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Molecular subtypes ofmedulloblastoma [Sonic Hedgehog (SHH),Wingless/INT (WNT), Group 3, and Group 4] are de-
fined by common patterns of gene expression. These differential gene expression patterns appear to result in different
histomorphology and prognosis. Quantitative histomorphometry is a well-known method of computer-aided pathol-
ogy image analysis. The hypotheses we sought to examine in this preliminary proof of concept study were whether
computer extracted nuclear morphological features ofmedulloblastomas from digitized tissue slide images could inde-
pendently: (1) distinguish between molecularly determined subgroups and (2) identify patterns within these sub-
groups that correspond with clinical outcome. Our dataset was composed of 46 medulloblastoma patients: 16 SHH
(5 dead, 11 survived), 3 WNT (0 dead, 3 survived), 12 Group 3 (4 dead, 8 survived), and 15 were Group 4 (5 dead,
10 survived). A watershed-based thresholding schemewas used to automatically identify individual nuclei within dig-
itizedwhole slide hematoxylin and eosin tissue images. Quantitative histomorphometric features corresponding to the
texture (variation in pixel intensity), shape (variations in size, roundness), and architectural rearrangement (distances
between, and number of connected neighbors) of nuclei were subsequently extracted. These features were ranked
using feature selection schemes and these top-ranked features were then used to train machine-learning classifiers
via threefold cross-validation to separate patients based on: (1) molecular subtype and (2) disease-specific outcomes
within the individual molecular subtype groups. SHH and WNT tumors were separated from Groups 3 and 4 tumors
with a maximum area under the receiver operating characteristic curve (AUC) of 0.7, survival within Group 3 tumors
was predictedwith anAUC of 0.92, andGroup 3 and 4 patientswere separated into high- and low-risk groupswith p=
0.002. Model prediction was quantitatively compared with age, stage, and histological subtype using univariate and
multivariate Cox hazard ratio models. Age was the most statistically significant variable for predicting survival in
Group 3 and 4 tumors, but model predictions had the highest hazard ratio value. Quantitative nuclear
histomorphometry can be used to study medulloblastoma genetic expression phenotypes as it may distinguish mean-
ingful features of disease pathology.
Introduction

Medulloblastoma is the most common malignant central nervous sys-
tem tumor in pediatric patients, resulting in an overall cure rate of around
70%, and a five-year survival rate of about 75%,1 and significant neurolog-
ical morbidity to many survivors as a result of both the disease and
r Inc. on behalf of Association for
).
treatment.2 Survival rates also vary between subgroups, e.g., Wingless/
INT (WNT) typically has a >95% five-year survival rate, whereas Sonic
Hedgehog (SHH) may be divided amongst SHHα, SHHβ, SHHɣ, and
SHHδ, of those the majority have intermediate risk, whereas SHHβ has
the worst relative outcome, Group 4 tumors can be split into low- and
high-risk subgroups with 72%and 36% ten-year survival rates respectively,
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and Group 3 tumors have the overall worst outcomes with <60% five-year
survival rates.3 There is considerable evidence that patterns of gene expres-
sion can potentially help identify disease subtypes with better and worse
prognosis.4,5 Recent work in molecular classification of medulloblastomas
has resulted in identification of four distinct subgroups—SHH, WNT,
Group 3, and Group 4—with “distinct epidemiology, clinical presentation”,
molecular phenotypes, and outcomes.2 These fourmolecular subtypes were
identified using unsupervised clustering of mRNA expression,2,6,7 and the
identified subgroups have differences in the signaling pathways and driver
genes, such as MYC, MYCN, KDM6A, GFI1, and GFI1B.8 Similar variations
in genetic expression phenotypes have been used to characterize SHH,
WNT, and non-SHH/WNT medulloblastoma tumors specifically.9 In addi-
tion, there is evidence that within these groups there may be even smaller
subgroups with distinct phenotypes and molecular signatures, especially
among the less well-defined Groups 3 and 4.6

Quantitative histomorphometry (QH) is the use of computer-aided image
analysis of digitized pathology images to find disease specific patterns that
may be predictive of underlying biology,10–12 molecular subtype, mutational
status, disease outcome, or treatment response. Nuclei color,13 texture,14

shape,15 and architecture16,17 features have been used to predict cancer out-
come, aggressiveness, and grade. Quantitative nuclei color and shape features
were found to correlate strongly with poor prognosis,13,18 and molecular
subtypes13 in work relating to brain tumors. In medulloblastomas, the level
of anaplasia (variation in nuclear size, chromatin staining, with highly
round, pleomorphic, or angular nuclei19–21) has been shown to be prognostic.
Our group has previously demonstrated that algorithms can distinguish ana-
plastic from non-anaplastic medulloblastoma,22,23 and other groups have
demonstrated QH feature differences in medulloblastoma tumors with differ-
ent types ofmolecular expression,24 and biological and clinical factors that are
predictive of survival.25 However, to date QH approaches have not been ap-
plied to explicitly predicting disease-specific survival in medulloblastomas.

In thiswork,we sought to identify quantifiable nuclear histomorphometric
features that may be able to distinguish between molecular subgroups in me-
dulloblastoma, as well as identifying histomorphometric associations with pa-
tient outcome within molecular subgroups.

Methodology

We extracted features from digitized whole-slide images to predict:
(1) the molecular subtype (Experiment 1), and (2) patient outcome (Exper-
iment 2).
Figure 1. Workflow for molecular subtype classification. (1) Pathologist selection of s
Extraction of patches within each ROI for analysis. (3) Deep learning nuclei detection
using patient-separated 3-fold cross-validation. (6) Patch-based voting to predict the mo
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Weused the following steps (Fig. 1). First, hematoxylin and eosin (H&E)
slides were scanned and digitized. A pathologist identified regions of inter-
est (ROIs) that contained primarily tumor nuclei (Fig. 1A). Second,
2000×2000 pixel subregions were extracted from these ROIs (Fig. 1B).
Third, nuclear segmentation was performed using watershed separation26

(Fig. 1C). Fourth, we extracted features selected due to their effectiveness
at detection and grading in prostate and breast cancer17,27,28 from seg-
mented nuclei (Fig. 1D). Fifth, we selected top-performing features and
used them in supervisedmachine learning classifiers (Fig. 1E). Finally, clas-
sifier predictions generated per-patch class predictions, and the majority of
the predictions in each patient were used in a patch-based voting scheme to
create a final prediction for each patient (Fig. 1E and F). In the first exper-
iment, this feature-based per-patch and per-patient voting schemes were
applied to molecular subtype classification (Fig. 1G), whereas in experi-
ment 2, these features were used to predict survival within molecular sub-
groups.

Our dataset comprised 69 H&E medulloblastoma formalin-fixed paraf-
fin embedded whole-slide images obtained from patients under the age of
18 from the Children’s Hospital Los Angeles and digitized at University
Hospital.1 Further description of dataset selection criteria can be found in
the supplemental section (Fig. 2, Tables 1,2 and Supplemental Table 4).

Both experiments used the same approach for feature extraction, feature
ranking, and classification. ROIs from eachwhole-slide imagewere verified
by a pathologist to ensure that only ROIs containing invasive cancer were
used in analysis. These ROIs from each of the 46 patients were divided
into 1464 subregions, each comprising 2000×2000 pixels, and represent-
ing an area of 0.2 mm2 each. Subregions were identified by imposing a
grid upon the ROI and finding all of the non-overlapping 2000×2000
pixel subregions which were entirely inside the ROI. These subregions
were then processed using a watershed nuclei segmentation algorithm.26

This method was selected due to the fact that the nuclei interrogated
were consistently darker than their surroundings, and in the case of nuclei
expressing prominent nucleoli, the edges of nuclei were dark enough to
allow for robust watershed nuclei segmentation.

From the segmented nuclei, a total of 227 features were extracted, cor-
responding to one of three categories: architectural, shape, and texture.
These features measure histological characteristics that are relevant for
stratifying tumor grade.19 Architectural features which measure the dis-
tance between nuclei can reflect qualities such as nodularity, anaplasiastic
cells are identified by their large size, and texture features can capture var-
iations in chromatin staining found in prominent nucleoli and apoptotic
uitable regions of interest (ROIs) in whole slides that are suitable for analysis. (2)
and segmentation. (4) Feature extraction. (5) Feature ranking and classification
lecular subgroup of each patient. (7) Per-patch and per-patient classification.



Figure 2. Flow chart of patient inclusion criteria resulting in a final cohort of 46
patients.

Table 2
Demographic and clinical variable distribution, with Cox hazard ratio p-values with
respect to survival.

Subtype Number Lived Died %Survival

SHH
Classic 5 3 2 60
Anaplastic 1 0 1 0
Desmoplastic 10 8 2 80

WNT
Classic 3 3 0 100
Anaplastic 0 0 0 NA
Desmoplastic 0 0 0 NA

Group 3
Classic 7 4 3 57.14
Anaplastic 5 4 1 80
Desmoplastic 0 0 0 NA

Group 4
Classic 12 8 4 66.67
Anaplastic 3 2 1 66.67
Desmoplastic 0 0 0 NA
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cells.19 Architectural features were obtained by performing quantitative
analysis of nuclear graphs, such as Delaunay Triangles, Voronoi Diagrams,
Minimum Spanning Trees (MST), and Cell Cluster Graphs (CCG).29 These
nuclear graphs were constructed using the individual nuclei as the vertices
of the graph. The choice of vertex connectivity determined the type of nu-
clear graph (i.e., Delaunay, Voronoi, MST, CCG) constructed. Features ex-
tracted from the graphs included changes in the lengths of edges and
distance between nearest vertices. Cellular disorder was measured using
Cell Orientation Graphs, previously described in Lee et al.27 Nuclear
shape features included Invariant Moment, Fourier Descriptor, and
Length/Width ratios. A comprehensive enumeration of all the image fea-
tures extracted is presented in the Supplemental Material. Texture features
included Haralick features, which involve statistics relating to frequency of
specific pixel values being adjacent to each other.30

Feature ranking was used to identify the most relevant image features
for each of the two experiments. The most relevant features identified
were subsequently used in conjunction with machine learning classifiers.
A number of popular feature ranking methods were evaluated including
Wilcoxon rank-sum,31 PCA-VIP,32 and Maximum-Relevance Minimum-
Redundancy (MRMR)33 with two variants—Mutual Information Differ-
ence, and Mutual Information Quotient (MRMR-MID and MRMR-MIQ).34

In each machine learning model, the number of features used was equal
to the number of total patches used in cross-validation, divided by 10.
Those numbers are listed in the supplemental section (Supplemental
Table 5).
Table 1
Dataset characteristics––demographic and cancer subtype distribution for the data
used in this study.

Database composition Subtype

Total medulloblastoma 69 SHH 16
Frozen 16 Survived 11
Bad samples 7 Died 5
Usable samples 46 WNT 3
Age range 0–17 Survived 3

Female 20 Died 0
Male 26 Group 3 12

Race Survived 8
Hispanic Latino 27 Died 4
Asian 7 Group 4 15
White 8 Survived 10
Other 4 Died 5

3

In each experiment, four different types of classifiers (Random Forest,
Neural Network, Support Vector Machine, and Linear Discriminant Analy-
sis), and four different feature ranking methods [Ranksum, Primary Com-
ponent Analysis with Variable Importance Projection (PCA-VIP), MRMR
MID, and MRMR MIQ] were used. These classifiers have varying strengths
and weaknesses. For instance, neural networks are apt at identifying non-
linear relationships, but are prone to overfitting, whereas other models
such as Linear Discriminant Analysis are less likely to overfit, but only con-
sider simpler combinations of features to generate predictions. By evaluat-
ing multiple feature ranking and classification methods, we attempted to
identify the optimal combination of feature ranking and machine learning
model for each of the two experiments.

For each of the two experiments described below, we identified the cor-
responding set of most highly ranked and predictive nuclear morphological
features.

In experiment 1, we investigated the ability of histomorphometric fea-
tures to distinguish between a single molecular subtype and all other sub-
types. Three such molecular subtypes were investigated: SHH, Group 3,
and Group 4 medulloblastoma tumors. First, histomorphometric features
were used to separate eachmolecular subtype from all other molecular sub-
types. Second, histomorphometric features were used to distinguish be-
tween two groups of molecular subtypes put together: SHH and WNT vs.
Group 3 and Group 4.

In experiment 2,we investigated the ability of nuclear histomorphometric
features to predict long-term survival within selected molecular
subgroups. This experiment comprised three sub-parts: (1) identifying
histomorphometric features that were predictive of disease specific survival,
(2) identifywhether specific histomorphometric featuresweremore prognos-
tic of survival within eachmolecular group, and (3) identify whether specific
histomorphometric features were more prognostic of survival within two
groups: SHH and WNT combined, and Groups 3 and 4 combined due to the
similarity of genetic expression between Groups 3 and 4, and between the
SHH and WNT groups.2 For each experiment, the top-performing feature
ranking and machine learning classification methods were then employed
with 100 iterations of per-patient 3-fold cross-validation. For each run of
cross-validation, the machine classifier helped identify which patients in
the hold out fold were high- or low-risk. In order to determine the final pre-
dicted risk category for each patient for Kaplan–Meier survival curves, the
prediction for each patient when placed in the testing fold was recorded
over 100 iterations, and the majority vote determined the disease-specific
outcome for that patient.

Results

When separating SHH from all other subtypes combined, the top-
performing features were measurements of the Haralick intensity, disorder
of cell orientation, standard deviation of fractal dimension, and perimeter
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to area ratio features (Supplemental Table 6). Across the four feature rank-
ing methods, Haralick, nuclei shape, and cell orientation entropy features
were agreed upon as the top 10 most significant (Supplemental Table 9).
The highest AUC for indicating whether or not subregions were SHH was
0.69 using LDA (Table 3, Supplemental Figure 7).

The top-performing features for Group 3 separation from other sub-
groups were the variation in the distances between nuclei and each of
their neighbors, standard deviation of Haralick covariance matrix, and dis-
order of cell orientation (Fig. 3, Supplemental Table 6). Haralick texture
features were the only features agreed upon as the top 10 most significant
for all feature ranking methods (Supplemental Table 10). The highest
AUC for separating subregions of Group 3 from all other subtypes was
0.67 using an SVM (Table 3, Supplemental Figure 8).

The top-performing nuclear features for separating Group 4 from other
molecular subtypes were nuclei shape (particularly themedian invariant mo-
ment), and Haralick standard deviation of intensity variance (Supplemental
Table 6). Nuclei shape features were the only features agreed upon as the
top 10 most significant for all feature ranking methods (Supplemental
Table 7). The highest AUC for separating subregions of Group 4 from all
other subtypes was 0.59 using LDA (Table 1, Supplemental Figure 9).

The top-performing features for predicting whether subregions were
SHH or WNT vs. Group 3 or Group 4 were Haralick intensity correlations,
Haralick standard deviation of contrast entropy, and the standard deviation
of the fractal dimension of nuclei shape (Supplemental Table 12). The
highest AUC for predicting whether subregions were SHH or WNT vs.
Group 3 or Group 4 was 0.7 using LDA (Table 3, Supplemental Figure 10).

Rank-sum results are displayed here, whereas the results from other fea-
ture ranking methods are in the supplemental section. Of the three parts of
this experiment listed above, the survival predictions for Group 3 and
Groups 3 and 4 had significant results, and are thus shown below. The
top-performing features for predicting which Group 3 subregions were as-
sociated with survival were Haralick mean and standard deviation of con-
trast and intensity texture features (Supplemental Table 6). The highest
AUC for predictingwhichGroup 3 subregionswere associatedwith survival
was 0.92 using a Neural Network (Fig. 4, left). Features such as Haralick
texture features were useful for distinguishing between long- and short-
term survivors in groups 3 and 4 (Fig. 5). The top-performing features for
predicting which Group 3 and 4 subregions were associated with survival
were Haralickmean and standard deviation of intensity energy and entropy
texture features (Supplemental Table 7 and 16), whereas the AUC perfor-
mance of Group 3, Group 4, and SHH survival models can be found in
Figure 3. Visualization of top-performing feature (architecture: disorder of distance bet
right: Tissue at varying degrees ofmagnificationwithin the region of interest (ROI) with
nuclei architecture. Far right: Nuclei are colored by the disorder of the distances between
display Group 3 and 4 samples, respectively.
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Supplemental Figures 11–13. The features identified as most relevant to
the survival for each of the groups are listed in supplemental tables. Fea-
tures most significant to the survival for each group are listed in Supple-
mental Tables 13–16. Haralick texture features were the only features
that were represented in the top 10 most significant features for each fea-
ture ranking method (supplemental material). The highest AUC for
predicting which Groups 3 and 4 subregions were associated with survival
was 0.83 using SVM (Fig. 4, right), and the KM survival curves had a p-value
of 0.002 (Fig. 5, right), and their feature distributions can be found in Sup-
plemental Figure 14.

The distinction between high- and low-risk groups is clearly visible in
the highest performing features. The features themselves can be used to vi-
sualize differences betweenhigh- and low-risk patients. Figure 6 shows nor-
malizedHaralick values overlaid onto images of H&E stained tissue to show
the difference between high- and low-risk patients. Statistical significance
was measured using p-values derived via the Cox hazard ratio test, and
the severity of each feature tested for survival was measured using the haz-
ard ratio, as well as the statistical significance of each variable. A 95% con-
fidence interval of the hazard ratio was calculated for each feature
(Supplemental Table 8).

Discussion

Medulloblastomamolecular subtypes have been identified using immu-
nohistochemical data, including protein expression, mutation, and methyl-
ation data,2,6,7,35,36 resulting in the identification of four distinct subtypes:
SHH,WNT, Group 3, and Group 4. SHH is defined by changes in expression
in SHH, basal cell, WNT/β, and axonal guidance signaling, and it primarily
affects children younger than 5 and older than 11.37 WNT tumors are de-
fined by axonal guidance, WNT/β, O-glycan biosynthesis, and basal
cell carcinoma signaling, and affects primarily children between the
ages of 6 and 16.37 Group 3 is defined by changes in expression in MYC,
phototransduction, WNT/β, and glutamate signaling, and primarily affects
children between the ages of 3 and 6.37 Group 4 is defined by changes in
expression in semaphorin, cAMP, G protein-coupled receptor, and p53 sig-
naling, and primarily affects children between the ages of 6 and 16.37

Both histology as well as molecular subgroups are important sources of
information when identifying subgroups and predicting prognosis. Varia-
tions in both histological phenotype and genetic expression correlate with
prognostic changes; e.g., MBENhas comparatively good prognosis, whereas
c-myc gene expression and LCA each result in poor prognosis.2,38,39
ween nearest seven neighbors) for separating Group 3 from all other groups. Left to
a group: Lowmagnification ROI, subregion, and subregion zoom in to clearly display
each nucleus and their seven closest neighbors (normalized). Top and bottom rows



Figure 4. Survival area under the curve curves within individual and paired molecular subgroups based on nuclear histomorphometric features. Left: Group 3. Right: Groups
3 and Group 4 combined.

Figure 5. Feature filter maps, displaying a zoomed in sample from 1 of 4 cases left to right: Groups 3 and 4, short- and long-term survival. Top row: hematoxylin and eosin
image of tissue. Bottom row: normalized colormap intensity of the top-performing feature for separating survival and non-survival in Groups 3 and 4 (Haralickmean energy)
of nuclei overlaid on top of original image. Dark blue pixels correspond with low Haralick values, whereas yellow and red pixels correspond with high Haralick values
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However, histological and molecular subtypes have dramatically different
phenotypical expression, prognosis, and rates of incidence.2,37 MYC and
MYCN overexpression are an example of possible correlation between mo-
lecular subtype and histomorphometric features, as MYC amplification
could not be directly linked to a histological subtype but is absent in
Group 4, whereas found inWNT and Group 3,2 and it is strongly correlated
with prominent nucleoli in histological slides.40 MYC and MYCN expres-
sion have even been shown to be “more effective than conventional clinical
(histological) criteria at predicting patient survival” and was considered in
initial determination of molecular subgroup categories.37 Considered to-
gether, molecular subtype and histological features of medulloblastoma
may provide further utility in subgroup-specific treatment investigation as
well as at clinical presentation, potentially providing further ability to strat-
ify patient risk and inform treatment decisions.

Our goal in this work was to investigate the relationship between quan-
tifiable nuclear features and molecular subtypes and survival. In this work,
we used nuclear histological features obtained through digital image anal-
ysis to: (1) predict the molecular subgroups of medulloblastoma samples,
5

and (2) make statistically significant predictions of survival risk within me-
dulloblastoma subgroups.

In experiment 1, QH features were used to predict molecular subtype.
Haralick texture features, cell orientation, and nuclei shape features fea-
tured prominently in separating molecular subgroups. Nuclear size,
shape, and texture features have previously been identified as significant
to medulloblastoma, due to the role that those characteristics play in iden-
tifying anaplasia, which is characterized with darker chromatin staining;
nuclei size, which can fluctuate by up to 50%; and nuclei shape, which
can shift to either being extremely round or angular.19,20

In experiment 2, QH features were used to try to predict short- vs. long-
term survival within molecular subgroups. The most dominant features for
predicting survival in Group 3 and Groups 3 and 4 were Haralick texture
features (Supplemental Table 7); in Group 4 were primarily haralick and
shape features (Supplemental Table 15); and in SSH tumors entirely
shape features (Supplemental Table 13). Haralick texture features measure
the repetition of similar pixel values in geometric patterns, and may detect
uneven distributions of hematoxylin staining, multinucleation, or other



Figure 6. Kaplan–Meier survival curves within individual and paired molecular subgroups based on nuclear histomorphometric features. Blue lines indicate predicted high
survival groups, whereas red lines indicate predicted low survival groups. Left: Group 3. Right: Group 3 and Group 4 combined.

Table 3
AUC curves formolecular subgroup separation based onnuclear histomorphometric
features using rank-sum feature Ranking. Top left: SHH vs. WNT, Group 3, and
Group 4. Top right: Group 3 vs. SHH, WNT, and Group 4. Bottom left: Group 4 vs.
SHH, WNT, and Group 3. Bottom right: SHH and WNT vs. Groups 3 and 4.

Molecular subgroup prediction AUC Random forest Neural network SVM LDA

SHH vs. WNT, Group 3, Group 4 0.5 0.47 0.63 0.69
Group 3 vs. SHH, WNT, Group 4 0.55 0.49 0.67 0.63
Group 4 vs. SHH, WNT, Group 3 0.52 0.46 0.55 0.59
SHH, WNT vs. Group 3, Group 4 0.5 0.48 0.64 0.7
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pleomorphic patterns, which are an independent prognostic indicator for
medulloblastoma.41 In particular, chromatin staining patterns have been
found to strongly correlate with both MYC and MYCN expression, and is
positively correlated with poor prognosis.40

We acknowledge study limitations, such as limited dataset size due to
rarity of the disease, as well as the recent introduction of medulloblastoma
molecular subtyping. Secondly, we focused solely on the role of listed nu-
clear morphology metrics in this work. Third, this analysis was performed
within selected ROIs. Additional work is clearly needed to evaluate
whether these regions were truly representative of the morphological land-
scape of the tumor. In the future, we hope to address these limitations to
more precisely define subgroups and aid in prognosis, treatment, and
targeted therapies.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2022.100090.
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