequenced through TOPMed with data available
H

via freeze 5b and had SVD stroke case-control classification, ac-

cording to the following methodology: stroke diagnosis requiring

and/or occurring during hospitalization was based on the rapid

onset of a neurological deficit attributable to an obstruction or

rupture of an arterial vessel system. Hospitalized incident stroke

events were identified by semiannual questionnaires and adjudi-

cated following medical record review, which occurred both

locally (at individual study sites) and centrally. Ischemic strokes

were further classified by the central neurologist adjudicators

into cardio-embolic stroke, larger artery stroke, and SVD stroke ac-

cording to the Trial of Org 10172 Acute Stroke Trial (TOAST)

criteria.24 The TOAST classification focuses on the presumed un-

derlying stroke mechanism and requires detailed investigations

(such as brain computed tomography, magnetic resonance imag-

ing, angiography, carotid ultrasound, and echocardiography).

Baseline stroke cases were excluded from the analysis, and VTE

cases were excluded from the control samples. Further, partici-

pants who had non-SVD stroke were excluded.

The TOPMed short sleep dataset
We used sleep duration data from multiple TOPMed cohorts, as

described in the Supplemental information detailing phenotype

harmonization for short sleep analysis. Short sleep was defined

as self-reported sleep duration during weekday, or usual sleep (if

sleep duration during the weekdays was not available), being 5 h

or less. Otherwise, if self-reported sleep duration was 6 h or longer

and less than 9 h, sleep was ‘‘normal.’’ Individuals with self-re-

ported sleep duration longer than 5 h and shorter than 6 h were

excluded to minimize risk of misclassification. Because of a well-

known U-shaped relationship between sleep duration and cardio-

vascular disease,25 suggesting that potential non-linearity in ge-

netic associations may exist as well, we also excluded ‘‘long

sleepers’’ reporting usual sleep of 9 h or longer.

The TOPMed VTE dataset
The TOPMed VTE dataset includes TOPMed participants from six

studies, combining prospective cohort and case-only studies. Indi-

viduals were matched across groups defined to be homogeneous

with respect to race/ethnicity and sex, and strata defined by age

at event (determined according to cases). The matching strategy

resulted in a sample set mimicking a case-control study, with

11,627 individuals, of whom 3,793 are cases and 7,834 are

controls.

Association testing of rare coding variants within known

disease-causing genes
For each of the SVD stroke, short sleep, and VTE datasets, we

considered a known gene associated with the disorder. For stroke,

we focused on the NOTCH3 gene, in which mutations may cause

cerebral autosomal dominant arteriopathy with subcortical in-

farcts and leukoencephalopathy (CADASIL), which causes

ischemic stroke.26 For short sleep, we focused on the gene DEC2

(also known as BHLHE41), a transcription inhibitor of orexin, a

neuropeptide that regulates wakefulness.27,28 For VTE, we focused

on the coagulation factor V gene, F5,29,30 which has a known com-

mon variant highly associated with VTE, factor V Leiden (rs6025).

We performed single-variant analysis within the candidate genes,

as follows. We selected a subset of rare variants within the genes

based on functional annotations, with the goal of increasing po-

wer by focusing on variants that are more likely to be functional

compared to others. In detail, the filter based on functional
uman Genetics and Genomics Advances 2, 100040, July 8, 2021 5



annotation included the selection of variants that were: (1) high-

confidence loss-of-function variants according to the Ensembl

Variant Effect Predictor;31 (2) missense variants if they are pre-

dicted deleterious by either SIFT 4G,32 PolyPhen2-HDIV,33 Poly-

Phen2-HVAR,33 or LRT-pred;34 (3) inframe insertions or deletions

(indels) with FATHMM-XF coding score > 0.5;35 or (4) variants

that are synonymous according to the Ensemble Variant Effect

Predictor and have FATHMM-XF coding score > 0.5. The annota-

tion-based variant filtering was performed using the annotation

explorer application on the NHLBI’s BioData Catalyst.36 We

further filtered variants to those that passed the TOPMed quality

control (QC) filter22 and had at least 3 and no more than 300 in-

dividuals with the rare allele. This upper threshold was defined

because we were interested specifically in rare variants and because

it was previously shown that properties of statistical tests of rare

variant associations depend on the number of individuals with

the rare allele, rather than on allele frequency.14 Finally, we further

restricted the set of variants to those that had reasonable statistical

power according to a power analysis performed as follows. We

arbitrarily assumed an odds ratio (OR) of 2 for a causal variant,

and for each variant we computed power based on a function

developed for the BinomiRare test. The function uses the esti-

mated outcome probabilities in the sample, an OR, the number

of individuals harboring the rare variant, and p value threshold

to compute power. To increase accuracy, for each variant we specif-

ically used the estimated disease probabilities among the individ-

uals with the rare allele.

Although the proposed testing approach is developed primarily

for studies of candidate gene or association regions, some investi-

gators may be interested in applying it genome-wide. Therefore, in

the Supplemental information we provide Manhattan and QQ-

plots and report computation times from applying BinomiRare,

CMP, and SPA tests genome-wide for the three outcomes of inter-

est. When applied genome-wide, we used the Score test and re-

computed p values (mid-p value for BinomiRare and p value for

CMP) whenever the Score test p value was <0.05. Results are re-

ported for all variants with at least 3 individuals with the rare allele

and MAF%0:01:
Results

Simulation studies

We studied the performance of the tests in simulations of

1,000 trios. In the setting where s2g ¼ 0:06, about half of

the simulations estimated the variance component to be

zero. When s2g ¼ 0:6, this happened in about a third of

the simulations. The number of individuals with the simu-

lated rare variant allele was in the range [0, 27] when MAF

¼ 0.001, [17, 119] when MAF ¼ 0.01, [58, 203] when MAF

¼ 0.02, and [195, 401] when MAF ¼ 0.05. Table 1 provides

estimated type 1 error rates in the simulations, restricted to

those simulations in which the estimated variance compo-

nent was bs2
g > 0. For BinomiRare, we only provide results

for the mid-p value, because in our simulations it always

controlled the type 1 error rate, while the usual p value

controlled it as well while being more conservative. For

CMP, we only provide results for the usual p value, because

it sometimes did not control the type 1 error, and the lack

of control was worse with the mid-p value. The CMP test
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usually did not control the type 1 error when the variant

was very rare (MAF ¼ 0.001) and when the case proportion

was low (expðb0Þ ¼ 0:05). Its performance improved as the

MAF increased. In Tables S3–S5, we provide complete

simulation results, including both mid-p value and the

usual p value for both the CMP and BinomiRare tests and

results computed over all simulations and computed over

the simulations in which bs2
g ¼ 0.

In power analysis, after appropriately calibrating the p

value threshold for the CMP test, CMP was either equally

powerful as BinomiRare or more powerful (Figures S1–

S3). The patterns were similar across p value thresholds

used and across the two variance component parameters

used in the simulations. Notably, when the disease was

common ðexpðb0Þ ¼ 0:5Þ, the power was lower when the

variance component was high ðs2g ¼ 0:6Þ compared to

when it was low ðs2g ¼ 0:06Þ. When the disease was rare

ðexpðb0Þ ¼ 0:05Þ, the power was essentially the same

with both values of variance components.
Data analysis: TOPMed datasets

For each of the three TOPMed datasets that we considered,

Table 2 provides the sample sizes, gene of interest, and

number of variants according to sequential filtering: the

number of available (non-monomorphic) variants in the

sample that passed the functional filters described in the

Material and methods section, number of variants after

applying quality filters, number of variants after further re-

stricting to variants with at least 3 and no more than 300

individuals with the rare allele, and the number of variants

with at least 50% power to reject the null hypothesis at the

0.05 level under the assumption of OR ¼ 2. There were 3

such variants in the NOTCH3-SVD stroke analysis, 1

variant in the DEC2-short sleep analysis, and 4 variants

in the F5-VTE analysis.

Table 3 provides the results from testing each of the var-

iants passing this estimated power filter. Of the three tested

NOTCH3 variants, rs115582213 had p value ¼ 0.03. For

short sleep, only a single DEC2 variant was tested; it had

BinomiRare mid-p value ¼ 0.03, suggesting association

with short sleep. For the F5 gene and VTE, none of the

four tested variants showed evidence of association.

Figures S4–S6 provide Manhattan and QQ-plots from

genome-wide analyses of the three phenotypes, and Table

S6 provides computation times when testing associations

in a single segment of 1 3 107 base pairs.
Discussion

We extended the BinomiRare test and studied the CMP test

for testing the association of a rare genetic variant with a

binary outcome in the mixed-model framework. These

tests were specifically developed to handle variants with

very lowminor allele counts (tens of individuals harboring

the rare allele), because it was previously shown that other

tests that allow for covariate adjustment, such as the naive



Table 1. Estimated type 1 error rates of BinomiRare and CMP tests in simulations with related individuals

MAF expðb0Þ

Estimated type 1 error by p value threshold

s2g ¼ 0:06 sg
2 ¼ 0:6

10�2 10�3 10�4 10�2 10�3 10�4

BinomiRare (mid-p value)

0.001 0.01 3.38E�03 2.08E�04 1.25E�05 3.78E�03 2.55E�04 1.88E�05

0.001 0.05 5.61E�03 4.45E�04 2.76E�05 5.63E�03 4.4E�04 3.24E�05

0.001 0.5 5.78E�03 3.22E�04 1.57E�05 5.44E�03 2.94E�04 1.26E�05

0.01 0.01 6.22E�03 4.62E�04 3.25E�05 6.36E�03 4.64E�04 3.35E�05

0.01 0.05 7.70E�03 6.58E�04 4.42E�05 7.83E�03 6.58E�04 5.1E�05

0.01 0.5 8.68E�03 8.28E�04 6.67E�05 8.21E�03 7.3E�04 6.56E�05

0.02 0.01 6.17E�03 4.27E�04 2.73E�05 6.41E�03 4.71E�04 3.38E�05

0.02 0.05 7.53E�03 6.27E�04 5.34E�05 7.52E�03 6.15E�04 5.27E�05

0.02 0.5 7.90E�03 6.87E�04 6.51E�05 7.56E�03 6.34E�04 5.55E�05

0.05 0.01 4.99E�03 2.88E�04 1.84E�05 5.21E�03 2.97E�04 1.48E�05

0.05 0.05 5.94E�03 4.49E�04 3.10E�05 5.93E�03 4.26E�04 2.73E�05

0.05 0.5 6.02E�03 4.69E�04 3.91E�05 5.67E�03 4.16E�04 3.34E�05

CMP (usual p value)

0.001 0.01 5.75E�02 6.59E�03 4.18E�04 6.01E�02 6.54E�03 4.41E�04

0.001 0.05 4.50E�02* 4.44E�03* 2.83E�04* 4.22E�02* 3.89E�03* 2.26E�04*

0.001 0.5 3.44E�02* 9.29E�04 6.28E�06 3.34E�02* 7.78E�04 8.21E�06

0.01 0.01 2.34E�02 2.19E�03 1.70E�04 2.25E�02 2.09E�03 1.68E�04

0.01 0.05 1.62E�02* 1.55E�03* 1.37E�04* 1.53E�02* 1.44E�03* 1.20E�04*

0.01 0.5 9.30E�03 7.53E�04 4.41E�05 8.71E�03 6.74E�04 4.65E�05

0.02 0.01 1.76E�02 1.50E�03 1.11E�04 1.69E�02 1.44E�03 1.16E�04

0.02 0.05 1.11E�02* 1.10E�03* 1.02E�04 1.02E�02 9.77E�04 8.58E�05

0.02 0.5 7.86E�03 6.30E�04 5.49E�05 7.45E�03 5.76E�04 4.36E�05

0.05 0.01 1.06E�02 7.29E�04 4.14E�05 1.01E�02 7.19E�04 4.04E�05

0.05 0.05 6.53E�03 4.94E�04 3.44E�05 6.38E�03 4.52E�04 3.38E�05

0.05 0.5 5.80E�03 4.37E�04 3.30E�05 5.46E�03 3.83E�04 2.99E�05

*Settings in which the type 1 error was not controlled, defined according to type 1 error rate being larger than the highest value in a 95% confidence interval
around the expected type 1 error rate, based on binomial distribution with parameters being the p value threshold and number of simulations used.
Score test and the SPA test, do not always control the type 1

error in the very low count settings.14 Both BinomiRare

and CMP tests first estimate the outcome probabilities for

each person in a dataset, while accounting for covariates

and for genetic relatedness (and possibly other covariance

matrices) via a mixed model, and then use the estimated

conditional disease probabilities. For a single variant, indi-

viduals with the rare alleles are identified, and based on

their disease probabilities and the observed number of

cases, a p value is computed, as the probability of observing

the given number of cases or more extreme given the esti-

mated outcome probabilities. The BinomiRare test assumes

a Poisson binomial distribution on the number of cases,

and the CMP test assumes a CMP distribution. The
H

BinomiRare test using estimated conditional outcome

probabilities assuming that the individuals with the rare

allele are independent performed well, while, surprisingly,

the CMP test, which was constructed specifically for corre-

lated data, did not control the type 1 error rate for settings

with a low number of individuals harboring the rare allele.

This was likely because the approximations on which it re-

lies are asymptotic in its non-centrality parameter l, which

is related to the number of individuals with the rare allele.

We demonstrated the application of the BinomiRare test

using three TOPMed studies: SVD stroke, short sleep, and

VTE. Due to the low power for testing low-count variants,

we filtered variants according to functional annotation

and according to computed statistical power. The
uman Genetics and Genomics Advances 2, 100040, July 8, 2021 7



Table 2. Characteristics of the TOPMed datasets and variants considered for association testing

SVD stroke Short sleep VTE

No. of individuals in the analysis 5,358 20,021 11,627

No. of cases 692 (12.9%) 2,408 (12%) 3,793 (32.6%)

No. of controls 4,666 (87.1%) 17,613 (88%) 7,834 (67.4%)

Gene of interest NOTCH3 DEC2/ BHLHE41 F5

No. of potentially functional non-monomorphic variants identified 122 58 142

No. of variants further passing TOPMed quality filters 117 49 132

No. of variants further having 2 < individuals with the rare allele < 300 20 9 25

No. of variants with estimated power > 0.5 at the 0.05 a level 3 1 4
limitations of this approach are that (1) the deleteriousness

predicting annotations used and the filters applied to them

may not have captured the true functional variant set, and

(2) the power analysis was based on an arbitrarily selected

OR parameters. In this study, we chose OR ¼ 2 and only

considered the handful of variants that had estimated po-

wer > 0.5 for testing, while requiring p value (a level) <

0.05. We recognize that many rare variants have larger ef-

fect sizes. However, if we specified a larger OR parameter,

and thus included more variants in our analysis, a more

stringent a level would be needed. Thus, the resulting list

of variants to test may have been similar. More work is

needed developing strategies for identifying single rare

variant associations.

For each of the phenotypes, SVD stroke, VTE, and short

sleep, we searched for rare variants within genes with

known trait associations. For SVD stroke, we considered

NOTCH3, because some NOTCH3 variants have been re-

ported in individuals with CADASIL, which poses a risk
Table 3. Results from association analysis of rare genetic variants wi

rsID Variant
BinomiRare
p value

BinomiRare
mid-p value nc n

SVD stroke: NOTCH 3 gene

rs115582213 chr-19-15162524-C-T 0.04 0.03 87 1

rs112197217 chr-19-15179425-G-T 0.53 0.49 166 2

rs11670799 chr-19-15188240-G-A 0.81 0.77 180 2

Short sleep: DEC2 gene

rs121912617 chr-12-26122364-G-T 0.04 0.03 127 3

VTE: F5 gene

rs6026 chr-1-169528054-C-T 0.37 0.34 115 3

rs6034 chr-1-169529782-G-C 1.00 0.94 46 1

rs78958618 chr-1-169542985-G-A 0.67 0.63 130 3

rs9332485 chr-1-169586344-C-T 0.37 0.34 222 5

Genetic variants presented are those that passed functional annotation and statist
value, the number of individuals with the rare allele nc , the number of individuals
while assuming effect size OR ¼ 2 and p value threshold ¼ 0.05, pathogenicity in
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for stroke. Most NOTCH3mutations reported as associated

with CADASIL are those involving loss or gain of a cysteine

residue, leading to unpaired cysteine.37 Single-nucleotide

variants in NOTCH3 have not yet consistently been identi-

fied as associated with SVD stroke in population-based

studies. Here, we identified the rare variant rs115582213

(BinomiRare mid-p value ¼ 0.03). This variant was rare,

with 87 out of 5,358 individuals in the dataset harboring

the rare allele. Of these, 17 individuals had SVD stroke.

More work is needed to study the association of

rs115582213 with SVD stroke, as, after accounting for mul-

tiple testing, its association is not statistically significant.

For VTE, we considered the F5 gene. The F5 gene harbors

the strongest known, relatively common, genetic risk fac-

tor for VTE, the rs6025 variant.38,39 This motivated the

search for rare variants in this gene. We did not identify

any variant associated with VTE at the p value< 0.05 level.

We did not consider rs6025 as part of our testing strategy

because it was common with MAF ¼ 0.04, and 839
thin monogenic disease genes of interest

d

Estimated power
(OR ¼ 2) ClinVar interpretation

CADD
PHRED

FATHMM-XF
coding

7 0.7 benign/likely benign 25.4 0.66

3 0.91 benign/likely benign 21 0.42

3 0.94 benign/likely benign 28.8 0.68

8 0.98 not available 27.5 0.66

1 0.94 benign/likely benign 25.7 0.75

6 0.57 conflicting
interpretations

21.3 0.56

2 0.94 benign 15.18 0.11

5 1 benign/likely benign 22.5 0.23

ical power filters. For each variant we provide its BinomiRare p value and mid-p
with both the rare allele and the outcome nd , the estimated power computed
terpretation from ClinVar, CADD score, and FATHMM-XF coding score.



PrðD01 ¼ 1Þ ¼ . ¼ PrðD0nc
¼ 1Þ and a parameter rmodeling

the dependency between each pair D0i; D0j; isj. Therefore,

two parameters suffice to characterize the distribution of

an arbitrary sum of binary variables. Specifically, for a

given set of individuals with the rare genetic variant, the

sum of their disease statuses,

W¼
Xnc
i¼1

Di;

is distributed like a unique sum of exchangeable binary

variables. Based on the estimated disease probabilities, we

estimate the two parameters (different than the probability

and dependency parameters p and r above) of the CMP dis-

tribution to obtain an estimated probability function in a

variation of a method-of-moment approach that is based

on estimated probabilities, rather than on the observed

data. Daly and Gaunt43 provided an approximation to

the moments of the CMP distribution:

Proposition 2.3. (Daly and Gaunt43): Let W � CMPðl;nÞ.
Then, for k˛N,

E
�
Wk

� � l
k
n

2
41þO

0
@l�

1
n

1
A
3
5;

as l/N:

Assuming that l�1=n is small (which, as we shall see, is

true when l is very large, because n tends to be well
individuals had the rare allele, a setting in which other

tests such as the SPA should be able to control the type 1

error well and also be more powerful. Still, as a positive

control we tested its association with VTE using BinomiR-

are, and the p value was 1.5 3 10�14.

Short sleep has been consistently associated with cardio-

vascular and cardiometabolic disease.40,41 Genetic deter-

minant of short sleep may help elucidate this connec-

tion.42 We considered the DEC2/BHLHE4 gene, which

has a mutation with a known familial aggregation associ-

ated with short sleep. Our filtering strategy resulted in a

single variant considered for testing: rs121912617, the

known short sleep mutation.27 In our data, it was associ-

ated with short sleep with BinomiRare mid-p value ¼
0.03. rs121912617 is substantially more common (yet is

still rare) in African Americans compared to European

Americans (0.01 MAF in African Americans from the

TOPMed short sleep datasets, compared to MAF < 0.001

in European Americans from the same dataset), allowing

for observing this association in a population-based, rather

than a family-based, study.

Here, we demonstrated the BinomiRare test for testing

single-variant associations in data with known or cryptic

relatedness. It can also be used to test sets of rare variants,

by focusing on individuals with at least one rare allele in

the variant set. It is a topic of future research to extend

this framework to use the counts of the rare variant allele

and increase power.
Appendix A

The CMP test

Let W ¼ Pnc

i¼1

Di, for Di � Binomðpi;1Þ; i ¼ 1; .; nc be a

random variable with the CMP-binomial probability func-

tion. When m increases, this distribution is approximated

by the CMP distribution (Theorem 4.1. in Daly and

Gaunt43) so that W � CMPðl; nÞ: Consider proposition 2

in Kadane19 stating:

Proposition 2 (Kadane19): Suppose D1;.; Dnc take values

on f0;1g. Let PðW ¼ kÞ ¼ ~pkR0, where
Pnc
k¼0

~pk ¼ 1. Then there

exists a unique distribution on D1;.; Dnc
such that

D01;.; D0nc are exchangeable of order nc, and
Pnc

i¼1

D0i has the

same distribution as W, where we made a small change in

the statement of the proposition compared to Kadane19

so it is clear that D1;.; Dnc
could have different means

without the context provided in Kadane.19 According to

this proposition, an arbitrary sum of binary variables is

distributed as a sum of exchangeable binary variables,

where the exchangeable variables are such that there is

a unique combination of probability parameter p ¼

bounded), we get that, approximately:

E½W�zl1=n: (Equation A1)

Daly and Gaunt also showed, in their Equation 2.4 and

based on the result in Shmueli et al.,18 that:

VarðWÞz1

n
l
1
n þ Oð1Þ; as l/N: (Equation A2)

Therefore, noting that VarðWÞ ¼ E½W2� � ðE½W�Þ2, once
we estimate E½W� and E½W2�, we use Equations A1 and A2

to obtain estimators of l and n by:

bn¼ dE½W�
dE
�
W2

� � 	 dE½W�

2

¼
dE½W�dVarðWÞ

; (Equation A3)

bl¼	 dE½W�

bn (Equation A4)

Estimating parameters of the CMP distribution from

estimated diseased probabilities

We consider two approaches to estimate components of bl
and bn, i.e., E½W�, E½W2�, and VarðWÞ: an analytic approach

and a sampling-based approach. In the analytic approach,

we compute dE½W� ¼ Pnc
i¼1

bpi and dVar½W� ¼ Pnc
i¼1

bpið1 � bpiÞ. In
the sampling-based approach, we generate random

Human Genetics and Genomics Advances 2, 100040, July 8, 2021 9



variables ~W with the same distribution as Wnc (the sum

of disease statuses among the nc individuals with the rare

genetic variant) and treat them as observed data to esti-

mate the desired quantities. More specifically, let ~Di;s �
BinomðbpiÞbe the sampled disease status of the ith individ-

ual in the s ¼ 1; .; S sample. Then:

~Ws ¼
Xnc
i¼1

~Di;s; (Equation A5)

and we estimate:

dE½W� ¼ 1

S

XS

s¼1

~Ws

dE
�
W2

�¼1

S

XS

s¼1

~W
2

s

To summarize, to calculate the p value and the mid-p

value, formally given by:

p� value¼cPrðW¼ndÞ

þ
Xnc
k¼1

cPrðW¼ kÞ 3 1

�cPrðW¼ kÞ < cPrðW¼ ndÞ
�

(Equation A6)

mid� p� value¼
cPrðW ¼ ndÞ

2

þ
Xnc
k¼1

cPrðW¼ kÞ 3 1

�cPrðW¼ kÞ < cPrðW¼ndÞ
�
;

(Equation A7)

we estimate probabilities for each potential number of

individuals who have both the rare allele and the disease,

in the following process:

1. Obtain individual disease probability estimatescp1 ; .; cpnc via standard approaches (e.g., logistic

mixed model).

2. Compute estimates dE½W� and dVar½W� in the analytic

approach, or compute dE½W� and dE½W2� in the sam-

pling approach.

3. Compute estimates bl ; bn using Equations A3 and A4.

4. Compute cPrðW¼ kÞ for k ¼ 1; .; nc using the R

package COMPoissonReg.44

Data and code availability

The code generated during this study for the BinomiRare

and CMP tests is provided in the publicly available

GENESIS R/Bioconductor package.21 A script for computing

power for a single variant test is provided using the Bino-

miRare test. Source TOPMed whole-genome sequencing

and phenotype data for this paper are available by applica-

tion to dbGaP according to the study specific accessions:

Amish: phs000956.v5.p1, ARIC: phs001416.v2.p1, CHS:

phs001368.v2.p1, CFS: phs000954.v3.p2, FHS:

phs000974.v4.p3, HVH: phs000993.v4.p2, JHS:

phs000964.v1.p1, Mayo VTE: phs001402.v2.p1, MESA:

phs001211.v3.p2, WHI: phs001237.v2.p1. Additional

study phenotypes are available by application to dbGaP

via parent studies accession: ARIC: phs000090.v7.p1,

CHS: phs000287.v7.p1, CFS: phs000284.v2.p1, FHS:

phs000007.v32.p13, JHS: phs000286.v6.p2, MESA:

phs000209.v13.p3, WHI: phs000200.v12.p3.

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2021.100040.
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