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1,2,3,4
Nathalie Viguerie,

1,2,3
Balbine Roussel,

2,3

Michaela Vítková,
1,4

Michaela Kováčiková,
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OBJECTIVE—We investigated the regulation of adipose tissue
gene expression during different phases of a dietary weight loss
program and its relation with insulin sensitivity.

RESEARCH DESIGN AND METHODS—Twenty-two obese
women followed a dietary intervention program composed of an
energy restriction phase with a 4-week very-low-calorie diet and
a weight stabilization period composed of a 2-month low-calorie
diet followed by 3–4 months of a weight maintenance diet. At
each time point, a euglycemic-hyperinsulinemic clamp and sub-
cutaneous adipose tissue biopsies were performed. Adipose
tissue gene expression profiling was performed using a DNA
microarray in a subgroup of eight women. RT–quantitative PCR
was used for determination of mRNA levels of 31 adipose tissue
macrophage markers (n � 22).

RESULTS—Body weight, fat mass, and C-reactive protein level
decreased and glucose disposal rate increased during the dietary
intervention program. Transcriptome profiling revealed two main
patterns of variations. The first involved 464 mostly adipocyte
genes involved in metabolism that were downregulated during
energy restriction, upregulated during weight stabilization, and
unchanged during the dietary intervention. The second com-
prised 511 mainly macrophage genes involved in inflammatory
pathways that were not changed or upregulated during energy
restriction and downregulated during weight stabilization and
dietary intervention. Accordingly, macrophage markers were
upregulated during energy restriction and downregulated during
weight stabilization and dietary intervention. The increase in

glucose disposal rates in each dietary phase was associated with
variation in expression of sets of 80–110 genes that differed
among energy restriction, weight stabilization, and dietary
intervention.

CONCLUSIONS—Adipose tissue macrophages and adipocytes
show distinct patterns of gene regulation and association with
insulin sensitivity during the various phases of a dietary weight
loss program. Diabetes 58:1558–1567, 2009

O
besity is a major risk factor for diabetes and
cardiovascular disease. The excess of fat mass
is linked to an impairment of insulin sensitivity
through complex multifactorial and still poorly

understood mechanisms. Adipose tissue dysfunctions
have been recognized as essential in this link (1,2). Alter-
ations of fatty acid metabolism leading to increased fatty
acid flux cause metabolic disturbances in liver and skeletal
muscle (3). Moreover, alteration of the immune system
during chronic overnutrition can result in low-grade in-
flammation, which favors the development of insulin re-
sistance (4,5). In situations of prolonged positive energy
balance, macrophages and adipocytes are activated and
show morphological as well as functional changes, such as
infiltration of adipose tissue with macrophages and imbal-
ance of fatty acid metabolism and adipokine production
(6–9). In humans, the interconnections between metabolic
and inflammatory pathways in adipocytes and macro-
phages and the impact on insulin sensitivity remain largely
unknown.

Moderate weight loss improves insulin sensitivity and
many of the concurrent medical complications associated
with obesity such as type 2 diabetes (10,11). Diet-induced
weight loss is associated with a reduction of systemic
inflammation and specific metabolic adaptations, suggest-
ing an interaction between nutrition, the immune system,
and metabolism (12,13). Nevertheless, the adaptations
occurring in adipose tissue during dietary weight manage-
ment programs in humans are currently largely unknown.
It is becoming clear that no single cause or molecule will
explain the changes in insulin sensitivity during weight
reduction (4). In clinical practice of weight management,
dietary intervention is often combined with an initial
calorie-restricted diet followed by a weight stabilization
phase. However, the long-term outcome of dietary inter-
ventions remains poorly understood because of a lack of
knowledge regarding the kinetics of complex adipose
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Santé et de la Recherche Médicale, Toulouse, France; the 2Institut National
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tissue adaptations during weight loss and weight mainte-
nance and its relation with insulin sensitivity.

The general goal of this study was to identify the whole
array of gene expression changes occurring in adipose
tissue during the different steps of a dietary intervention
program and to explore the links with insulin sensitivity.
Because adipose tissue is composed of different cell types,
the cell specificity of regulated genes was determined. A
specific aim was to analyze the regulation of macrophage
gene expression during the course of long-term dietary
intervention. We demonstrate that the molecular adapta-
tions occurring in adipose tissue are clearly different
between the initial very-low-calorie diet (VLCD) and the
following weight stabilization period. Global adipose tis-
sue and macrophage profiling of gene expression showed
the opposite regulation of genes expressed in adipocytes
involved in metabolism and macrophage genes participat-
ing in immune pathways. Genes that may contribute to the

improvement in insulin sensitivity clearly differed in the
two phases.

RESEARCH DESIGN AND METHODS

Subjects, clinical investigation, and dietary intervention program.

Twenty-two obese premenopausal women were recruited. The study was
approved by the ethical committee of the Third Faculty of Medicine of Charles
University in Prague, Czech Republic. Written informed consent was obtained
for all subjects. Exclusion criteria were weight changes of 3 kg within the 3
months before the start of the study, hypertension, diabetes, or hyperlipidemia
treated by drugs, drug-treated obesity, pregnancy, participation in other trials,
and alcohol or drug abuse. Obese patients followed a dietary intervention
program composed of three successive periods: a 1-month VLCD, a 2-month
low-calorie diet, and 3–4 months of a weight maintenance diet (Fig. 1A).
During the VLCD phase, subjects received an energy-restricted diet of 800
kcal/day (liquid formula diet: Redita; Promil). During the low-calorie diet
phase, the diet was designed to provide 600 kcal/day less than the individually
estimated energy requirement based on an initial resting metabolic rate
multiplied by 1.3. During the weight maintenance phase, subjects were
instructed to consume an individual weight maintenance diet. Patients con-
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FIG. 1. Study design of the dietary weight loss program (A) and adipose gene expression analyses (B). A: Upper line segments illustrate
subsequent dietary periods and their time duration and cross-points indicate clinical investigation days (see RESEARCH DESIGN AND METHODS). The
lower lines show three dietary phases investigated using DNA microarray analysis. B: Flowchart of adipose tissue (AT) gene expression analysis.
Twenty-two obese women followed the dietary weight loss program. DNA microarray analysis was performed on adipose tissue from eight of them.
Independently, gene expression profiling was performed on the cell types composing subcutaneous adipose tissue from six women to identify
adipocyte and macrophage markers. RT-qPCR was used to study the regulation of 31 macrophage markers during the dietary weight loss program.
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sulted a dietitian once a week during energy restriction and once a month
during the weight maintenance phase. They provided a written 3-day dietary
record at each dietary consultation during the weight stabilization phase. A
complete clinical investigation in the fasting state was conducted before and
at the end of each phase. A needle biopsy of abdominal subcutaneous adipose
tissue 15 cm lateral of the umbilicus was performed under local anesthesia
(1% lidocaine). Approximately 1 g of adipose tissue was washed in physiolog-
ical saline, divided into aliquots, and frozen immediately in liquid nitrogen.
Anthropometric measurements, blood sampling, and a euglycemic-hyperinsu-
linemic clamp were performed as described previously (14,15).
Total RNA preparation. Total RNA was isolated from adipose tissue
samples with an RNeasy Mini kit (Qiagen). RNA quantity and quality were
checked with the Experion automated electrophoresis system (Bio-Rad
Laboratories).
DNA microarrays. DNA microarray experiments were performed on a
subgroup of eight subjects (Fig. 1B). Targets were generated from 500 ng of
total RNA with a low RNA input amplification kit (Agilent Technologies) and
hybridized to whole genome 44K oligonucleotide arrays (Agilent Technolo-
gies). A whole transcriptome analysis was performed to compare three dietary
periods (Fig. 1): 1) an energy restriction phase, i.e., before versus after the
VLCD, 2) a weight stabilization phase, i.e., after the VLCD versus after weight
maintenance, and 3) the entire dietary intervention, i.e., before the VLCD
versus after weight maintenance. Each combination of samples was analyzed
twice using a dye swap design (i.e., a total of 48 hybridizations). Data
acquisition and image processing were done with a GenePix 4000B scanner
(Axon Instruments) and Feature Extraction 8.5 (Agilent Technologies). Raw
data were normalized with a global Lowess procedure and filtered with the
LIMMA R package (Bioconductor).
Analysis of DNA microarray data. Differentially expressed genes were
identified with the significance analysis of microarray (SAM) procedure with
an estimated false discovery rate of 5% (16). Ward’s hierarchical two-way
classification was done using differentially expressed genes and the subjects.
Further clustering was done using bootstrap sampling to identify robust sets
of genes with similar expression pattern using the pvclust R package. Gene
functions and biological processes were investigated using the PANTHER
classification system (17). Representation of biological processes was evalu-
ated using binomial tests and the Bonferroni correction. Gene lists were also
analyzed using Ingenuity Pathways Analysis software 6.0 (Ingenuity Systems)
to identify networks and canonical pathways. Prediction of secreted proteins
was performed using SignalP 3.0 (18). Two recently published high-confidence
models of human metabolism were used to identify metabolites that were
catabolized in a statistically significant number of reactions and which
enzymes exhibited differential expression across the phases (19–21). Microar-
ray data were deposited to Gene Expression Omnibus with GEO Series
accession number GSE11975.
Selection of human adipose tissue macrophage-specific markers. Adi-
pocytes, macrophages, progenitor cells, endothelial cells, and a negative
fraction were isolated from liposuction-obtained subcutaneous adipose tissue

of six women by collagenase digestion and immunoselection and depletion
(7,22). DNA microarray analysis of the cell types was performed as described
above (N.V., B.R., J.G., A.B., D.L., unpublished data). Thirty-one human
adipose tissue macrophage-specific markers were selected according to the
following criteria: expressed in macrophage more than in any other cell types
of adipose tissue (SAM multiclass and pairwise analyses with a false discovery
rate of 5%), �10- and 2-fold higher expression in macrophages compared with
that in adipocytes and other nonadipocyte cell types, respectively, and
�1.5-fold higher expression in macrophages than in the stroma-vascular
fraction.
Real-time RT–quantitative PCR. In the entire group of 22 subjects, total
RNA was reverse transcribed using random hexamers and SuperScript II
(Invitrogen) or a High Capacity cDNA Reverse Transcription kit (Applied
Biosystems) when using microfluidic cards (Fig. 1B). Gene expression was
assessed by RT-quantitative (q) PCR with an Applied Biosystems 7500 or 7900
real-time PCR system using SYBR Green–based detection (QuantiTect Primer
Assay; Qiagen), TaqMan gene expression assay (Applied Biosystems), or
TaqMan Custom arrays, i.e., 384-well microfluidic cards (Applied Biosystems).
Ribosomal 18S was used as endogenous control.
Blood parameters. Plasma glucose, HDL cholesterol, and total cholesterol
levels were determined using routine laboratory procedures. Plasma nonest-
erified fatty acids and glycerol were determined with enzymatic (Wako,
Unipath) and colorimetric (Sigma-Aldrich) techniques, respectively. Plasma
insulin concentrations were measured using a chemiluminescent immunomet-
ric assay (Immulite 2000). C-reactive peptide levels was determined from
serum samples by immunoturbidimetry using an ultrasensitive kit (Orion
Diagnostica). Commercial ELISA assay kits were used to quantify leptin and
adiponectin (BioVendor).
Statistical analyses. Changes in gene expression and anthropometric and
plasma parameters were analyzed by a Wilcoxon test (SPSS 15.0 software).
Log-transformed data were analyzed by principal component analysis and
partial least square-regression analysis (PLS-R) using SIMCA-P software
(Umetrics). PLS-R is a recent technique that generalizes and combines
features from principal component analysis and the multiple regression
method (23). In this study, it was used to construct predictive models of genes
explaining the variability in insulin sensitivity. The mean centroid of mRNA
levels was calculated after normalization of gene expression levels to a mean
of 0 and a variance of 1 across all individuals (24). A Spearman correlation
coefficient was determined between mean centroid and clinical parameters.

RESULTS

Clinical parameters of obese subjects during a di-
etary weight loss program. Anthropometric and plasma
parameters were determined before and at the end of each
dietary period (Fig. 1A, Table 1). Body weight and fat mass
as well as plasma insulin, leptin, and C-reactive protein

TABLE 1
Anthropometric and plasma parameters of 22 obese women during the dietary weight loss program

Basal
End of
VLCD

End of
LCD

End of
WM

BMI (kg/m2) 35.3 � 1.0 32.7 � 1.0* 31.5 � 0.9* 31.7 � 0.9*
Weight (kg) 96.8 � 3.4 89.6 � 3.2* 86.6 � 3.2* 86.9 � 3.2*
Waist circumference (cm) 104.0 � 2.7 98.3 � 2.7* 96.0 � 2.7* 95.7 � 2.5*
Fat mass (%) 40.1 � 1.3 37.1 � 1.3* 34.4 � 1.2* 35.2 � 1.5*
FFM (%) 60.6 � 1.4 62.9 � 1.3* 65.6 � 1.2* 64.8 � 1.5*
Glucose (mmol/l) 5.5 � 0.1 5.30 � 0.1* 5.4 � 0.1 5.3 � 0.2
Insulin (mIU/l) 13.2 � 1.7 6.8 � 0.8* 5.8 � 0.5* 6.9 � 0.6*
NEFAs (�mol/l) 671 � 28 730 � 27 575 � 37* 561 � 38*
Glycerol (�mol/l) 211 � 16 157 � 8* 138 � 12* 147 � 10*
Triacylglycerol (mmol/l) 1.5 � 0.2 1.1 � 0.1* 1.1 � 0.1* 1.1 � 0.1*
HDL cholesterol (mmol/l) 1.1 � 0.1 1.0 � 0.1* 1.1 � 0.1 1.3 � 0.2*
Total cholesterol (mmol/l) 4.8 � 0.1 3.9 � 0.2* 4.3 � 0.2* 4.6 � 0.7
hs-CRP (mg/l) 5.0 � 1.1 2.3 � 0.6* 3.7 � 1.0* 2.5 � 0.6*
Leptin (ng/ml) 40 � 3 20 � 3* 23 � 3* 28 � 3*
Adiponectin (�g/ml) 8.1 � 0.9 7.8 � 0.6 8.2 � 0.7 8.8 � 0.8
GDR (mg � kg�1 � min�1) 3.0 � 0.3 3.7 � 0.4* 4.1 � 0.4* 4.1 � 0.4*
GDR (mg � kg FFM�1 � min�1) 5.0 � 0.5 5.8 � 0.5* 6.2 � 0.5* 6.3 � 0.5*

Data are means � SE. *P � 0.05 vs. basal. FFM, fat-free mass; hs-CRP, high-sensitivity C-reactive protein; LCD, low-calorie diet; NEFA,
nonesterified fatty acid; WM, weight maintenance diet.
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levels decreased during VLCD and remained low during
subsequent periods. Lipid parameters (except total choles-
terol) were improved at the end of the intervention. The
glucose disposal rate (GDR) increased during VLCD and
remained elevated in the latter phases.
Adipose tissue gene expression profiling during the
dietary weight loss program. Statistical analysis of DNA
microarray data. The subset of eight subjects used for
DNA microarray experiments did not show differences in
clinical parameters compared with the entire group (data
not shown). The SAM method showed that 1,535 genes
were regulated during at least one of the phases of the
dietary program (Fig. 1B and supplementary Table 1, avail-
able in an online appendix at http://diabetes.diabetesjournals.
org/cgi/content/full/db09-0033/DC1): 592 (41 up and 551
down) genes during energy restriction, 814 (244 up and
570 down) genes during weight stabilization, and 581 (89
up and 492 down) genes during dietary intervention.
Microarray data were confirmed by RT-qPCR analysis for
45 genes with different expression profiles and cellular
origins on 15–22 subjects (supplementary Table 2).
Ward’s hierarchical cluster analysis and Venn diagram.
Cluster analysis based on gene expression in the different
phases for the eight subjects revealed a clear distinction
between the energy restriction and the weight stabiliza-
tion phases (Fig. 2A). This was also shown by the Venn
diagram, which displayed no gene regulated either during

energy restriction or weight stabilization (Fig. 2B). How-
ever, 65 genes regulated during energy restriction were
regulated during dietary intervention and 245 genes regu-
lated during weight stabilization were regulated during
dietary intervention.
Gene ontology analysis. To get insight into the nature of
the genes regulated during the different phases, we per-
formed gene ontology analysis using the PANTHER clas-
sification system analyzed by binomial test statistics and
the Bonferroni correction. Significantly enriched pathways
in the different phases are shown in Fig. 3A. During energy
restriction, the majority of the genes involved in lipid,
carbohydrate, and mitochondrial energy pathways were
downregulated (Fig. 3B). During weight stabilization, most
of the genes related to lipid and carbohydrate metabolism
were upregulated and expression of genes involved in
immunity and defense was decreased. The overall dietary
intervention was characterized by downregulation of
genes involved in immunity and tissue remodeling (Fig.
3C).
Reporter metabolite analysis. Coordinated changes in
gene expression of enzymes have been shown to identify
so-called reporter metabolites, i.e., metabolites that dis-
play differential expression in their associated enzymes
(21). We identified acyl-CoA, CoA, acetyl-CoA, NADP�/
NADPH, and ubiquinol/ubiquinone as reporter metabolites
displaying coordinated downregulation of their associated
enzymes during energy restriction and a reversed pattern
during weight stabilization (supplementary Table 3).
Bootstrap sampling clustering. We also performed clus-
tering using bootstrap sampling to determine the robust-
ness of gene sets found to be differentially expressed
during the phases of the dietary program. Two large
clusters reached significance at P � 0.05 (Fig. 4A). The
first was composed of 464 genes downregulated during
energy restriction, upregulated during weight stabilization,
and unchanged during dietary intervention. The second
cluster comprised 511 genes not changed or upregulated
during energy restriction and downregulated during
weight stabilization and dietary intervention. Next, we
performed analysis of gene ontology on the two clusters
(Fig. 4B). In the first cluster, all enriched pathways be-
longed to metabolism. In the second cluster, all enriched
pathways belonged to immunity and defense pathways.
Strikingly, metabolism genes from cluster 1 and immunity
and defense genes from cluster 2 showed opposite pat-
terns during energy restriction and weight stabilization,
respectively (Fig. 4C). During dietary intervention, there
was marked downregulation of immunity and defense
genes (Fig. 4C).
Assignment of genes regulated during the dietary
weight loss program to adipose tissue cell types.
Genes found to be regulated during the dietary weight loss
program were assigned to adipocytes, macrophages, and
other cell types based on DNA microarray analyses of
subcutaneous adipose tissue cells performed in an inde-
pendent experiment (see RESEARCH DESIGN AND METHODS and
Fig. 1B). Genes expressed in adipocytes and macrophages
represented the vast majority of genes modulated during
the dietary program (Table 2). A clearly distinct pattern
was observed between the phases. During energy restric-
tion, adipocyte-specific genes were the predominantly
regulated category. Less than 1% of genes showed macro-
phage specificity. During weight stabilization and dietary
intervention, the proportion of regulated genes assigned to
adipocytes was lower, whereas the proportion of regu-
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lated genes assigned to macrophages was higher. Interest-
ingly, the shift from energy restriction to weight
stabilization between adipocytes and macrophages was
even more pronounced for genes encoding secreted fac-
tors (Table 2 and supplementary Table 4, available in an
online appendix). Next, genes of the two clusters identi-
fied by bootstrap sampling (Fig. 4A) were analyzed in
terms of cellular origin. In the first cluster, 47% of genes
were adipocyte specific and only 1% were macrophage
specific. In the second cluster, 17% were macrophage
specific and 10% of genes were adipocyte specific.

Effect of the dietary weight loss program on adipose

tissue macrophage marker gene expression. To fur-
ther characterize the impact of the diet on macrophages,
the expression of 31 macrophage markers identified in an
independent experiment was analyzed by RT-qPCR in
adipose tissue of the 22 subjects after the dietary program
(Fig. 1B, Table 3). ANOVA analysis of the mRNA levels
revealed four groups of markers labeled A to D, differing
by the amplitude of variations at the four time points (Fig.
5A and supplementary Fig. 1). Consistent with microarray
data, expression of 29 macrophage markers increased
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during the VLCD and decreased at subsequent time points
(groups A–C). Two genes showed no variations (group D).
Of note, the mRNA levels of these genes were significantly
higher in obese than in lean subjects (unpublished data).
Relation between adipose tissue gene expression and
insulin sensitivity. Adipose tissue dysfunction is thought
to link obesity to insulin resistance. This theory prompted
us to analyze the contribution of the diet-induced varia-

tions in adipose tissue gene expression to variations in
insulin sensitivity (Fig. 1B). We first searched, using DNA
microarray data, for genes with kinetic profiles of expres-
sion similar to the evolution in GDR in successive dietary
phases. Ward’s hierarchical clustering of significantly reg-
ulated genes revealed no gene that would parallel the
pattern of GDR evolution during energy restriction, weight
stabilization, and dietary intervention (Fig. 4A). Therefore,
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we analyzed the relation between variations of gene
expression and of GDR independently in each phase.
Spearman correlation analysis of the relation between
variations of GDR and the mean centroids of genes in-
volved in metabolism (cluster 1) and genes involved in
immunity and defense (cluster 2) during each of the
dietary phases did not show a significant correlation with
insulin sensitivity. Further, the potential contribution of
gene expression changes to the improvement in insulin
sensitivity was evaluated using PLS-R. The analysis gave a

comparable number of genes explaining the variability in
GDR in each phase, i.e., 79 for energy restriction, 103 for
weight stabilization, and 114 for dietary intervention
(Table 2 and supplementary Table 5). During energy
restriction, adipocyte genes involved in polyunsaturated
fatty acid synthesis and elongation were part of the model
(supplementary Fig. 2A). These genes are known to be
regulated by the transcription factor sterol regulatory
element binding transcription factor 1, which was also
part of the model. During weight stabilization and dietary

TABLE 2
Distribution of 1,535 differentially expressed genes among adipose tissue cell types

Adipocytes Macrophages Other cell types No cell specificity Total

Significantly regulated genes
ER 260 (43.9) 5 (0.8) 7 (1.2) 320 (54.1) 592 (100)
WS 184 (22.6) 94 (11.5) 22 (2.7) 514 (63.1) 814 (100)
DI 78 (13.4) 80 (13.8) 5 (0.9) 418 (71.9) 581 (100)

Secreted factors
ER 62 (53.0) 3 (2.6) 4 (3.4) 48 (41.0) 117 (100)
WS 41 (16.9) 57 (23.5) 7 (2.9) 138 (56.8) 243 (100)
DI 26 (16.2) 44 (27.3) 1 (0.6) 90 (55.9) 161 (100)

Genes identified by PLS-R
ER 35 (44.3) 7 (8.9) 2 (2.5) 35 (44.3) 79 (100)
WS 20 (19.4) 34 (33.0) 0 (0) 49 (47.6) 103 (100)
DI 13 (11.4) 41 (36.0) 0 (0) 60 (52.6) 114 (100)

Data are n (%). DI, dietary intervention; ER, energy restriction; WS, weight stabilization.

TABLE 3
List of 31 macrophage-specific markers derived from DNA microarray analysis of human AT cell types

Symbol
cluster Aliases Gene name

Macrophage vs.
adipocyte

Macrophage vs.
SVF

ACP5 TRAP Acid phosphatase 5. tartrate resistant 88.9 1.7
CCRL2 Chemokine (C-C motif) receptor-like 2 70.4 3.7
CD14 CD14 molecule 17.8 1.8
CD163 CD163 molecule 120.9 1.5
CD209 DCSIGN CD209 molecule 25.3 1.6
CD33 SIGLEC3 CD33 molecule 28.5 2.8
CD68 CD68 molecule 19.3 1.8
CENTA2 Centaurin, alpha 2 61.6 1.7
CLEC10A CD301/CLECSF13 C-type lectin domain family 10, member A 224.4 3.2
CXCL3 Chemokine (C-X-C motif) ligand 3 40.5 2.9
FCGBP Fc fragment of IgG binding protein 157.4 2.4
FCGR2B CD32 Fc fragment of IgG, low affinity IIb, receptor (CD32) 169.3 2.4
FCN1 Ficolin 1 134.8 2.9
GATM Glycine amidinotransferase 12.7 1.6
HLA-DMA Major histocompatibility complex, class II, DM alpha 14.5 2.3
HLA-DRA Major histocompatibility complex, class II, DR alpha 45.6 2.0
IL10 Interleukin 10 27.0 2.5
IRF5 Interferon regulatory factor 5 32.5 2.2
KYNU Kynureninase 50.5 4.1
LIPA Lipase A, lysosomal acid, cholesterol esterase 17.9 1.7
MARCO Macrophage receptor with collagenous structure 36.3 1.6
MS4A4A CD20L1 Membrane-spanning 4-domains, subfamily A. member 4 86.1 1.8
MS4A6A CD20L3 Membrane-spanning 4-domains, subfamily A, member 6A 76.4 2.7
MS4A7 CD20L4 Membrane-spanning 4-domains, subfamily A, member 7 15.0 5.6
MSR1 CD204 Macrophage scavenger receptor 1 68.1 1.9
PLA2G7 phospholipase A2, group VII 180.4 2.7
SIGLEC1 CD169 Sialic acid binding Ig-like lectin 1, sialoadhesin 12.8 1.8
SLCO2B1 Solute carrier organic anion transporter family, member 2B1 45.0 1.5
SNCA Synuclein, alpha 48.1 2.5
SPP1 Osteopontin Secreted phosphoprotein 1 259.1 2.4
TLR7 CD187 Toll-like receptor 7 33.3 1.8

Macrophage vs. adipocyte: ratio of expression in adipose tissue macrophages vs. adipocytes. Macrophage vs. stroma-vascular (SVF): ratio of
expression in adipose tissue macrophages vs. SVF.
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intervention, the models comprised macrophage receptors,
antigens, and macrophage-secreted products. Ingenuity
pathway analysis revealed a dense network of interactions
between genes involved in chemokine signaling, the acute-
phase response, interleukin (IL)-10 signaling, and leuko-
cyte extravasation (supplementary Fig. 2B and C). Next,
we looked specifically at the relation between macrophage
markers and insulin sensitivity. The 31 markers had a
profile that was clearly distinct from that of GDR (Fig. 5A).
Spearman correlation analysis of the relation between
macrophage marker gene expression and insulin sensitiv-
ity revealed a negative correlation for centroids of group A
and B (r � �0.52 and r � �0.49, P � 0.02) during energy
restriction: the higher the upregulation of macrophage
genes, the lower the improvement in insulin sensitivity
(Fig. 5B).

DISCUSSION

In this work, we investigated the molecular adaptations
occurring within human adipose tissue during a dietary
program including an initial severe calorie restriction
followed by a weight stabilization phase and studied the
relationship with insulin sensitivity in the different phases.
We used transcriptomic techniques to perform a complete
survey of kinetics of gene expression changes in subcuta-
neous adipose tissue, including the regulation of macro-
phage markers. Several studies have investigated changes
in adipose tissue mRNA levels during hypocaloric diets
(25–29). However, the clinically relevant distinct phases of
dietary programs, i.e., the rapid weight loss phase associ-
ated with an energy deficit and the progressive weight
stabilization leading to weight maintenance, have not been
investigated. Moreover, no study has disclosed the be-
havior of macrophages and adipocytes in response to
nutritional changes. Our work reveals that molecular
adaptations in adipose tissue and their relation to insulin
sensitivity vary strikingly between different dietary peri-
ods. Therefore, in the search for the regulatory mecha-
nisms of adipose tissue functions during nutritional
interventions, it is important to evaluate the impact of
individual dietary phases.

During energy restriction, a salient feature was the
downregulation of genes involved in adipocyte metabo-
lism. Numerous genes involved in unsaturated fatty acid
and triacylglycerol syntheses showed decreased expres-
sion. The glycolytic pathway was also affected negatively.
Moreover, energy restriction had a profound suppressive
impact on mitochondrial metabolism, especially on genes
of the citrate cycle and oxidative phosphorylation. These
changes during energy restriction promote a decrease in
fat accretion capacity and energy consumption by the
adipocytes. The reporter metabolite analysis supports
this conclusion, as levels of acyl-CoA, acetyl-CoA, and
metabolites of the mitochondrial respiratory chain were
predicted to be diminished. Another feature of energy
restriction was the upregulation of many genes expressed
in macrophages and involved in innate immunity. Indeed,
the measurement of adipose tissue macrophage markers
showed that, although with a difference in amplitude, there
was a coordinated increase in gene expression during
energy restriction. Interestingly, IL-10, a typical anti-
inflammatory marker, was among the upregulated genes.
At the same time, there was a significant decrease in
plasma C-reactive protein levels, indicating a diminution
of systemic inflammation (30). This finding suggests that
adipose tissue and systemic inflammatory processes are
differently regulated during the severe calorie restriction
phase. It can be hypothesized that during the severe
calorie restriction phase that activates the immune sys-
tem, either adipose tissue does not contribute to the
control of systemic inflammation or the induction of
anti-inflammatory genes by activated macrophages favors
the diminution of systemic low-grade inflammation. When
energy restriction and weight stabilization were com-
pared, an opposite pattern of regulation was observed
between adipocyte metabolism genes and genes belonging
to pathways chiefly operating in macrophages. This finding
suggests the presence of cross-regulatory mechanisms
between these cells. During energy restriction, the dimi-
nution of metabolism in adipocytes could trigger the
increase in macrophage activity, whereas during weight
stabilization, the restoration of adipocyte metabolic capac-
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ity could promote the attenuation in the expression of
macrophage genes. The clear upregulation of macrophage
gene expression during energy restriction and downregu-
lation during weight stabilization were also seen when
analyzing the adipose tissue macrophage-specific markers.
Early during energy restriction, lipolysis is increased be-
cause of a change in acute signals such as a drop in the
levels of insulin, which is the main antilipolytic hormone
(31,32). The decreased expression of cognate metabolic
genes during energy restriction suggests a diminution in
capacities of fat storage and energy utilization. These
adaptations contribute to an increase in fatty acid net
release by fat cells. One possible scenario of the reciprocal
expression of adipocyte- and macrophage-related genes
during energy restriction could be that fatty acids released
by adipocytes during energy restriction can activate mac-
rophages and lead to the upregulation of expression of
macrophage-related genes (33). During weight stabiliza-
tion, upregulation of metabolic gene expression suggests
that fatty acids are stored and used within the fat
cells. Their net release was, therefore, presumably de-
creased. This decrease may result in deactivation of mac-
rophages and downregulation of macrophage gene
expression. Another putative mechanism may involve the
adipocyte fatty acid binding protein, FABP4. Indeed, it has
recently been shown that deletion of FABP4 in vivo in
mouse adipocytes resulted in reduced activation of mac-
rophages (34). The upregulation of FABP4 found in the
present study during energy restriction and downregula-
tion during weight stabilization indicate a role for this lipid
chaperone in the cross-talk between fat cells and macro-
phages. Conversely, it is possible that macrophage activity
may influence adipocyte metabolism, notably through sup-
pression of fatty acid storage and activation of lipolysis
(33,35–37). During weight stabilization and dietary inter-
vention, processes of immune response such as antigen
presentation with regulation of major histocompatibility
complex genes, macrophage activation, complement acti-
vation, and IL-1 and IL-10 signaling were downregulated.
Interestingly, components of the receptor system for lipo-
polysaccharide including CD14, Toll-like receptor 4,
Myd88, and MD-2/LY96 were downregulated. This system
mediates the activation of proinflammatory pathways in
macrophages and controls the production of cytokines
such as IL-6 and tumor necrosis factor-�. It has also
recently been shown to mediate the effect of fatty acids
both in vitro and in vivo and to be part of the link between
lipid, innate immunity, and insulin resistance (38,39).
Adipose tissue remodeling was another modified pathway
during dietary intervention because actin cytoskeleton
signaling and extracellular matrix pathways were regu-
lated as shown previously after weight loss induced by
bariatric surgery (40).

Study of the transcriptome allows genome-wide analysis
with no a priori hypothesis of the relation between adipose
tissue gene expression and GDR. PLS-R gave the best
models of prediction in each phase, with 80–110 genes
associated with the variability in GDR. This finding clearly
indicates that epistatic interactions among a set of genes
rather than individual genes contribute to the association
between adipose tissue and insulin sensitivity. The genes
participating in insulin sensitivity models differed during
dietary phases. During energy restriction, synthesis of
unsaturated fatty acids was associated with the changes in
GDR. In support of this finding, stearoyl-CoA desaturase 1
activity and fatty acid desaturation indexes in adipose

tissue have recently been shown to be associated with
insulin sensitivity (41). During weight stabilization and
dietary intervention, pathways related to innate immunity
were markedly represented in insulin sensitivity models.
Accordingly, the proportion of macrophage genes in-
creased in the PLS-R models of insulin sensitivity with
metalloproteinase-9, osteopontin/secreted phosphopro-
tein 1, and tartrate-resistant acid phosphatase 5 as impor-
tant contributors. Of note, these secreted factors have an
important local role in adipose tissue, modulating tissue
remodeling and inflammation (42–44). The analysis of
correlation between expression of macrophage markers
and GDR revealed an inverse relation during energy re-
striction. These data suggest that the activation of some
macrophage gene expression may counteract the allevia-
tion of insulin resistance during this phase.

To conclude, macrophage and fat cell gene expressions
in adipose tissue are differentially regulated during the
calorie restriction and weight maintenance phases of a
weight loss program. The diet-induced improvement of
insulin sensitivity is associated with changes in clusters of
genes rather than in single genes, with the sets of genes
being different in each phase of the program. The kinetics
of changes within adipose tissue and the interactions
between the metabolic state of adipocytes and the activa-
tion state of macrophages appear critical for the under-
standing of the beneficial effects on health resulting from
a long-term dietary weight loss program in obese subjects.
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