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Abstract: Mobile phone cameras are often significantly more useful than professional digital single-
lens reflex (DSLR) cameras. Knowledge of the camera spectral sensitivity function is important in
many fields that make use of images. In this study, methods for measuring and estimating spectral
sensitivity functions for mobile phone cameras are developed. In the direct measurement method, the
spectral sensitivity at each wavelength is measured using monochromatic light. Although accurate,
this method is time-consuming and expensive. The indirect estimation method is based on color
samples, in which the spectral sensitivities are estimated from the input data of color samples and
the corresponding output RGB values from the camera. We first present an imaging system for
direct measurements. A variety of mobile phone cameras are measured using the system to create a
database of spectral sensitivity functions. The features of the measured spectral sensitivity functions
are then studied using principal component analysis (PCA) and the statistical features of the spectral
functions extracted. We next describe a normal method to estimate the spectral sensitivity functions
using color samples and point out some drawbacks of the method. A method to solve the estimation
problem using the spectral features of the sensitivity functions in addition to the color samples is then
proposed. The estimation is stable even when only a small number of spectral features are selected.
Finally, the results of the experiments to confirm the feasibility of the proposed method are presented.
We establish that our method is excellent in terms of both the data volume of color samples required
and the estimation accuracy of the spectral sensitivity functions.

Keywords: mobile phone cameras; spectral sensitivity functions; measurement and estimation;
spectral sensitivity database

1. Introduction

In recent years, mobile phones have become widespread and part of our daily lives
(e.g., see [1]). The combination of mobility, telecommunication, and photography enabled by
integrating cameras into mobile devices has transformed our lifestyles. In this respect, mobile
phone cameras are far more useful than professional digital single-lens reflex (DSLR) cameras.
More recently, beyond imaging, mobile sensing technologies using mobile phone cameras
have emerged and are rapidly finding applications in many fields, such as smartphone
spectroscopy, medical diagnosis, food quality inspection, and environmental monitoring [2–4].
The sensing systems often consist of a mobile phone camera and an externally attached device.

Knowledge of the camera spectral sensitivity function is important in many fields
that deal with images, such as imaging science and technology, computer vision, medical
imaging, and applications involving cultural heritage or artwork. The spectral sensitivity
represents the image sensor output per unit incident light energy at each wavelength within
the spectral range in which the camera system operates. The function plays the role of
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mapping the spectral information in a scene to the RGB response values of the camera [5,6].
However, as camera manufacturers typically do not publish this information, users need to
either measure or estimate their camera’s sensitivity [7,8]. Thus far, the measurement and
estimation of spectral sensitivity functions have been mostly limited to DSLR cameras, for
which the digital outputs are available in the form of raw data. For instance, the spectral
sensitivity database measured by the Rochester Institute of Technology (RIT) for 28 cameras
is given in [9], whereas the Nokia N900 is the only mobile phone (smartphone) for which
the sensitivity is given.

Methods for knowing spectral sensitivities can be mainly classified into the direct mea-
surement method and the indirect estimation method. The direct methods are methods in
which the spectral sensitivity is measured at each wavelength point in the visible range [7,10].
They require a monochromator that emits stable monochromatic light. Most indirect estima-
tion methods are based on algorithms that use color samples [11,12]. Typical color samples
include reflective color targets, such as color checkers, that are photographed by a camera
under known illumination. Fluorescence, LED, and LCD display-based color targets can be
used as specialized color samples [13–15]. The spectral sensitivity functions are estimated
from pairs of input and output data comprising the color samples and camera RGB values,
respectively. Principal component analysis (PCA) is a combination of direct and indirect
methods [16]. This method was described as being more accurate than the conventional
indirect method (e.g., see [17]). As estimating the spectral sensitivity of mobile phone camera
has not been attempted, we applied the modified method to the spectral sensitivity estimation
problem in this study. It should be noted that the spectral sensitivity function creates a linear
relationship between the camera inputs and outputs using raw image data.

However, in most cases, the digital output of a mobile phone camera is not raw image
data, but rather rendered image data such as JPEG images. This type of data is quite
different from raw data as it has undergone many post-processing steps such as white
balance (WB), color interpolation, color correction, gamma correction, and compression.
Furthermore, the input and output data are not linearly related [17]. Recently, software that
can store images captured using a mobile phone camera as raw data has become publicly
available. In [18], a compressive sensing approach was proposed for estimating the spectral
sensitivity functions of a mobile phone (smartphone) camera. This method is an indirect
method based on a limited number of color samples, as the directly measured RGB spectral
response functions of the smartphones were not available.

In this study, methods for measuring and estimating the spectral sensitivity functions
of mobile phone cameras are developed. Although applying direct measurement methods
to mobile cameras gives accurate and reliable results, implementing them over the entire
wavelength range of interest in the same manner as professional DSLR cameras is expensive
and time-consuming. Indirect estimation methods using color samples face solving high-
dimensional matrices of the spectral responses to the samples. The matrices are seriously
rank deficient even when the number of color samples is large. Here, we aim to develop
an effective estimation method that can achieve sufficient accuracy with a small number
of color samples by extracting the features of the spectral sensitivity functions from the
dataset of directly measured sensitivities. We use the features of the spectral function
shapes, but not the measurements themselves.

In the following, we first describe a direct measurement method for spectral sensitivity
functions. An efficient imaging system to generate monochromatic light and measure the
camera response is presented. Using this system, we measure a variety of mobile phone
cameras available on the market and create a database of spectral sensitivity functions. The
directly measured spectral sensitivity functions are used as the reference data to estimate
the spectral sensitivity functions.

We then analyze the features of the measured spectral sensitivity functions. The re-
spective spectral sensitivity functions are fitted to color-matching functions for comparison
with the spectral sensitivity of the human visual system. PCA is applied to determine the
dimensionality of the dataset and to extract the statistical features of the spectral functions.
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Subsequently, we present a normal method for estimating spectral sensitivity functions
using color samples. We point out the reliability and accuracy drawbacks the normal
estimation method suffers from despite being a least squares estimation method. To
address this, we propose an effective estimation method using the spectral sensitivity
features extracted through PCA in addition to the color samples.

Finally, the results of experiments to confirm the feasibility of the proposed method
for estimating the spectral sensitivity functions of a mobile phone camera are presented.
We establish that our method has excellent performance in terms of both the data volume
of the color samples used and the estimation accuracy of the spectral sensitivities.

2. Measurement of Spectral Sensitivity Functions
2.1. Measurement Setup

Methodologies for the spectral characterization of RGB cameras have been discussed
in some references [19,20]. The standard methods for calibrating consumer cameras in
detail, including characteristics such as the linearity, dark current, and spectral response
are described in [19]. In this study, we adopted a similar approach to capture images.
The camera images were captured in Adobe’s digital negative (DNG) format, which is a
lossless raw image format [21]. We manually set the camera International Organization
for Standardization (ISO) to 100 and the white balance (WB) mode to incandescent. The
exposure time was set to the maximum value at which the dynamic range of the camera
outputs did not saturate. The dark response was measured on all the selected cameras by
covering the camera with a black sheet in a dark room. The dark response was removed
from the camera output. The resulting signal component represents a linear response to
the input radiation. The color filter array was a Bayer pattern in which the RGB filters were
arranged in a checkerboard pattern with two green pixels (G and G2) for every red or blue
one [22]. We averaged the values of the two green pixels. The pixel values for each RGB
triplet were averaged over approximately 300 × 300 pixels. The bit depths of the cameras
used were 8 to 12 bits.

(a) Linearity

We first evaluated the linearity of the raw camera data. A set of gray chips from the
X-rite Color Checker were used as the color target. The surface–spectral reflectance of these
samples was measured using a spectral colorimeter (CM-2600d, Konica Minolta, Tokyo,
Japan). The mobile phone used was an Apple iPhone 8. Figure 1a shows the relationship
between the average reflectance of the gray chips and the camera RGB output. We also
calculated the luminance values for the color samples under International Commission on
Illumination (CIE) Standard Illuminant D65 using the spectral luminous efficiency curve y(λ).
Figure 1b shows the relationship between the luminance values and the camera RGB outputs.
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(b) Spectral response

Figure 2 shows our experimental setup for measuring the spectral responses of mobile
phone cameras using monochromatic light and a spectrometer [23]. Figure 2a shows the
conversion of the continuous spectrum from a xenon lamp into monochromatic light using
the grating in a monochromator (SPG-100, Shimazu Kyoto, Japan). The monochromatic
light was projected onto a diffuser, and the transmitted light image was observed using
both a mobile phone camera and a spectroradiometer (CS-2000, Konica Minolta, Tokyo,
Japan). The effective spectral resolution (full width at half maximum (FWHM)) of the
monochromator was approximately 4 nm.
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Figure 2. Experimental setups for measuring the spectral responses of mobile phone cameras using
monochromatic light and a spectrometer. (a) Monochromatic light from monochromator grating.
(b) Monochromatic light from a programmable light source.

Figure 2b shows the production of monochromatic light by a programmable light
source (OL490, Optronic Laboratories, Orlando, FL, USA) and a liquid light guide. The
lighting system was a spectrally controllable light source using a digital micromirror device
(DMD) [24]. This lighting system was used in this study to generate emissions with a
narrow width at a single wavelength in the visible range (400–700 nm). The emitted
light was projected onto a white reference standard (Spectralon), and the reflected light
image was observed by the camera and spectroradiometer. The FWHM was approximately
5–10 nm. We used mainly the system shown in Figure 2b for the measurement. When the
monochromator system was used, the average values of the measured spectral sensitivity
functions for both systems in Figure 2a,b were taken.
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Assuming linear camera response, the three-channel output of a mobile phone camera
can be described as  R

G
B

 =
∫ 720

380
e(λ)

 r(λ)
g(λ)
b(λ)

dλ, (1)

where R, G, and B represent the camera responses after reducing the dark responses.
e(λ) represents the illuminant spectrum and r(λ), g(λ), and b(λ) the spectral sensitivity
functions. We denote the spectral powers of the n illuminants used in the measurement as∫ 720

380
ei(λ)dλ = Ei, (i = 1, 2, . . . , n). (2)

When each illuminant spectrum is unimodal, such as monochromatic light, and the
FWHM is sufficiently narrow compared to the sensitivity functions, the spectral sensitiv-
ity at each wavelength λi can be calculated from the illuminant power and the camera
outputs as  r(λi)

g(λi)
b(λi)

 =

 Ri/Ei
Gi/Ei
Bi/Ei

, (i = 1, 2, . . . , n). (3)

where r(λi), g(λi), and b(λi) (i = 1, 2, ..., n) are the discrete representations of the spectral
sensitivity functions. The visible wavelength range (400–700 nm) was scanned at equal
wavelength intervals of 10 nm and each spectral sensitivity function was expressed as a
31-dimensional column vector with n = 31.

2.2. Spectral Sensitivity Database

We measured the spectral sensitivities of 20 mobile phone cameras and constructed a
database of the spectral sensitivity functions. The mobile phones used in this study are
listed in Table 1. Typically, the mobile phone incorporates an image sensor produced by a
different manufacturer. The third column in Table 1 lists the names of the image sensors.
Figure 3 shows the relative spectral sensitivity functions of the 20 mobile phone cameras in
our database. Most mobile phones are based on either iOS or Android. Six of the mobile
phones in Table 1 are iOS phones and the remaining 14 are Android phones. Figure 4
shows the spectral sensitivity functions grouped into the two categories of (a) iOS phone
cameras and (b) Android phone cameras. There is no significant difference in the spectral
curves of the sensitivity functions between the two categories.

Table 1. Mobile phones measured in this study.

Manufacturer Model Image Sensor

Apple iPhone 6s Sony IMX315

Apple iPhone SE Sony IMX315

Apple iPhone 8 Sony IMX315

Apple iPhone X Sony IMX315

Apple iPhone 11 Sony IMX503

Apple iPhone 12 Pro MAX Sony IMX603

HUAWEI P10 lite Sony IMX214

HUAWEI nova lite 2 Unknown

Samsung Galaxy S7 edge Samsung ISOCELL S5K2L1

Samsung Galaxy S9 Samsung ISOCELL S5K2L3

Samsung Galaxy Note10+ Samsung ISOCELL S5K2L4
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Table 1. Cont.

Manufacturer Model Image Sensor

Samsung Galaxy S20 Samsung ISOCELL S5KGW2

SHARP AQUOS sense3 lite Unknown

SHARP AQUOS R5G Infineon Technologies IRS2381C

Xiaomi Mi Mix 2s Samsung ISOCELL S5K3M3

Xiaomi Redmi Note 9S Samsung ISOCELL S5KGM2

Sony Xperia 1 II Sony IMX557

Sony Xperia 5 II Sony IMX557

Fujitsu arrows NX9 Unknown

Google Pixel 4 Sony IMX363
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Figure 4. Spectral sensitivity functions classified into the two categories of (a) iOS phone cameras, and (b) Android phone
cameras.

It may be interesting to compare this dataset with a dataset of the DSLR cameras.
Compared to the spectral sensitivity database in [9], we see that the shapes of the spectral
distributions in our mobile phone cameras do not have large variations, differently from
those of the DSLRs.
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The numerical data of the spectral sensitivity functions in Table 1 have been published
as Excel data and txt data on http://ohlab.kic.ac.jp/ (accessed on 22 July 2021).

3. Feature Analysis of Spectral Sensitivity Functions
3.1. Fitting to Color-Matching Functions

The Luther condition states that the camera spectral sensitivity functions are linear
transformations of the CIE-1931 2-degree color-matching functions [25]. As the color-
matching functions are a numerical representation of the color vision response of the
standard observers, the degree of fit with the Luther condition determines the colorimetric
measurement accuracy of the mobile phone cameras.

Let [x, y, z] be the 31 × 3 discrete matrix representation of the CIE-1931 2-degree
color-matching functions x(λ), y(λ), z(λ) and [r, g, b] be the 31 × 3 matrix representing
the RGB spectral sensitivity functions of a mobile phone camera. We express the linear
relationship between these matrices as

[x, y, z] = [r, g, b]T, (4)

where T is a 3 × 3 transformation matrix. To validate whether the measured sensitivity
functions satisfy the Luther condition, we estimate the matrix T using the least squares
solution for Equation (4). The estimate is given as

T̂ = [CCt]
−1CtA, (5)

where A = [x, y, z] , C = [r, g, b], and the symbol t denotes matrix transposition.

The root-mean-square errors (RMSEs)
√

trace
[
A−CT̂

]t[A−CT̂
]
/(31× 3) of the

estimates were calculated, where the symbol trace[X] denotes the trace of a matrix X.
Figure 5 shows the fitting results to the color-matching functions based on the spectral
sensitivity functions of the iPhone 8. The RMSE was 0.254. The average RMSE over all
the measured sensitivity functions in our database was 0.226. We also calculated the
CIE-LAB color difference (Delta-E 1976) under Standard Illuminant D65 for many Munsell
color chips. The average color difference was 5.61. Thus, the Luther condition was not
completely satisfied.
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3.2. PCA Analysis

PCA was applied to the measured spectral function database to determine the dimen-
sionality for approximating the spectral data and statistically extracting the spectral shape
features. All the relative spectral curves of the measured spectral sensitivity functions from
the N (=20) mobile phone cameras are represented for each channel in a 31 × N matrix as

YR = [r1, r2, . . . , rN ], YG = [g1, g2, . . . , gN ], YB = [b1, b2, . . . , bN ]. (6)

We summarize these matrices as

Yk = [y1, y2, . . . , yN ] (k= R, G, B). (7)

Singular-value decomposition (SVD) provides an orthogonal decomposition of rect-
angular matrices [26]. We used SVD for the PCA. The SVD of each matrix Yk is written
as

Yk = UΣVt (8)

or equivalently,
Yk = σ1u1v1

t + σ2u2v2
t + . . . + σNuNvN

t, (9)

where U (= [u1, u2, . . . , uN ]) and V (= [v1, v2, . . . , vN ]) are the 31 × N left singular
matrix and the N × N right singular matrix, respectively, and Σ is the N × N diagonal
matrix in which the elements are the singular values σ1, σ2, . . . , σN (σi ≥ σi+1 > 0). The 31-
dimensional singular vectors u1, u2, . . . , uN are orthogonal to each other. Therefore, each
measured spectral sensitivity function can be uniquely expressed as a linear combination
of N orthogonal vectors

yj = c1ju1 + c2ju2 . . . + cNjuN , (j = 1, 2, . . . , N) (10)

where cij = σivij. Consider an approximate representation of the sensitivity functions
in terms of component vectors chosen from u1, u2, . . . , uN . When the first K principal
components are chosen, the performance index representing the approximation accuracy is
given by the percent variance:

P(K) =
K

∑
i=1

σ2
i /

N

∑
i=1

σ2
i . (11)

Figure 6 shows the first three principal components u1, u2, and u3 for the (a) red, (b)
green, and (c) blue channels of the spectral sensitivity functions where the bold, broken, and
dotted curves represent the first, second, and third principal components, respectively. The
percent variances are P(1) = 0.9940, P(2) = 0.9974, P(3) = 0.9990 for red, P(1) = 0.9954, P(2) =
0.9984, P(3) = 0.9995 for green, and P(1) = 0.9926, P(2) = 0.9962, P(3) = 0.9999 for blue. The
first principal component u1 is the average spectral curve of the spectral sensitivity function
dataset, which plays the most important role in the spectral representation. The results
of the PCA suggest that the measured spectral sensitivity functions can be approximated
using the first three principal components with sufficient accuracy. The approximation is
obtained using the principal component expansion in Equation (10). Figure 7 shows the
approximated spectral curves for the (a) red, (b) green, and (c) blue channels of the spectral
sensitivity functions of the iPhone 8, where the colored bold curves, the black bold curves,
and the broken curves represent the measured spectral sensitivities, the approximation
using the first component only, and the approximation using the first two components,
respectively.
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be approximated using the first three principal components with sufficient accuracy. The 
approximation is obtained using the principal component expansion in Equation (10). Fig-
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nels of the spectral sensitivity functions of the iPhone 8, where the colored bold curves, 
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Figure 6. First three principal components u1, u2, and u3 for the (a) red, (b) green, and (c) blue channels of the spectral
sensitivity functions. The bold, broken, and dotted curves represent the first, second, and third principal components,
respectively.
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Figure 7. Approximated spectral curves for the (a) red, (b) green, and (c) blue channels of the iPhone 8 spectral sensitivity
functions. The colored bold curves, black bold curves, and broken curves represent the measured spectral sensitivities,
approximations using the first component only, and approximations using the first two components, respectively.

4. Estimation of Spectral Sensitivity Functions
4.1. Normal Method Using Color Samples

The direct measurement method for the spectral sensitivity functions of mobile phone
cameras is time-consuming and expensive, and requires a laboratory setting. Therefore,
despite their inferior accuracy, indirect estimation methods are often used. The indirect
methods are normally based on color samples. The spectral sensitivity functions are
estimated from a pair comprising the input data of the color samples and the corresponding
output data of the captured RGB values.

Suppose that M different color samples with surface spectral reflectance Si(λ) (i = 1, 2,
. . . , M) are observed under illumination e(λ) by a mobile phone camera. The camera inputs
are the spectral data Si(λ)e(λ) reflected from the color samples, which are summarized as
an n ×M matrix

C = [s1. ∗ e, s2. ∗ e, . . . , sM. ∗ e], (12)

where si (i = 1, 2, ..., M) and e are n-dimensional column vectors representing the spectral
reflectances and the illuminant, respectively, and the symbol. * represents elementwise
multiplication. The camera outputs for the M color samples are represented as the 1 ×M
matrices
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zR = [R1, R2, . . . , RM], zG = [G1, G2, . . . , GM], zB = [B1, B2, . . . , BM]. (13)

The observed outputs can then be written in the discrete form

zR = rtC, zG = gtC, zB = btC, (14)

The least squares estimates for Equation (14) are given by

r̂ =
[
CCt]−1CzR

t, ĝ =
[
CCt]−1CzG

t, b̂ =
[
CCt]−1CzB

t. (15)

However, this normal method is often ineffective for accurately estimating the spectral
sensitivity functions owing to the dimensionality of the surface spectral reflectance. As
the surface–spectral reflectance of natural or human-made objects are described using
six to eight basis functions [27,28], the dimension of the reflectance is much lower than
the dimension n (=31) of the spectral sensitivity functions. Therefore, even when many
samples M > n are used, the matrix C may be rank deficient and the matrix inversion is
often unreliable.

4.2. Proposed Method Based on Color Samples and Spectral Features

We consider solving the estimation problem by using the spectral features of the
sensitivity functions obtained through PCA in addition to the color samples. We focus on a
linear model representation of the spectral sensitivity functions. The PCA results in the
previous section suggest that the spectral sensitivity functions of mobile phone cameras
can be approximated by linear combinations of a small number of principal components.
Selecting the first L components for the estimates, the linear model is represented as

r =
L

∑
i=1

xRiuRi, g =
L

∑
i=1

xGiuGi, b =
L

∑
i=1

xBiuBi, (16)

where uRi, uGi, and uBi are the principal component vectors for each of the red, green, and
blue channels, respectively, as shown in Figure 6, and the coefficients xRi, xGi, and xBi are
unknown scalar weights to be estimated. Equation (16) provides a strong constraint in
estimating the spectral shapes of the sensitivity functions.

Writing the L principal components of the spectral sensitivity features and the corre-
sponding weights as the n × L matrices

UR = [uR1, . . . , uRL], UG = [uG1, . . . , uGL], UB = [uB1, . . . , uBL], (17)

and L-dimensional column vectors

xR = [xR1, . . . , xRL]
t, xG = [xG1, . . . , xGL]

t, xB = [xB1, . . . , xBL]
t, (18)

We have a compact form for Equation (16):

r = URxR, g = UGxG, b = UBxB. (19)

The spectral features of r, g, and b are included in the arrays of UR, UG, and UB.
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The next step is to determine the weighting coefficients. Substituting Equation (19)
into Equation (14), we obtain the following observation equations for the weights

zR = xR
tUR

tC, zG = xG
tUG

tC, zB = xB
tUB

tC. (20)

Therefore, the weights xR, xG, and xB can be estimated using the observed dataset of
M color chipszR, zG, and zB. The least-squares estimates are given as

x̂R =
[
CRCR

t]−1CRzR
t, x̂G =

[
CGCG

t]−1CGzG
t, x̂B =

[
CBCB

t]−1CBzB
t (21)

where CR = UR
tC, CG = UG

tC, and CB = UB
tC. We note that the matrix sizes of CR, CG,

and CB are L ×M, and CRCR
t, CGCG

t, and CBCB
t are full-rank L × L matrices. Therefore,

the matrix inversion is stable. The estimates of the spectral sensitivity functions r̂, ĝ, and b̂
are finally obtained by substituting x̂R, x̂G, and x̂B into Equation (19).

r̂ = UR
[
CRCR

t]−1CRzR
t, ĝ = UG

[
CGCG

t]−1CGzG
t, b̂ = UB

[
CBCB

t]−1CBzB
t. (22)

It should be noted that these estimates are the least squares estimates to minimize
the residual error in the observations. The original residual error is described by a cost
function LF as

LF = ‖zR − rtC‖2
+ ‖zG − gtC‖2

+ ‖zB − btC‖2 (23)

where the symbol ‖x‖2 denotes the L2 norm of a vector x. As the spectral sensitivity
functions are represented using the linear model in Equation (16), the cost function can be
rewritten as follows:

LF = ‖zR − xR
tUR

tC‖2
+ ‖zG − xG

tUG
tC‖2

+ ‖zB − xB
tUB

tC‖2 (24)

When L is directly minimized with respect to each of xR, xG, and xB, we can obtain the
same solution as Equation (22). Therefore, the proposed method solves the optimization
problem to minimize the residual error.

The parameter L denotes the dimensionality of the linear model representation of the
spectral sensitivity functions. The selection of L affects the estimation accuracy. The most
appropriate value of L is determined experimentally based on the estimation accuracy of
the spectral sensitivity functions.

5. Experimental Results
5.1. Experimental Setup

We used 1523 Munsell color chips from the Munsell Book of Color [29]. The chips
are reflective color targets arranged in the Munsell color system. Figure 8 shows the
imaging setup for the color samples using a mobile phone camera. We measured the
surface–spectral reflectance of each color sample using the spectral colorimeter. Figure 9
shows the complete set of all the spectral reflectance measurements. We also used 24 color
samples from the X-Rite ColorChecker Passport Photo [30]. Figure 10 shows the color
checkers used for the validation of sensitivity measurement and reflectance estimation,
where panel (a) shows the imaging targets consisting of 24 color checkers and the white
reference standard (Spectralon), and panel (b) the spectral reflectance values measured by
the spectral colorimeter. The illumination light source was an incandescent lamp with the
spectral power distribution shown in Figure 11. A Munsell white paper (N9.5) was used to
correct the illumination unevenness on the color samples and limb darkening.
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5.2. Validation of the Measured Spectral Sensitivities

To evaluate the accuracy of the measured spectral sensitivities, the color differences
were computed between the colors imaged by the mobile phone cameras and the simulated
colors based on the measured spectral sensitivities. We randomly selected two iOS and
Android phone cameras, making a total of four phone cameras, which we studied using
the X-Rite color checkers in Figure 10.

We simulated the camera response for each color checker using the measured spectral
sensitivities (rmea, gmea, bmea) of each mobile phone camera. The camera output RGB
values (zmea, R, zmea, G, zmea, B) can be predicted in a discrete form as

zmea, R = rt
meas. ∗ e, zmea, G = gt

meas. ∗ e, zmea, B = bt
meas. ∗ e (25)

where s and e represent the spectral reflectance of the color checker in Figure 10b and the
illuminant spectral power distribution in Figure 11, respectively.

On the other hand, the RGB values
(
zimg, R, zimg, G, zimg, B

)
of the color checkers were

captured directly by each camera. The RGB color difference was then averaged over all
color checkers as

∆ERGB = E
[√(

zimg, R − zmea, R
)2

+
(
zimg, G − zmea, G

)2
+
(
zimg, B − zmea, B

)2
]

(26)

Table 2 shows the average color differences between the imaged colors of the 24 color
checkers captured by each camera and the simulated colors based on the measured spectral
sensitivities, where the RGB values are normalized to be

√
R2 + G2 + B2 = 1 for the white

reference standard under the incandescent lamp used.

Table 2. Average color differences between the imaged colors of the 24 color checkers captured by
each camera and the simulated colors based on the measured spectral sensitivities.

Color Difference
Model

iPhone 6s iPhone 8 P10 Lite Galaxy S7 Edge

∆ERGB 0.01530 0.02046 0.01772 0.01689

5.3. Estimation Results by the Normal Method

The estimation results obtained using the normal method for the iPhone 8 are shown
in Figure 12, where the bold curves in red, green, and blue represent the estimated spectral
sensitivities of the red, green, and blue channels, respectively, and the broken curves
represent the measured spectral sensitivities. A non-negative least squares estimation was
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applied to solve Equation (14). Despite the use of many color samples, the estimation
results based on the direct use of color samples were quite unstable and inaccurate.
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Figure 12. Estimation results from the normal method for the iPhone 8, where the bold curves in red,
green, and blue represent the estimated spectral sensitivities for the red, green, and blue channels,
respectively, and the broken curves represent the measured spectral sensitivities used as the reference
data.

To investigate the dimensionality of the spectral reflectance dataset, SVD was applied
to the 31 × 1523 matrix S = [s1, s2, . . . , s1523] consisting of the measured spectral re-
flectance values from the Munsell color chips. Figure 13 depicts the percent variance P(K)
defined in Equation (11) as a function of the number of principal components K. It can
be seen that the percent variance reached 1.0 around K = 6. Therefore, the dimension of
the reflectance dataset was approximately 6 and it was not possible to recover the spectral
functions with 31 dimensions.
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5.4. Estimation Results by the Proposed Method

The feasibility of the proposed method was evaluated in two steps.
(1) In the first experiment, we focused solely on the iPhone 8 and investigated the

performance in detail. The spectral sensitivity functions of the iPhone 8 were removed
from the original database, and SVD was applied to the remaining dataset to obtain the
principal components uRi, uGi, and uBi. Next, the spectral sensitivities of the iPhone 8
were estimated via the algorithm in Section 4.2 using the camera RGB values for the color
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samples and the principal components. Finally, to determine the most appropriate L, the
root mean squared errors of the estimated spectral sensitivities were calculated as

rmse =
√(
‖r̂− r‖2 + ‖ĝ − g‖2 + ‖b̂− b‖2

)
/(31× 3) . (27)

The estimation errors at different values of L were rmse = 0.04929, 0.07239, and 0.08963
for L = 1, 2, and 3, respectively. The minimum error was recorded when the estimation was
performed using only one component. Figure 14 shows the estimated spectral sensitivity
functions of the iPhone 8 at L = 1.
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Figure 14. Estimated spectral sensitivity functions of iPhone 8 at L = 1 using all color samples, where
the bold curves represent the estimated spectral sensitivities, and the broken curves represent the
measured spectral sensitivities.

Furthermore, we examined the possibility of reducing the number of color samples.
Suppose that m color samples are used for sensitivity estimation. We randomly selected
m samples from all the 1523 samples of the Munsell color chips and then computed the
spectral sensitivity estimate and accuracy based on the selected sample data. This trial was
repeated 1000 times to achieve significant statistical reliability. The average errors were
rmse = 0.04958, 0.04933, 0.04931, 0.04929, and 0.04929 for m = 10, 50, 100, 500, and 1000.
These results show that a sufficient estimation accuracy can be obtained even when only
ten color samples are used. Figure 15 shows the estimated sensitivities of the iPhone 8 at
L = 1 and m = 10. Thus, the proposed method has the advantage that the spectral sensitivity
functions can be estimated using the average spectral curves of the database and a small
number of color samples.
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Figure 15. Estimated sensitivities of iPhone 8 at L = 1 and m = 10, where the bold curves represent the
estimated spectral sensitivities, and the broken curves represent the measured spectral sensitivities.



Sensors 2021, 21, 4985 16 of 21

In the second experiment, we investigated whether the performance of the proposed
method depends on the mobile phone cameras used and the color samples. As the mea-
sured spectral sensitivity curves were similar, we selected two iOS phone cameras and
two Android phone cameras, and evaluated their spectral sensitivities using the 24 color
sample from the X-Rite color checkers. For fair validation, the principal components were
computed using the dataset of the spectral sensitivity measurement for the remaining
19 mobile phone cameras except for the target phone camera. Table 3 lists the RMSEs of
the estimated spectral sensitivities for the four mobile phone cameras for the principal
components with different L values. As can be seen from the table, the minimum errors
were found when the first component in all cases of the four mobile phone cameras was set
at L = 1. Figure 16 depicts the estimated sensitivity functions of the four cameras at L = 1.
Thus, it can be confirmed that the spectral sensitivity of the mobile phone camera can be
estimated based solely on the first principal component of the dataset and a small number
of color samples.

Table 3. RMSE of the estimated spectral sensitivities for four mobile phone cameras at different
values of L using the 24 color checkers.

RMSE
Model

iPhone 6s iPhone 8 P10 Lite Galaxy S7 Edge

L = 1 0.05577 0.06597 0.03841 0.03779

L = 2 0.07167 0.10714 0.05741 0.03946

L = 3 0.06378 0.07310 0.06816 0.04277
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Figure 16. Estimated spectral sensitivities of (a) iPhone 6s, (b) iPhone 8, (c) P10 lite, and (d) Galaxy S7
edge at L = 1 using the 24 color checkers, where the bold and broken curves represent the estimated
spectral sensitivities and the measured spectral sensitivities, respectively.
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5.5. Reflectance Estimation Validation

The surface–spectral reflectance provides is a physical feature inherent to the surface of
a target object. Therefore, estimating the spectral reflectance is crucial for object recognition
and identification in a variety of fields, including image science and technology, and
computer vision. To evaluate the feasibility of mobile phones for spectral reflectance
estimation, we validated the measured and estimated spectral sensitivity functions of the
iPhone 8.

The Wiener filter is a linear estimation technique widely used for spectral reflectance
estimation [31–37]. The relationship between the spectral reflectance of an object surface
and the camera outputs is modeled with the camera output RGB vector z = [zR, zG, zB]

t,
the spectral sensitivity vectors r, g, and b, the illuminant vector e, the reflectance vector s
to be estimated, and the noise vector n in observation as

z = As + n. (28)

where A = [r. ∗ e, g. ∗ e, b. ∗ e]t. When the reflectance s and noise n are uncorrelated, the
Wiener estimate with the minimal mean square error is expressed as follows:

ŝ = PAt(APAt + Σ
)−1z. (29)

where P is the covariance matrix of the reflectance data and Σ the covariance matrix of
the noise, which can usually be assumed to be a diagonal matrix Σ = diag(σ2

R, σ2
G, σ2

B).
We determined P using the database of surface spectral reflectance values in [38] and
determined Σ empirically (see [38]).

The accuracy of the estimated reflectance values was evaluated using the average
RMSE and the average CIE-LAB color difference obtained over the 24 color checkers.
Table 4 lists the performance values of the iPhone 8 in four cases where measurements
1 and 2, respectively, are based on the directly measured spectral sensitivities by the
monochromator in Figure 2a and the measured spectral sensitivities by the programmable
light source in Figure 2b, and Estimations 1 and 2, respectively, are based on the estimated
spectral sensitivities from all the color samples in Figure 14 and the estimated spectral
sensitivities using only 10 color samples in Figure 15. The LAB color difference was calcu-
lated using the illuminant shown in Figure 11. There is no noticeable difference between
the performances of the four spectral sensitivity functions used in the validation. The
validation results suggest that both the measured and the estimated spectral sensitivities in
this study are useful for spectral reflectance estimation.

Table 4. Performance values in the four cases. For measurements 1 and 2, respectively, the directly
measured spectral sensitivities by a monochromator in Figure 2a and the directly measured spectral
sensitivities by a programmable light source in Figure 2b were used. For Estimations 1 and 2,
respectively, the estimated spectral sensitivities using all color sample in Figure 14 and the estimated
spectral sensitivities using only ten color samples in Figure 15 were used.

Measurement 1 Measurement 2 Estimation 1 Estimation 2

Average RMSE 0.05241 0.05145 0.05201 0.05279

Average LAB
color difference 7.055 6.082 6.973 6.749

6. Discussion

It is important to clarify the difference between the estimation accuracy and the
approximation accuracy. This distinction can be drawn when the spectral sensitivities are
known. In the proposed method, the spectral sensitivities of the mobile phone cameras
are estimated in a linear combination of the principal components of the dataset, and
approximated in a linear combination of the same principal components. When using the
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first K components, the error between the original spectral sensitivity matrix Y and the
approximated matrix ŶK can be expressed as follows:

‖Y− ŶK‖
2
= σ2

K+1 + σ2
K+2 + · · ·+ σ2

N (30)

where σ1, σ2, . . . , σN are singular values (see Equation (9)). Therefore, the approximation
error monotonically decreases as the component number K increases. However, the be-
havior of the estimation accuracy is not necessarily the same. The larger the component
number, the smaller the singular values and the lower the contribution rate. In such a
situation, when a component with a small contribution that is regarded as noise is added
to the estimation process, the estimation accuracy deteriorates extremely. Figure 17 shows
the variations in the estimation and approximation errors as a function of the principal
components. The error values are averaged over the four mobile phone cameras in Table 3.
The minimum average estimation error is recorded when only one principal component is
used, and the second smallest error is realized when three principal components are used.
As the contribution rate of the first principal component is very large as P (1) > 0.99, and
in contrast the contribution of the third principal component is significantly smaller, the
estimation using only the first principal component can be considered stable and reliable.
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Based on the experimental results, it was found that the spectral sensitivity functions
of the mobile phone cameras can be estimated from only the first principal component of
the dataset of the measured spectral sensitivities and a small number of color samples. In
the case of DSLR cameras, two principal components were required and the extent to which
the color samples could be simplified was not clear [16]. The present results suggest that
the spectral sensitivity functions of the mobile phone cameras can be more easily estimated
using from 10 to 24 color samples, compared with DSLR cameras. From a computational
simplicity point of view, we note that the inverse matrix operation is not required because
the matrices CiCi

t (i = R, G, B) become scalar values. As a result, the spectral sensitivity
functions can be modeled using the first principal components as follows:

r̂ = cRuR, ĝ = cGuG, b̂ = cBuB. (31)

As the first principal component is the same as the average spectrum of the spectral
dataset, the PCA of the dataset of the measured spectral sensitivities is not required.
The spectral sensitivity functions are estimated by simply weighting the average spectral
sensitivity functions. The numerical data of the average spectral sensitivities uR, uG, and
uB are available at the same site (http://ohlab.kic.ac.jp/) (accessed on 22 July 2021) as our
database. The three weighting coefficients cR, cG, and cB are calculated from the camera

http://ohlab.kic.ac.jp/
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RGB data for color samples and the estimates of the spectral sensitivity functions are
obtained using Equation (31).

7. Conclusions

We have developed methods for measuring and estimating the spectral sensitivity
functions of mobile phone cameras. In the direct measurement method, the spectral
sensitivity at each wavelength was measured using monochromatic light. Although this
method was accurate, it is time-consuming and expensive. The indirect estimation method
was based on color samples from which the spectral sensitivities were estimated using
pairs of input and output data comprising the color samples and the corresponding camera
output RGB values, respectively.

We first presented an imaging system for direct measurements and performed mea-
surements on a variety of mobile phone cameras to create a database of spectral sensitivity
functions. Subsequently, the features of the measured spectral sensitivity functions in our
database were analyzed using PCA. We determined the dimensionality of the spectral
sensitivity dataset and extracted the statistical features of the spectral functions. We then
described a normal method for estimating the spectral sensitivity functions using color
samples. However, this method was not effective at estimating the spectral sensitivity
functions. Therefore, we proposed an effective method to solve the estimation problem
using the spectral features of the sensitivity functions in addition to the color samples. The
estimation was accurate even when only a small number of spectral features were selected.

The feasibility of the proposed method was confirmed through experiments. The
characteristics and advantages of the proposed method over the previously published
methods for mobile phone cameras are summarized as follows:

1. We measured the spectral sensitivities of mobile phone cameras, created a database,
and clarified its characteristics for the first time.

2. The spectral sensitivities can be estimated using the average spectral sensitivity and
a small number of color samples.

3. The computation is stable and straightforward because of determining only three
unknown parameters, and the estimation accuracy is very close to the direct measurement
results.

The limitation of our approach is that it does not have the manufacturers’ data to
validate the proposed method properly. However, with direct measurements, using PCA
provides a means to optimally approximate the sensitivities’ spectral power distribution,
which helps us overcome the limitations of our approach, even in short of the manufac-
turer‘s data.

The number of people using DSLR cameras, other than professional photographers, is
decreasing worldwide, and mobile phones are becoming the mainstream. The advantages
of mobile phone cameras include portability, low cost, convenience, and a wide range
of applications. Unlike DSLR cameras, the camera and computer come together as a
set in a mobile phone. This is advantageous for implementing applications that require
the use of spectral sensitivity functions. We believe that this paper adds value to many
fields including imaging science and technology as the techniques to estimate the spectral
sensitivities of mobile phone cameras are still developing. Furthermore, our study makes
an effective contribution to show journal readers different approaches, as there is intense
market growth in mobile phones.
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