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Abstract

Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present
an open source programming library called GIVE that facilitates the creation of personalized genome browsers without
requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization
of multiple types of genomics data, including genome annotation, “linear” quantitative data, and genome interaction
data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML
code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with

collaborators. GIVE is available at: https//www.givengine.org/.

Background

Genomics data have become increasingly popular and di-
verse, posing new challenges to personalized data manage-
ment and visualization [1-4]. On the one hand, people
interested in making their genomic data public required
“researchers and policymakers [to anticipate] when people
share their genome on Facebook” [5]. This movement asks
for development of portable, versatile, and easily deployable
genome browsers. Ideally, a portable data visualization tool
can work like a Google map that can be inserted into per-
sonal websites. On the other hand, new data types, espe-
cially those representing genome-wide interactions—
including genome-interaction data (Hi-C [6], ChIA-PET
[7]), transcriptome-genome interaction data (MARGI [8],
GRID-seq [9]), and transcriptome interaction data (PARIS
[10], MARIO [11], LIGR-seq [12], SPLASH [13])—require
compatible visualization tools; ideally, it should be possible
to seamlessly display these data in parallel with other data
types including RNA sequencing (RNA-seq) [14], chroma-
tin immunoprecipitation sequencing (ChIP-seq) [15], and
Assay for Transposase-Accessible Chromatin using se-
quencing (ATAC-seq) [16].

It was envisioned that future genome browsers could
work like Google Maps, of which users with small efforts
can insert a customized version into their own websites
[17]. Redeployable genome browsers are developed
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toward this goal [17-20]. Still, releasing websites with
interactive visualization of genomic data would generally
require systems administration, database, and web pro-
gramming work. The GIVE project is aimed to automate
this work and offer a portable and lightweight genome
browser with complementary advantages of genome
browser websites [1, 2], desktop executables [21], and
personal homepages and blogs.

We created the open source GIVE programming li-
brary to meet the diverse needs of users with various
levels of sophistication. A feature called GIVE HUG
(HTML Universal Generator) provides a graphical inter-
face to interactively generate HTML codes for displaying
user chosen datasets. Users can save and share the
HTML file with collaborators or copy-paste the HTML
codes into their websites, which would lead to embed-
ded interactive data display. Users can use GIVE to cre-
ate custom genome browsers without hosting a data
server, where all the data are retrieved on-demand from
public data servers. Users who choose to host data on
their own server can do so with commands provided in
GIVE-Toolbox. With a few lines of HTML code, GIVE
enables a website to retrieve, integrate, and display
diverse data types hosted by multiple servers, including
large public depositories and custom-built servers. Such
simplicity of use comes from encapsulation of new data
management, communication, and visualization tech-
nologies made available by the GIVE development team.
The cores of these technologies are new data structures
and a memory management algorithm.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-018-1465-6&domain=pdf
http://orcid.org/0000-0001-6419-7453
http://www.givengine.org/
mailto:szhong@ucsd.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cao et al. Genome Biology (2018) 19:92

Results

Overview of the GIVE library

GIVE is composed of an HTML tag library and
GIVE-Toolbox. The former is a library of HTML tags
for data visualization. GIVE-Toolbox is a set of com-
mand line commands, which automates all necessary
database operations. For any public datasets for which
the metadata can be found in GIVE data hub, users can
directly use GIVE’s HTML tags to display such data,
without invoking GIVE-Toolbox.

GIVE's HTML tag library provides flexibility to build a
variety of genome browsers, for example a single-cell tran-
scriptome website [22] (https://singlecell.givengine.org/), an
epigenome website [23, 24] (https://encode.givengine.org/,
Additional file 1: Figure S1), a genome interaction website
[25] (https://mcf7.givengine.org/, Fig. 1), and an RNA-chro-
matin interaction website [26] (https://margi.givengine.org/,
Fig. 2). With GIVE, users can build data visualization web-
sites without hosting actual data (data are hosted on public
data servers), data hosting websites, or websites that display
composite datasets hosted on user servers and public
servers. The GIVE-enabled HTML files can also be used
and shared as custom software, which encapsulate both
data and visualization capability.
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Automatic webpage generation with GIVE HUG
GIVE data hub and its embedded feature HUG enable
automatic generation of interactive visualization web-
pages for user chosen datasets. GIVE data hub is a web
page for browsing the metadata of genomic datasets
hosted on public data servers (Additional file 1: Figure
S2). Inside this web page is a database of metadata, in-
cluding data type, data description, and the web address
of the actual dataset. All metadata in GIVE data hub are
validated by the GIVE development team to ensure cor-
rectness of information. Users are welcome to submit
metadata of additional datasets hosted on public data
servers through an online metadata submission form.
HUG automatically generates HTML webpages for
any user chosen datasets. To use HUG, users can click
“HTML Generator Mode” in data hub website
(Additional file 1: Figure S2), select any datasets, and
click the “Generate” button (Additional file 1: Figure S3).
A separate window will pop up that summarizes the user
chosen datasets and provide the generated HTML code
(Additional file 1: Figure S4). Like Google Maps, this
data-containing genome visualization HTML code can
be copy-pasted into a personal website or saved and
shared. Users can interactively change a few display
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Fig. 1 Screenshot of a custom genome browser hosting epigenome and genome interaction datasets. The top genomic coordinate covers the
entire chromosome 17 (chr17:1-81,195,210). The first three data tracks from the top are RNA-seq, H3K27ac ChlIP-seq, Pol2 ChIP-seq data in MCF-7
cells, shown corresponding to the top genomic coordinate. The genomic coordinate at the bottom shows chr17:45000000-55,000,000. The
bottom three data tracks are RNA-seq, H3K27ac ChlIP-seq, Pol2 ChiP-seq data shown corresponding to the bottom coordinate. The Hi-C interaction
data in the center panel shows Hi-C derived links between the genomic regions (top coordinate) and other genomic regions (bottom coordinate). The
strengths of the Hi-C derived genomic interactions are plotted in color scale, with red being strongest and green being weakest
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Genome-wide RNA-chromatin interactions
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Fig. 2 A custom website hosting genome-wide RNA-DNA interaction datasets. Panels from top to bottom are (a) genome coordinates (chrX:73500000-
74,500,000) and genes, (b) RNA-DNA interaction data in human embryonic (H9) stem cells with the RNA end (top) and the DNA end (bottom) shown with
different resolutions (coordinate bars), () RNA-DNA interaction data in human embryonic kidney (HEK) cells with the RNA end (top) and the DNA end
(bottom) shown with different resolutions (coordinate bars), and (d) genes and genome coordinates. Red arrow points to the genomic location of the Xist
gene, where no RNA was produced in H9 (b) but plenty of RNA was produced and interact with X chromosome in HEK (c). Data were produced by the
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parameters using the top portion of this interactive win-
dow and hit the “Update code” button, leading to a new
HTML code incorporating user-designated visualization
parameters (Additional file 1: Figure S4). HUG offers the
simplest way of generating GIVE-powered genome
browser websites.

Managing custom data with GIVE-toolbox

To add and manage custom data, users should first
download and run GIVEs main executable called
GIVE-Docker. GIVE-Docker can be executed on all
mainstream operating systems without system-specific
configuration. When executed, GIVE-Docker automatically
sets up a web server and a database system. Also packaged
within this executable is a toolbox (GIVE-Toolbox) that
automates all database operations into command line
commands (Additional file 1: Table S1), thus relieving the
user from working with a database language. Using the
website hosting single-cell transcriptomes (https://single

cell.givengine.org/) as an example, we provide a line-by-line
example of building a website hosting custom data. After
downloading and running GIVE-Docker, we will issue
GIVE-Toolbox provided commands to initialize a reference
genome, add gene annotations, and load custom data (Add-
itional file 1: Table S2), followed by inserting HTML tags to
display the data (Last row, Additional file 1: Table S2).

Without additional coding, the website is automatic-
ally equipped with a few interactive features. These
features are enabled by JavaScript codes that are encap-
sulated within the GIVE's HTML tags. Visitors to this
website can input new genome coordinates (Additional
file 1: Figure S5A), choose any subset of data tracks to
display (Additional file 1: Figure S5B), change genome
coordinates by dragging the coordinates left or right by
mouse (Additional file 1: Figure S5C), or zoom in and
out the genome by scrolling the mouse wheel while the
mouse pointer is on top of the genome coordinate area
(Additional file 1: Figure S5C).
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Double layer display of genome interaction data

GIVE implements a double layer display strategy for
visualization of genome interaction data. In this display
format, two genomic coordinates are plotted in parallel
(Fig. 1, center, and Fig. 2b, c). Interactions between gen-
omic regions are displayed as links of correspondent gen-
omic regions between the top and bottom coordinates.
When intensity values are associated with the links, the
intensities are displayed using a red (large) to green (small)
color scale (Fig. 1, center). This double layer display strat-
egy has two advantages. First, the top and the bottom co-
ordinates can cover different genomic regions, allowing it
to visualize long-range interactions (Fig. 1). Users can shift
or zoom the top and the bottom coordinates independ-
ently, making it easy to visualize, for example, interactions
from the XIST locus (RNA end, Fig. 2b, c) to the entire X
chromosome (DNA end, Fig. 2b, c). This double layer de-
sign also makes it intuitive to display asymmetric interac-
tions, for example, interactions from RNA (top lanes,
Fig. 2) to DNA (bottom lanes, Fig. 2).

New data structures for transfer and visualization of
genomic data

We developed two data structures for optimal speed in
transferring and visualizing genomic data. These data
structures and their associated technologies are essential
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to GIVE. However, all the technologies described in this
section are behind the scenes. A website developer who
uses GIVE does not have to recognize the existence of
these data structures.

We will introduce the rationales for developing the new
data structures with a usage scenario. When a user
browses a genomic region, all genome annotation and
data tracks within this genomic region should be trans-
ferred from the web server to the user’s computer. At this
moment, only the data within this genomic region require
transfer and display (Fig. 3a). Next, the user shifts the gen-
omic region to the left or right. Ideally, the previous data
in the user’s computer should be re-utilized without trans-
ferring again and only the new data in the additional gen-
omic region should be transferred. After data transfer, the
previous data and the new data in the user’s computer
should be combined (Fig. 3b).

Next, the user zooms out. This action changes the
resolution of the genome. It is unnecessary to transfer
and infeasible to display data at the previous granularity.
At this point, the program should adjust the granularity
of the already transferred data and then transfer
additional data at the new granularity (Fig. 3c). When
the user zooms in, the program will adjust to finer
granularity and transfer data at this resolution (Fig. 3d).
In summary, what is needed is a multiscale data
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Fig. 3 Scenarios for browser use. a Displaying a segment of the genome. While no data are stored in cache (blank blocks), only data within the
queried region need to be fetched from the server (colored blocks) and are stored in cache for later use. b Shifting display window. Only the part
not in cache needs to be fetched from the server (colored blocks) and merged in cache. ¢ Zooming out. Existing cache data are used to recalculate
new cache at a coarser granularity level, after which non-overlapping data are requested. d Zooming in. Because no cached data exist at
a finer granularity level, all data within the queried region need to be fetched at that level
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container that can add or remove data from both sides
of a genomic window.

To substantiate the multiscale data container described
above, we developed two data structures named Oak and
Pine. Oak handles sparse data tracks such as genome an-
notation, gene tracks, peak tracks, and interaction regions
(BED, interaction data). Pine deals with dense data tracks
in bigWig format [27]). Once the user changes the viewing
area, Oak and Pine automatically adjust to the optimal
tree structure for holding the data in the viewing area,
which may involve change of data granularity, change of
tree depths, adding or merging nodes, and rearranging
node assignments to branches. These operations minimize
data transfer over the Internet as well as the amount of
data loaded in computer memory.

To optimize the use of memory, we developed an algo-
rithm for removing obsolete data from the memory
(“withering”). When the data stored in Oak or Pine nodes
have not been accessed by the user for a long time, data in
these nodes will be dumped and the memory recycled.

Methods
Using HTML tag library
Use of GIVE’'s HTML tags does not require any download-
ing or installation. The simplest way to try out GIVE'’s
HTML tags is to use HUG, a graphical interface that will
generate an HTML file for user chosen datasets.

Instead of using HUG, a web developer can import the
entire GIVE library to a web page by inserting the fol-
lowing two lines (Lines 1, 2).

<script src="https://www.givengine.org/bower components

/webcomponentsjs/webcomponents-lite.min.js"></script>  (Line 1)
<link rel="import" href="https://www.givengine.org
/components/chart-controller/chart-controller.html"> (Line 2)

To display genomics data, the web developer can use
either the <chart-controller> tag or the <chart-area > tag.
The <chart-controller> tag will display genomic data as
well as genome navigation features such as shifting and
zooming (Additional file 1: Figure S5C). For example,
adding the following line in addition to the two lines
above would create a website similar to that in Add-
itional file 1: Figure S5 (Line 3).

<chart-controller title-text="Single-cell RNA-Seq" group-id
-list="["genes", "singleCell", "customTracks"]' num-of-
subs="1"></chart-controller> (Line 3)

Here, the title-text attribute sets the title text of a web-
site. The <chart-area> tag will display the track data with-
out metadata controls such as data selection buttons and
input box for genomic coordinates, while retaining some
interactive capacities including dragging and zooming.
This option provides the developer greater flexibility for
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website design. In addition, the <chart-area> tag is com-
patible with mobile apps.

Using GIVE-toolbox

GIVE-Toolbox is a set of command line tools offered to
manage custom data (Additional file 1: Table S1). These
command line tools automate data-related operations
and relieve website developers from directly program-
ming with a database language (MySQL). In addition to
comprehensive documentation and tutorials (Additional
file 1: Table S3), executing each tool with —h argument
will output usage instruction. GIVE-Toolbox is our rec-
ommended option; however, developers can choose to
directly work MySQL instead.

Running GIVE-Docker as a standalone executable
Utilizing Docker’s container technology (https://
www.docker.com), we encapsulated GIVE’s codes and all
the environmental requirements and database including
Apache, MySQL, and PHP into a fully packaged execut-
able called GIVE-Docker. This standardized executable
can be deployed without system specific configuration to
all mainstream operating systems and cloud computing
services, including Linux, macOS, Windows 10, AWS,
and Azure. This standalone executable does not require
system administration or installation of any prerequisite
compiler or database and therefore is the recommended
option. Use of the GIVE HTML tag library does not re-
quire running GIVE-Docker.

Experienced programmers can choose custom installa-
tion instead of using GIVE-Docker. A step-by-step guide
of custom installation is provided in GIVE’s online
manual.

Backstage technologies

The following technologies are wrapped inside the GIVE
library. Website developers who use GIVE do not have
to understand them or even know their existence.

Query

A query is issued when the user views any genomic re-
gion (query region). A new query is issued when the user
changes the genomic region. A query induces two ac-
tions, which are data retrieval and display of data.

Oak, a data structure
A data structure called Oak is developed to effectively
load and transfer a subset of data in BED format. The
subset is defined as a continuous genomic region within
a chromosome. Oak is a type of tree data structure, with
nodes defined below.

A node is composed of a list of key-value pairs and a
set of attributes. A key is a pair of starting and ending
genomic coordinates, termed left key and right key,
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respectively. When populated with data, a node keeps
the data for a genomic region defined by the first left
key and the last right key. The keys in a node partition
the genomic region into non-overlapping sub-regions. A
node can be either a branch node or a leaf node. The
difference between a branch and a leaf lies in their
values. A branch node is a node where the values are
other nodes. A leaf node is a node where each value is a
set of two lists of data points (Additional file 1: Figure
S6). Each data point is a row of a BED file. When popu-
lated with data, the first list contains all the rows in the
BED file where the start position matches the left key.
The second list contains all the rows where the start and
the end positions cover (span across) the left key. A
value in a leaf node can also be empty. Leaf nodes with
empty values are used to mark the genomic regions out-
side the query region.

Creating an oak instance, populating data, and updating
oak

An Oak instance will be created, populated with data, or
get updated in response to a query. These actions ac-
complish data transfer from the server to a user’s com-
puter. Only the data within the queried region will be
transferred. Hereafter we will refer to an Oak instance as
an Oak.

When the query region is on a new chromosome, an
Oak will be created as follows. Every unique start pos-
ition in the BED file that is contained within the query
region is used to create a leaf node. The genomic regions
on the queried chromosome but outside the query re-
gion are inserted as pairs of keys and empty values
(placeholders) to the nodes with the nearest keys. The
leaf nodes are ordered by their first left keys and sequen-
tially linked by their pointers. A root node is created
with all the leaf nodes are its children. This initial tree is
fed into a self-balancing algorithm [28, 29] to construct
a weight balanced tree, thus finishing the construction of
an Oak.

When the query region is on a previously queried
chromosome, the query region will be compared with
the Oak of that chromosome and the overlapping region
will be identified. The data of the overlapping region are
therefore already loaded in the Oak and for the purpose
of saving time; this should not be loaded again. The data
in the rest of the query region will be loaded to the Oak.
This is done by first creating a leaf node for every add-
itional unique start position, removing the placeholder
key-value pairs, and adding new placeholder key-value
pairs for the rest of the chromosome. The weight balan-
cing algorithm [28] is invoked again to re-balance this
Oak. The weight balancing step prepares the Oak for ef-
ficient response to future queries.
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Pine, a data structure

A data structure called Pine is developed to effectively
load and transfer a subset of data in bigWig format. The
subset is defined as a continuous genomic region within
a chromosome. Pine can automatically determine the
data granularity, which avoids transferring data at a
higher than necessary resolution. The resolution of dis-
played data is limited by the number of pixels on the
screen. Pine instances are always constructed to the ap-
propriate depth and match the limit of the resolution.

A node consists of a list of key-value pairs and a set of
attributes. The attributes are the same as those of Oak
nodes, except there is an additional attribute, called data
summary. The data summary includes the following
metrics for a given node (the genomic region defined by
the first left key and the last right key of the node): the
number of bases; sum of values (summing over every
base); sum of squares of the values; maximum value; and
minimum value. A key is a pair of starting and ending
genomic coordinates termed left key and right key, re-
spectively. The keys in a node divide the genomic region
into non-overlapping sub-regions. A node can be either
a branch node or a leaf node. Their differences lie in the
values. A branch node is a node where the values are
other nodes (Additional file 1: Figure S7A). A leaf node
is a node where each value is a list of data points (Add-
itional file 1: Figure S7B). Each data point is a row of a
bigWig file (binary format).

A node in Pine can have an empty key-value list and
an empty data summary. If this is the case, we call it a
placeholder node.

Creating a pine instance, populating data, and updating
pine

A Pine is created when a query to a new chromosome is
issued. A Pine is created with the following steps. First,
the depth of the Pine tree is calculated as:

Tree depth = Ceiling ( log, (chromosome length)- log, (resolution))
(1)

The limit of the resolution (length of genomic region
per pixel) is the total length of the queried genomic
region (viewing area) divided by the number of horizon-
tal pixels, namely the width of the SVG element in
JavaScript.

Next, a root node is created with keys covering the en-
tire chromosome where the query region is contained
within. Until reaching the calculated depth, for any node
that overlaps with the query region, create a fixed num-
ber (n, n=20 in the current release) of child nodes by
equal partitioning its genomic region. If any of the cre-
ated child nodes do not overlap with the query region,
use a placeholder node. For each node, point the pointer
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to the “right hand” node at the same depth. Thus, a Pine
is created. This Pine has not loaded with actual data.

To load data, every leaf node issues a request to re-
trieve the summary data of its covered region (between
the first left key and the last right key), which will be
responded to by a PHP function wrapped within GIVE.
This function returns summary data between the input
coordinates from the bigWig file. After filling the sum-
mary data for all nodes at the deepest level, all parent
nodes will be filled, where the summary data are calcu-
lated from the summary data of their child nodes. This
process continues until reaching the root node.

A Pine will be updated when a new query partially over-
laps with a previous query. In this case, the new depth
(d2) is calculated using Eq. 1. This depth (d2) reflects the
new data granularity. If d2 is greater than the previous
depth, extend the Pine by adding placeholder nodes until
d2 is reached. From root to depth d2-1, if any placeholder
node overlaps with the query region, partition it by creat-
ing n child nodes. If any of the newly created child nodes
does not overlap with the query region, use a placeholder
node. For any newly created node, point the pointer to the
“right hand” node at the same depth. At this step, the Pine
structure is updated into proper depth. Finally, at depth
d2, retrieve summary data for every non-placeholder node
that has not had summary data. Update the summary data
of their parent nodes until reaching the root. In this way,
only the new data within the query region that had not
been transferred before will get transferred.

Memory management

We developed a memory management algorithm called
“withering.” Every time a query is issued, this algorithm
is invoked to dump the obsolete data, which have not
been used in the previous ten queries. “Withering”
works as follows: all nodes are added with a new integer
attribute called “life span.” When a node is created, its
life span is set to 10. Every time a query is issued, all
nodes overlapping with the query region as well as all
their ancestral nodes get their life span reset to 10. The
other nodes that do not overlap with the query region
get their life span reduced by 1. All the nodes with life
span equals 0 are replaced by placeholder nodes.

Discussion

The GIVE library is designed to reduce the need for spe-
cialized knowledge and programming time for building
web-based genome browsers. GIVE is open source soft-
ware. The open source nature allows the community at
large to contribute to enhancing GIVE. The name GIVE
(Genome Interaction Visualization Engine) was given
when this project started with a smaller goal. Although
it has grown into a more general-purpose library, we
have decided to keep the acronym.
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An important technical consideration is efficient data
transfer between the server and users’ computers. This is
because users typically wish to get an instant response
when browsing data. To this end, we developed several
technologies to optimize the speed of data transfer. The
central idea is threefold, including: (1) only transferring
the data in the query region; (2) minimizing repeated
data transfer by reusing previously transferred data; and
(3) only transferring data at the necessary resolution. To
implement these ideas, we developed two new ap-
proaches to index the genome and formalized these ap-
proaches with two new data structures, named Oak and
Pine.

The Oak and Pine are indexing systems for sparse data
(BED) and dense data (bigWig), respectively. BED data
typically store genomic segments that have variable
lengths. Given this particular feature, we did not index
the genome base-by-base but rather developed a new
strategy (Oak) to index variable-size segments. The big-
Wig files contain base-by-base data, which for a large
genomic region can become too slow for web browsing.
We therefore designed the Pine data structure that can
automatically assess and adjust data granularity, which
exponentially cut down unnecessary data transfer.

Conclusions

GIVE provides portable visualization components to
personal websites. GIVE provides new data structures
for efficient query, transmission, and visualization of
functional genomic data. GIVE's double layer display for-
mat offers an alternative approach for visualizing gen-
omic interaction data. GIVE-toolbox relieves web
developers from programming with database languages
and offers an easier approach for managing custom data.
GIVE HUG helps users to generate HTML-based web
pages. Custom datasets can be packaged with GIVE into
interactive graphical formats and sent to designated
collaborators.
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