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Remodeling of secretory lysosomes during
education tunes functional potential in NK cells
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Inhibitory signaling during natural killer (NK) cell education translates into increased
responsiveness to activation; however, the intracellular mechanism for functional tuning by
inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal
compartment that mediates intracellular signalling in several cell types. Here we show that
educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like
receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge
close to the centrosome. This discrete morphological phenotype is independent of tran-
scriptional programs that regulate effector function, metabolism and lysosomal biogenesis.
Meanwhile, interference of signaling from acidic Ca2t stores in primary NK cells reduces
target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of Pl
(3,5)P5 synthesis, or genetic silencing of the PI(3,5)P,-regulated lysosomal Ca2+-channel
TRPMLI1, leads to increased granzyme B and enhanced functional potential, thereby
mimicking the educated state. These results indicate an intrinsic role for lysosomal remo-
deling in NK cell education.
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ARTICLE

atural killer (NK) cells achieve specificity through unique

combinations of germ-line encoded receptors. These

receptors are critical for the development of cell-intrinsic
functional potential, enabling spontaneous activation upon
recognition of target cells displaying reduced class I MHC
expression!. Inhibitory interactions with self-MHC translate into
a predictable quantitative relationship between self-recognition
and effector potential, a process termed NK cell education2.
Despite being clearly evident in different species®, NK cell edu-
cation operates through an as yet largely unknown mechanism.
Paradoxically, mature NK cells expressing self-MHC-specific
inhibitory receptors, receiving constitutive inhibitory input dur-
ing homeostasis, exhibit increased levels of functionality upon
ligation of activating receptors®4.

Mouse models have demonstrated that this functional pheno-
type is dynamic and dependent on the net signaling input to NK
cells during cell-to-cell interactions with both stromal and
hematopoietic cells®. Transfer of mature NK cells from one MHC
environment to another results in reshaping of the functional
potential based on the inhibitory input of the new MHC setting®.
Alternatively, genetic knock-down of SLAM-family receptors by
CRISPR/Cas9 leads to hyperfunctionality’, whereas deletion of
the inhibitory signaling through ITIM and SHP-1 renders NK
cells hypofunctional®®. However, it remains unclear how and
when the net signaling input from activating and inhibitory
receptors during NK cell education is integrated to tune the
functional potential of the cell.

One difficulty in establishing the cellular and molecular
mechanisms that account for the calibration of NK cell function is
the lack of a steady-state phenotype that defines the educated NK-
cell state. Functional readouts used to distinguish self-specific NK
cells from hyporesponsive NK cells do not provide information
about the prior events that culminate in the development of
effector potential. Apart from differences in the relative levels and
distribution of NK cell receptors at the cell membrane®19, tran-
scriptional and phenotypic readouts at steady state provide scant
differences between self and non-self-specific NK cells!!:12,
Whether inhibitory signaling is converted into a paradoxical gain
of function through an as yet unknown mechanism (e.g., arming/
stimulatory licensing), or whether expression of self-specific
inhibitory receptors protect the cell from tonic activation that
would otherwise lead to erosion of function over time (e.g., dis-
arming/inhibitory licensing) remains to be determined!3:14,

Here, we show that expression of self-specific inhibitory
receptors influences the structural organization of the endolyso-
somal compartment. This allows NK cells to sequester granzyme
B and mount strong, receptor-triggered effector responses from
pre-existing large dense-core secretory lysosomes (also referred to
as lytic granules). Moreover, the secretory lysosomes form part of
the acidic Ca®* stores in the cells and contribute to the global Ca?
T-flux and downstream effector function in NK cells. These
findings connect homeostatic receptor input to lysosomal
homeostasis, which tune the functional potential in self-KIRT NK
cells.

Results

Accumulation of granzyme B in educated human NK cells. The
impact of NK cell education on degranulation of primary NK
cells expressing self- versus non-self-specific KIR was examined in
88 healthy blood donors (Fig. 1a). In line with the previous stu-
dies, NK cells expressing self-specific KIR exhibited greater
degranulation in response to HLA class I-deficient K562 cells. To
address the mechanisms involved in the tuning of effector
potential, the expression of granzyme B, a core effector molecule,
was monitored by flow cytometry in mature NK cells stratified on

the expression of self- versus non-self-specific KIR. The stochastic
expression of KIR in NK cells occurs independently of MHC
setting, providing unique situation in which self and non-self-
specific KIRT subsets can be examined within each individual as a
natural equivalent of gene-silencing!>!. This allowed us to
address the impact of reciprocal presence or absence of a self-KIR
on the total granzyme B content within equivalent subsets in each
individual. Extended analysis of 64 healthy donors showed sig-
nificantly higher expression of granzyme B in NK cells positive
for KIR2DL3 (2DL3) relative to KIR2DL1 (2DL1) from indivi-
duals homozygous for the 2DL3 ligand, HLA-C1/C1 (Fig. 1b).
Conversely, granzyme B was elevated in 2DL17 cells from indi-
viduals homozygous for the 2DL1 ligand, HLA-C2/C2. In order
to control for the stage of differentiation, which is known to
influence the expression of effector molecules!”, these analyses
were performed in NK cells that were NKG2A negative and CD57
negative (Supplementary Figure la). Corroborating the link
between inhibitory input through self-KIR and granzyme B
expression, donors that were heterozygous for HLA-C1/C2 had
similarly high levels of granzyme B in both 2DL1 and 2DL3
single-positive NK cells (Fig. 1b).

Accumulation of granzyme B in self-KIRT NK cells was
confirmed in a second cohort of 49 healthy donors and was
observed in both KIR A/A and B/x haplotypes, which differ in
terms of their content of activating KIR genes (Supplementary
Figure 1b-c)!8. Granzyme B expression was also higher in 3DL1+
NK cells from donors positive for its cognate ligand HLA-Bw4
(Fig. 1c), particularly in those who possessed strong educating
motifs, e.g., a Bw4 allotype with isoleucine (Ile) at position 80
whereas granzyme B was lower in NK cells carrying the weak A24
motif alone (Supplementary Figure 2a, b)1920. Several alleles of
KIR2DL2 (2DL2) have been shown to bind to both HLA-C1 and
HLA-C221:22, In line with such cross-reactive binding patterns,
2DL2/2DS2 single-positive NK cells expressed similar levels of
granzyme B in HLA-C1/C1, -C1/C2, and -C2/C2 donors (Fig. 1d).
KIR2DS1 binds to HLA-C2 but does not endow NK cells with
function and had low levels of granzyme B (Fig. le). Finally, it is
well established that NKG2A/HLA-E interactions contribute to
the education of NK cells?3%4, In line with the results observed in
educating single KIRT NK cell subsets, NKG2ATKIR~CD57~
NK cells expressed higher levels of granzyme B (Fig. 1f).

To study the effect of self KIR expression in a dynamic model,
retroviral transduction was used to introduce full-length 2DL1 or
2DL3 into NK cell lines YTS (HLA-C1/C1) and NKL (HLA-C2/
C2). Extending the findings with ex vivo staining of primary NK
cells, the transduced NK cell lines showed a similar accumulation
of granzyme B following transfection of a self KIR (Fig. 1g) and
enhanced functionality (Supplementary Figure 3a-c). These data
show that the expression of inhibitory self-KIR or NKG2A is
associated with an increased granzyme B payload in NK cells,
establishing a link between inhibitory input and the regulation of
the core cytolytic machinery of NK cells.

Granzyme B accumulation is independent of transcription. To
address whether the increased levels of granzyme B in educated
NK cells were due to increased transcription, NKG2A~NKG2C
~CD57~ NK cells were sorted into 2DL3 or 2DL1 single-positive
populations from C1/C1 and C2/C2 donors, and transcriptionally
profiled using RNA-Seq (Supplementary Figure 4a, b). In line
with the previous studies in mice?, there was a near perfect
correlation between genes expressed in self and non-self KIRT
human NK cell subsets, including granzyme B and genes
encoding transcription factors for effector loci, lysosomal bio-
genesis, and mechanistic target of rapamycin (mTOR) regulated
metabolism (Fig. 2a and Supplementary Table 1). For reference,
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Fig. 1 NK cell education is associated with accumulation of granzyme B. a CD107a expression in response to K562 cells by the indicated KIR subset of
resting mature CD564IM NKG2A~ NKG2C—CD57~ NK cells from C1/CT (n = 38 donors), C1/C2 (n = 31 donors), and C2/C2 (n =19 donors). b Expression
of granzyme B in 2DL3 and 2DL1 single-positive NKG2A~CD57~ NK cells from C1/CT (n = 21 donors), C1/C2 (n = 26 donors), and C2/C2 (nh =12 donors).
Donors with less than 100 events in the final KIR gate were excluded. ¢ Expression of granzyme B in 3DL1*/~ NKG2A~CD57~ NK cells from Bw4* (n =20
donors) and Bw4~ (n=7 donors). d Expression of granzyme B in 2DL2/2DS2 or 2DL3-single-positive NKG2A~ NKG2C~CD57~ NK cells in C1/C1 (n=9
donors), C1/C2 (n= 8 donors), and C2/C2 (n =9 donors). e Expression of granzyme B in the indicated NKG2A~ NKG2C~CD57~ NK cell subset in C2/C2
(n=7 donors). f Expression of granzyme B in KIR-CD57~NKG2A+/~ CD57~ NK cells (n = 63 donors). g Expression of granzyme B in YTS and NKL cells
transfected with 2DL3 or 2DL1. The graph shows data from one representative experiment of two. Paired t-tests were performed in (a-¢, f-g). One-way
ANOVA tests followed by Tukey's multiple comparison tests were performed in (e, f). Whiskers show 5th to 95th percentile. Bars show the median. ****p
<0.0001; ***p < 0.007; and *p < 0.05. Red and blue circles and box plots represent NK cells with self or non-self KIR, respectively

we also sorted and performed RNA-Seq on NK cell subsets at independently of transcriptionally regulated programs, including
discrete stages of NK cell differentiation CD56Pright, mature  differences in tonic metabolic input to the cell.

CD564MNKG2A~KIR™, and CD564MNKG2A~KIR" (Supple- In mouse NK cells, the expression of granzyme B is regulated
mentary Figure 5). As expected, NK cell differentiation and KIR by cytokine-induced translation from a preexisting pool of
acquisition were associated with increased transcription of mRNA transcript®>. Therefore, we explored the possibility that
granzyme B and several other genes known to be involved in self and non-self-specific NK cells may respond differentially to
regulating effector function, including IRF4 and PRDM1 (Sup-  cytokine priming in vivo, resulting in divergent steady-state levels
plementary Figure 5). These results were confirmed in a panel of of expressed granzyme B. To address this possibility, NK cells
eight selected qPCR targets comprising transcription factors and exposed to IL-15 or IL-21 for various lengths of time were
canonical cell surface markers linked to NK cell differentiation monitored for granzyme B content using flow cytometry (Fig. 2c).
and showing a marked dissociation between differentiation and ~Both self and non-self KIRt CD564™m NK cells displayed
education (Fig. 2b and Supplementary Figure 6). Together, these increased levels of granzyme B in response to IL-15 and IL-21
data demonstrated that the increased levels of granzyme B stimulation. Notably, the relative differences in granzyme B
detected by flow cytometry in self-KIR™ NK cells occur between self and non-self-specific NKG2A~NKG2C~CD57~ NK
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Fig. 2 Granzyme B accumulation is independent of transcription. a Global RNA-Seq of sorted self-KIRt and non-self-KIR* NKG2A~ NKG2C~CD57~ NK
cells. The figure depicts one representative C1/CT donor out of three independent donors. b Quantitative PCR of granzyme B mRNA in sorted NK cells at
different stages of differentiation (left, 4 pooled samples) and in NKG2A~NKG2C~CD57~ NK cells expressing a self- or non-self KIR (right, n =5 paired
samples). ¢ Expression of granzyme B in the indicated NK cell subsets following stimulation with IL-15 or IL-21 for the indicated length of time (summary of
two independent experiments using two different donors). d Expression of granzyme B after 24 h of stimulation with IL-21 or IL-15 in CD56Pright NK cells
and NKG2A~ NKG2C~CD57~ single-positive CD564M NK cells expressing a self- or non-self KIR NK cell subset in the presence or absence of the STAT-5
inhibitor Pimozide (top) (7 pM) and the mTOR inhibitor Torin-1 (100 nM) (bottom). The data in panel (d) are the summary of at least two independent
experiments. Whiskers show 5th to 95th percentile. Bars show the median. Wilcoxon paired, non-parametric tests. ****p < 0.0001 and **p < 0.01. Red and
blue circles, connecting lines and box plots represent NK cells with self or non-self KIR, respectively

cells were similar after stimulation with IL-15 or IL-21 (Fig. 2c).
Furthermore, blockade of STAT-5 and mTOR signaling with
Pimozide and Torin-1, respectively, abolished the cytokine-
induced increase in granzyme B in both self and non-self-
specific NK cells (Fig. 2d). These data indicate that a stable pool
of granzyme B is retained by NK cells independently of
constitutive input through cytokine or metabolic signals.

Education is associated with remodeling of the lysosomes. The
finding that self-KIRT NK cells expressed higher levels of

granzyme B independently of mRNA levels provided initial
insights into possible post-transcriptional mechanisms under-
lying the increased functional potential associated with NK cell
education. Granzyme B is sequestered into acidic secretory
lysosomes?®. To determine whether the increased levels of gran-
zyme B in self-specific NK cells were the result of higher density,
number, or size of such secretory lysosomes, NKG2A~ NKG2C
~CD57~ NK cells were sorted into self- or non-self-specific NK
cell subsets, imaged by confocal microscopy and analyzed in a
blinded fashion. Corroborating the difference in granzyme B
expression observed using flow cytometry, self-KIRT NK cells
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Fig. 3 Modulation of the lysosomal compartment in educated NK cells. a Confocal microscopy Z-stack showing Pericentrin (PCNT), LAMP-1, and granzyme
B (GZMB) staining in sorted mature CD564M NKG2A~NKG2C~CD57~ NK cells expressing non-self or self KIR. Scale bar is 2 pm. b The pixel sum of
granzyme B staining in cells expressing non-self or self KIR. € The number of LAMP-1* lysosomal structures. Data in panels (b) and (c) are aggregated
from sorted 2DL1 and 2DL3 single-positive NK cell subsets from CIC7 (n =5 donors) and C2C2 (n =5 donors) donors. d Granzyme B expression levels
versus the distance from the centrosome in individual lysosomes in sorted NKG2A~NKG2C~CD57~ NK cells expressing non-self or self KIR (n= 804
lysosomes from 3 donors were analyzed). Gates were set based on visual inspection to quantify the percentage of granzyme-B dense secretory lysosomes
in self and non-self NK cells. e Representative immuno-EM section showing staining with gold-particle coated anti-granzyme B (top) and Chondroitin
Sulphate-4 (CS-4) (bottom) of sorted CD564M NKG2A~NKG2C~CD57~ NK cells expressing non-self or self KIR. Scale bar is 200 nm. f Number of gold
particles (granzyme B and CS-4) per cell. (non-self n = 83 cells, self n =109 cells). g Particle count (granzyme B and CS-4) as a function of the lysosomal
area. h Density of gold particles (granzyme B and CS-4) per lysosomal area (um?2). Immuno-EM data are from 5 donors and 5 experiments. Paired t-tests
were performed in panels (b, ¢, e, and g). ****p <0.0001 and *p < 0.05. Red and blue circles and box plots represent NK cells with self or non-self KIR,
respectively

had a higher overall intensity of granzyme B staining (Fig. 3a, b Optical resolution limits of confocal microscopy prevented
and Supplementary Figure 7a). The number of secretory lyso- accurate assessment of organelle size. To more precisely analyze
somes in the two NK cell subsets, however, was not changed the granzyme B distribution and lysosome morphology, sorted
(Fig. 3¢). Notably, the most intense labeling was found at a close  self-KIRT and non-self KIRT NK cells were analyzed by immuno-
distance to the centrosome in self-KIRT NK cells (Fig. 3d and electron microscopy (immuno-EM) (Fig. 3e and Supplementary
Supplementary Figure 7b). These granzyme-B dense secretory Figure 8). Quantification of gold particles per cellular section
lysosomes, localized close to the centrosome were uniquely found — revealed overall greater granzyme B staining in self-KIRT NK
in educated self-KIR* NK cells. Blinded scoring of the size and cells (Fig. 3f), consistent with both the flow cytometry and
staining intensity of 804 granzyme-Bt structures (secretory confocal microscopy data. Since retention of granzyme B and re-
lysosomes) from 20 single-KIRT NK cells, revealed that 50% of loading of secretory lysosomes depend on the serglycin content in
the educated NK cells carried at least one large secretory lyso- the matrix of the secretory lysosomes??, sections of self-KIR* and
some, representing on average 7.8% of the total number of non-self KIR" NK cells were stained for the expression of
secretory lysosomes per cell. Notably, in these cells, the large Chondroitin Sulphate 4 (CS4), a predominant glycosaminoglycan
granzyme-B labeled structures contributed to 36% (8-76%) of the  side-chain associated with serglycin in cytotoxic lymphocytes?s.
total granzyme B signal. Self-KIR* NK cells had a higher overall intensity of CS4-staining
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stimulation with K562 cells (n =5 donors). ¢ Expression of granzyme B in the indicated NK cell subset after stimulation with K562. Summary of data from 4
C1/C1 donors. d Representative images of immuno-EM sections of resting (left) or sorted degranulated CD107ahigh NK cells (right). Scale bar: 200 nm. e
Secretory lysosome size and granzyme B content as determined by immuno-EM in resting and sorted CD107aMigh NK cells after stimulation with K562. A
Wilcoxon test was performed in panel (b). A non-parametric Friedman test was performed in panel (¢). Whiskers show 5th to 95th percentile. Bars show
the median. *p < 0.05. Red and blue box plots represent NK cells with self or non-self KIR, respectively

(Fig. 3e, f and Supplementary Figure 8), suggesting that NK cell
education leads to changes in the matrix composition of the
secretory lysosomes. Granzyme B and CS4 staining further
revealed a small increase in the average secretory lysosome size,
resulting in significantly larger total secretory lysosomal areas,
without any difference in relative cell size (Supplementary
Figure 7c-e). Similarly, the analysis of gold particle distribution
of both granzyme B and CS4 against secretory lysosome area in
immuno-EM images revealed that self-specific NK cells had larger
granzyme B/CS4-dense lysosomal areas (Fig. 3g), and overall
greater secretory lysosome densities (Fig. 3h). These data provide
a link between the expression of self-specific inhibitory KIR and
retention of enlarged, granzyme B-dense secretory lysosomes.

Given the accumulation of secretory lysosomes in educated NK
cells, we examined the expression of other effector molecules,
including perforin and granulysin in self and non-self KIR* NK
cells. CD56Pright NK cells lack secretory lysosomes and have low
levels of both granzyme B and perforin (Supplementary
Figure 9a). In contrast, granulysin was found at high levels also
in CD56Pright NK cells, suggesting that its production and storage
are independent of the formation of dense-core secretory
lysosomes (Supplementary Figure 9a). In support for a specific
role of the increased density of secretory lysosomes in the
retention of high levels of granzyme B in educated NK cells,
perforin, but not granulysin was increased in self-KIR* NK cells
(Supplementary Figure 9b-d). Importantly, the accumulation of
effector molecules in educated self-KIRT NK cells was observed
also in more differentiated NKG2A~CD57+ NK cells (Supple-
mentary Figure 9e).

Educated NK cells mobilize dense-core secretory lysosomes. It
is well established that self-KIR™ NK cells display stronger
degranulation responses than non-self KIRt NK cells at the
population level?, which was corroborated in our functional

analysis of 96 donors (Fig. 1a). Furthermore, recent studies sug-
gest that the release of as few as one secretory lysosome can lead
to target cell killing?®. Given the unique accumulation of gran-
zyme B-dense secretory lysosomes in self-KIRT NK cells we
examined their fate following stimulation with K562 cells.
Granzyme B release in self-KIRT NK cells was associated with
strong mobilization of secretory lysosomes, reflected in a higher
discrete mode of CD107a expression (CD107ahigh) (Fig. 4a, b).
High CD107a expression was accompanied by a decrease in
granzyme B expression to the levels observed in non-self-specific
KIR* NK cells (Fig. 4c). Immuno-EM of sorted CD107ahigh NK
cells revealed a specific reduction of large and granzyme B-dense
lysosomes following target cell interaction (Fig. 4d, e). Thus, the
accumulation of dense-core secretory lysosomes during education
and their effective release upon stimulation, provide a plausible
explanation for the enhanced cytotoxic potential of self-KIRT NK
cells and may contribute to their ability to perform serial killing3C.

Compromising lysosomal activity decreases NK cell function.
NK cell education has a global influence on the function of self-
KIRT NK cells extending beyond degranulation responses. These
include increased Ca?* flux following receptor ligation, increased
ability to form stable conjugates, and increased cytokine pro-
duction following target cell interaction!. Therefore, we
addressed whether there could be a link between the observed
morphological changes in the lysosomal compartment and the
known enhanced global responsiveness associated with NK cell
education. There is increasing evidence suggesting that local Ca®*
signaling from the acidic compartment, including secretory
lysosomes, contributes to the spatiotemporal coordination of
signaling cascades and boost Ca?™ signaling from the endoplas-
matic reticulum (ER)31-3%. While most of the studies in this area
have so far been performed in non-immune cells, there is evi-
dence in both T cells and NK cells, that lysosomal Ca?™ release
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may play an important role in degranulation3!-3>. Therefore, we
examined whether primary human NK cells were affected by the
regulation of lysosomal activity and whether this had con-
sequences on their global responsiveness to receptor ligation.
Functional responses of primary NK cells were determined in
the presence and absence of glycyl-L-phenylalanine-beta-
naphthylamide (GPN), a dipeptide substrate of cathepsin C
associated with the release of Ca?* from the lysosomes3®. GPN
causes osmotic permeabilization of cathepsin C-positive compart-
ments, resulting in the collapse of the pH gradient and controlled
equilibration of small solutes, including Ca2*, between the acidic
compartment and the cytosol*®. Treatment of resting primary NK
cells with GPN dampened global Ca?*-flux in the cytosol in
response to ligation with CD16 or a combination of DNAM-1
and 2B4 (Fig. 5a). GPN treatment alone resulted in a low level of
mobilization of CD107at vesicles to the cell surface (Fig. 5b) but
more importantly abrogated degranulation and the production of
IFN-y in response to K562 cells (Fig. 5b-d). Similar results were
obtained using mefloquine, another lysosomotropic agent that

specifically disrupts lysosomal homeostasis through buffering of
the acidic pH gradient (Fig. 5¢, d)%”. In line with the concept that
NK cell education is not an on/off switch but rather a continuum
of functional responses, both self KIR* and non-self KIRT NK
cells were affected by lysosomal interference38. Importantly, none
of these compounds showed any general cellular toxicity at the
doses tested as compared to the positive control L-leucyl-L-
leucine methyl ester (LeuLeuOMe), a lysosomotropic agent
known to induce apoptosis in immune cells through induced
lysis of secretory lysosomes (Supplementary Figure 10). Further-
more, GPN treatment did not interfere with degranulation in
response to PMA/Ionomycin, which raises cytosolic-free Ca2t by
directly accessing both intra- and extra-cellular-free Ca2t
(Supplementary Figure 11). Thus, disruption of the lysosomal
compartment not only affects the mobilization of secretory
lysosomes but also the production of cytokines, suggesting that
cytokine production in response to stimuli requires lysosomal-
derived signals. This opens the possibility that differential
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Fig. 5 Compromising lysosomal activity decreases NK cell function. a Global

Ca2*-flux in resting bulk NK cells measured by Fluo-4 F,/Fq ratio following

stimulation with biotinylated anti-DNAM-1/anti-2B4 (top) or biotinylated anti-CD16 (bottom) crosslinked at the indicated time-point with streptavidin in
the presence (added at the onset of stimulation and maintained throughout the assay) or absence of 50 pM GPN. b Representative example of CD107a
expression following stimulation of NK cells with K562 cells in the presence or absence of GPN. ¢ Frequency of CD107"igh+ and d IFNy™ self-KIR* and non-
self-KIRT NK cells following stimulation with K562 cells in the presence or absence of 50 pM GPN or 10 pM Mefloquine (MEF). Friedman's tests were
performed followed by Dunn’s multicomparison tests. Whiskers show 5th to 95th percentile. Bars show the median. ****p < 0.0001; ***p < 0.0071; **p <
0.07; and *p < 0.05. Red and blue box plots represent NK cells with self or non-self KIR, respectively
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signaling in self KIRT and non-self KIRT NK cells may be
influenced by lysosomal-derived Ca?t signals.

Enlarging secretory lysosomes increases NK cell function. The
lysosomal compartment undergoes constant modulation through
Ca®* regulated fission and fusion events?. Lysosomal fission is

TRPMLLI is activated by phosphoinositide 3,5-bisphosphate PI
(3,5)P,*2 and may prevent uncontrolled fusion with secretory
lysosomes*3. To probe this axis, we blocked PI(3,5)P, synthesis in
resting NK cells using three chemically distinct small molecule
inhibitors of the PI3P 5 kinase, PIKfyve.

Treatment of cells with vacuolin-1, apilimod, and YM20163644

dependent on Ca2* release via the lysosome-specific channel, led to the enlargement of the lysosomal compartment (Fig. 6a).

transient receptor potential mucolipin-1 (TRPML1)40:41,  Importantly, this was accompanied by a modest increase in
a DMSO YM201636 b C  bmso Vacuolin-1 d
Self Non-self

6000

DMSO

3
*hkk

4000

Vaculoin-1 L4 °{'

n
o
o
o

0.01 0.1 1 10 100 1000

Granzyme B expression (MFI)

Lamp1” structure
0 volume (nm°)
Apilimod Vacuolin-1
e lonomycin f g h
2 Self Non-self Self Non-self
2 ;/ 10°4 ok ok * *
u° 2 Antl DNAM1/ant| 2B4 f 40 + 30
= |
[Ny DMSO 1
i — Vacuolin-1 — i
S 1074 2 30 20
[ 50 100 150 200 250 300 od 5 S
Time (s) @ -10°4 © 20 - =
] s e 5 z
g 10?2 10°  10* 10°  10° a = 104
lonomycin § O 104
8 10* 4
] -
2 | anticois ~ : 0- 0-
e 2 l S~ 05 Vacwolin-1 [l ] B[ W Vacwolin-1 [l (] W[ W
w V4 DMSO , kse2[ | [ B kKse2 | [ B B
< / — Vacuolin-1 1074
o
E] 1 T T T T T o4 Vo
w 50 100 150 200 250 300 1023 acuol
Time (s) @100 1ot 10 10°
0.5 CD107a
| 40 - j p-Zap70/Syk p-LCK p-MAPK p-NF-xB
* % 9
G/. —e— No stim
> 304 3 204 3 34 —#- CD16
S [} —i— CD16+GPN
3 ® —¥- CD16 + Vacuolin-1
S 20 T 2 154 24 21
& s
(6]
2 10 14 1.0 14 14
0- 0-— T T T 0.5 +— T T T 0-— T T T 0-— T T T
O N 0O 5 10 20 0O 5 10 20 0O 5 10 20 0 5 10 20
K N ) )
Q S Time (min)
Arbo

Fig. 6 Enlarging the secretory lysosomes leads to enhanced NK cell function. a Confocal Z-stack showing MHC-I, LAMP-1, and granzyme B (GZMB)
staining in primary NK cells following PIKfyve inhibition using overnight incubation with 1 uM vacuolin-1, 1uM apilimod, or TpM YM201636. Scale bar is 5
pum. b Intracellular granzyme B expression in self-KIRT and non-self-KIRT NK cells following overnight incubation with the indicated PIKfyve inhibitor
assessed by flow cytometry (n =5 independent donors). ¢ Representative example of a confocal image of primary NK cells treated overnight with 1uM
vacuolin-1 or DMSO. Scale bar is 2 pm. d Compiled confocal data on the volume of LAMP-1* structures from cells treated overnight with DMSO or
vacuolin-1 (n =149 LAMP-1* structures). e Cytosolic Ca2*+-flux in NK cells in response to stimulation with biotinylated anti-DNAM-/2B4 (top) or anti-
CD16 (bottom) crosslinked with streptavidin at the indicated timepoint. Cells were treated with 10 pM vacuolin-1 added directly before the assay and then
maintained throughout the incubation time. f Representative FACS histogram of granzyme B versus CD107a expression following stimulation with K562
cells in the presence of DMSO or 10 uM vacuolin-1. g Frequency of CD107aM8"+ and h IFNy* self-KIR* and non-self-KIRT NK cells after stimulation with
K562 in the presence of DMSO or 10 uM vacuolin-1. i FACS-based killing assay showing NK cell killing of K562 cells after treatment with DMSO or 10 pM
vacuolin-1 (n =6 donors). j Relative phosphorylation of the indicated signaling molecules following stimulation with biotinylated anti-CD16 (10 pg/mL)
crosslinked with streptavidin in the presence of 50 pM GPN or 10 pM vacuolin-1. Friedman's test was used in panel (b). A non-paired t-test was used in
panel (d). Paired t-test was used in panels (g-i). Whiskers show 5th to 95th percentile. Bars show the median. ****p < 0.0001; **p < 0.01; and *p < 0.05.
Red and blue circles and box plots represent NK cells with self or non-self KIR, respectively. In panels (i) and (j), red and blue colors indicate cells treated
with the indicated compounds
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granzyme B levels observed in both self-KIR* and non-self KIR™"
NK cells (Fig. 6b). Confocal microscopy of vacuolin-1-treated
primary NK cells revealed localization of granzyme B within
enlarged LAMP-17 structures (Fig. 6¢, d). Treatment of NK cells
with vacuolin-1 also increased global Ca?* flux in response to
receptor-ligation (Fig. 6e) and enhanced specific degranulation
(and mobilization of granzyme B) and IFNy production in
response to stimulation by K562 cells (Fig. 6f-h). Furthermore,
the increased granzyme B expression and degranulation following
PIKfyve inhibition correlated with increased natural cytotoxicity
against K562 cells (Fig. 6i). These results demonstrate that
chemical blockade of PIKfyve results in the enlargement of the
lysosomal compartment and enhanced NK cell functionality.

In order to identify the point at which lysosomal disruption
(GPN) or lysosomal enlargement (vacuolin-1) interfered with
intracellular signaling pathways in NK cells, we probed signaling
both proximal and distal to the plasma membrane. Vacuolin-1
had a minimal effect on upstream signaling, including ZAP70 and
Lck following ligation of CD16 (Fig. 6j). However, the propaga-
tion of downstream signals through NF-kB was increased by
treatment with vacuolin-1. Conversely, the disruption of
lysosomal Ca®*-flux by GPN had the reverse effect on CD16-
induced NF-«B signaling (Fig. 6j). Hence, physical modulation of
the acidic Ca2* stores affects downstream signaling in response to
receptor ligation and tunes NK cell effector responses.

TRPMLI1-mediated modulation of secretory lysosomes. PIKfyve
is recruited to PI3P positive compartments where it activates the
lysosomal calcium channel TRPMLI via the production of PI(3,5)
P,4l. The analysis of the transcriptional levels of TRPMLI in
discrete NK cell subsets revealed TRPML1 mRNA was expressed
at equal levels in all NK cell subsets (Fig. 7a). Agonistic stimu-
lation of TRPML using the chemical compound MK6-83, which
activates TRPMLI and TRPML34>46, resulted in the loss of
granzyme B (Fig. 7b) and decreased specific degranulation and
IFNy responses to K562 cells (Fig. 7c). Conversely, silencing of
TRPMLL1 by siRNA in resting primary NK cells (Fig. 7d) led to
increased levels of granzyme B (Fig. 7e), confined within enlarged
lysosomal structures (Fig. 7f, g). Moreover, in concordance with
the effects of pharmacological inhibition of PIKfyve, siRNA
silencing of TRPML1 led to enhanced degranulation and IFNy
production in primary resting NK cells (Fig. 7h—j). These results
demonstrate a role for TRPMLI in the modulation of lysosomal
structures, granzyme B content, and in tuning of effector function
in NK cells.

Discussion

NK cell education is a dynamic process during which NK cells
calibrate their functional potential to self-MHC. However, it has
been unclear how receptor input during NK cell education is
integrated and retained in order for NK cells to remain self-
tolerant, whilst also able to deliver spontaneous, well-tuned
functional responses upon subsequent challenges. Our results
suggest that unopposed activation signals lead to physical dis-
arming of NK cells, mediated through TRPMLI1-induced mod-
ulation of the lysosomal compartment. The accumulation of
dense-core secretory lysosomes under the influence of inhibitory
self-MHC interactions provides mechanistic insights into the
paradox of how inhibitory signaling is translated into a state of
enhanced functional potential that persists between successive
cell-to-cell contacts. The structural change in the lysosomal
compartment and loading of dense-core secretory lysosomes may
represent a form of molecular memory of receptor signaling
during NK cell education.

A variety of models and nomenclature have been used to
describe the process of NK cell education. However, regardless of
whether the functional phenotype is caused by gain of function
(arming/stimulatory licensing) in self-KIR™ NK cells or loss of
function (e.g., disarming/inhibitory licensing) in non-self KIRT
NK cells®#7, the net outcome of these processes is a consistent
difference in the intrinsic functional potential of cells carrying
self- and non-self receptors at rest. A structural basis for the
difference in functional responsiveness has recently been
proposed®10, whereby educated NK cells display unique com-
partmentalization of activating and inhibitory receptors at the
nano-scale level on the plasma membrane. Complementing this
pre-existing phenotype, we show that NK cell education is also
tightly linked to the accumulation of large, granzyme B-rich
secretory lysosomes, located closer to the centrosome in resting
NK cells. We found a significant correlation between the
expression of self KIR and the level of granzyme B for all three
major inhibitory KIRs (2DL1, 2DL3, and 3DL1) and their cognate
HLA ligands. Although the difference in granzyme B levels
between educated and uneducated NK cells was only around
1.5-2-fold, the analysis of the size of the secretory lysosomes and
total intracellular granzyme B expression before and after
degranulation revealed a complete loss of large lysosomal struc-
tures and reduction of granzyme B down to baseline levels. These
results suggest that the difference observed in flow cytometry is
physiologically relevant and may constitute the whole releasable
pool. Furthermore, these results are in line with the recent
observation that NK cells can kill their target by releasing one
single lytic granule?®. It remains an open question whether the
level of granzyme B stores is directly proportional to the func-
tional capacity of the cell. We observed slightly higher levels of
granzyme B in 3DL1sp NK cells from donors who possessed the
Bw411¢80 alotype, which has been reported to be a high-affinity
ligand*8, albeit this appears to depend on the KIR allele*®. 3DL1
allelic diversity, including the non-expressed 3DLInull alleles,
combined with Bw4 ligand polymorphism has a profound
influence on NK cell education!®20:50, We are currently addres-
sing the impact of such allelic diversity on the granzyme B stores
and graded functional responses. The observation that NK cell
education is tightly linked to the cytotoxic payload has immediate
implications for the cytotoxic potential of the cell. However, this
finding alone cannot explain the extended functional phenotype
of educated NK cells, namely their enhanced ability to form target
cell conjugates and release IFNy upon target cell stimulation!.
Therefore, we set out to examine whether the remodeling of the
lysosomal compartment could influence the functional potential
in NK cell beyond the mere accumulation of effector molecules.

An increasing body of evidence supports the role of the acidic
compartment not only in the triggering of Ca?* signaling, but
also in the spatiotemporal coordination of signaling cascades’!-
34, and the regulation of receptor degradation®>°3. In both T cells
and NK cells, lysosomal Ca?* release plays an important role in
degranulation313%, Signaling from the lysosomal compartment
was also recently shown to regulate the migratory behavior of
dendritic cells in a TRPMLI-dependent fashion®*. Our data
suggest that there is a quantitative relationship between the
modulation of the lysosomal compartment under the influence of
inhibitory receptors and intrinsic functional potential of NK cells.
While the exact role of the acidic Ca?* store for the enhanced
functional potential in self-KIR™ NK cells remains elusive,
pharmacological inhibition of Ca?™ release from the intracellular
acidic stores, together with the analysis of Ca?*-flux, consistently
pointed to a role for the secretory lysosome in propagating sur-
face receptor signaling. Notably, a correlation between the size of
the lysosomes and level of Ca?T-flux has previously been
described in fibroblasts from patients with Parkinson disease®.
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Fig. 7 TRPML1-mediated modulation of secretory lysosomes. a mRNA expression (RNA-Seq) of TRPML1 in the indicated NK cell subsets sorted from

PBMC and analyzed directly. b Granzyme B expression in NK cells treated for 2 h with 10 pM of the TRPML1 agonist MK6-83. (Summary of n =23 donors.)
¢ Degranulation (left) and IFNy responses (right) by resting primary NK cells following stimulation with K562 cells for 4 h in the presence or absence of 10
pM MK6-83. Data are the summary from two independent experiments with 7 donors. d Relative mRNA expression (qPCR) of TRPML1 72 h after siRNA
silencing in NK cells cultured for 3 days in 1ng/mL IL-15. e Granzyme B expression in NK cells 72 h after siRNA silencing of TRPML1. f Confocal microscopy
image showing LAMP-1 and granzyme B (GZMB) staining in siRNA TRPMLT silenced NK cells. Scale bar is 2 pm. g Summary of integrated granzyme B
intensity per cell as quantified with ImageJ (n = 3 experiments). AU arbitrary units. h Representative example of FACS plot showing granzyme B expression
versus CD107a in siRNA TRPMLT silenced NK cells after 4-h stimulation with K562 cells. Compiled data on i CD107a and j IFNy production in TRPML1-
silenced primary NK cells. Data are from nine donors with confirmed siRNA silencing. Paired t-tests were performed in panels (b, ¢, e, i, and j). Non-paired
t-test was performed in panel (g). Whiskers show 5th to 95th percentile. Bars show the median. ****p < 0.0001; **p < 0.01; and *p < 0.05. Red and blue box

plots represent NK cells treated with the indicated compounds or siRNA

On that note, it is tempting to speculate that the gain of natural
cytotoxicity in IL15-stimulated CD56"ight NK cells may be like-
wise related to the associated emergence of secretory lysosomes®.

We examined the molecular pathway that led to the accumu-
lation of secretory lysosomes in self-KIR* NK cells, or rather the
lack of accumulation of such lysosomes in non-self KIRt NK
cells. The difference in secretory lysosome size and densities in
the absence of active lysosomal biogenesis led us to explore the
pathways involved in the continuous modulation of the lysosomal
compartment through fission and fusion events3®. Several acti-
vating receptors have been implicated in NK cell education,
including NKG2D, SLAM family receptors, and DNAM-17-1157,
NKG2D and DNAM-1 signaling activates the PI3K/AKT

pathway®8. Engagement of inhibitory receptors and SHP-1 sig-
naling block NK cell activation at an early stage of the activation
signaling pathway, preventing actin cytoskeletal rearrangement
and the recruitment and phosphorylation of activation recep-
tors>®. The PI3K/AKT pathway is also controlled by SHIPI,
which has also been implicated in tuning the effector function of
NK cells during education®. The structural difference in the
lysosomal compartment in NK cells lacking self-specific KIR led
us to hypothesize that continuous unopposed signaling through
activating receptors during homeostatic cell-cell interactions may
promote lysosomal fission, leading to an inability to sequester
granzyme B in large secretory lysosomes (model laid out in
Fig. 8). Notably, PIKfyve and TRPMLI are activated downstream
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Fig. 8 Model describing the distinct fates of NK cells during NK cell education. NK cells lacking self-specific receptors receive tonic stimulatory input
through activating receptors and show poor functional responses, a process referred to as disarming®!. We found that such cells exhibit lower levels of the
granule matrix protein serglycin and effector molecules granzyme B and perforin and lack dense-core secretory lysosomes. One putative pathway
downstream of activation receptor signaling is PI3K/AKT that stimulate the enzyme PIKfyve, which converts PI3P to PI(3,5)P, and thereby positively
regulate the lysosome-specific Ca2t channel TRPML141. PIKfyve and TRPML1 are critically involved in lysosomal modulation in several cell types40: 41,
Inhibitory KIRs interfere with activation signals at a proximal level and thereby shut down any signals that could drive such lysosomal modulation. In
support of this notion, we found that pharmacological interference with PIKfyve or silencing of TRPML1 replicated the educated state with enlarged
lysosomes, increased granzyme B loads and more potent effector function. The secretory lysosome is part of the acidic Ca2* stores and may thus
potentiate receptor-mediated Ca2™ release from the ER31-34, Interference with signaling from the acidic Ca2™ stores resulted in the loss of NK cell function.
Thus, the accumulation of dense-core secretory lysosomes during NK cell education may contribute to the increased function, not only through the
increased cytotoxic payload, but also through enhanced signaling from acidic Ca2* stores

of the PI3K/AKT pathway®2. Mutations in TRPMLI cause
mucolipidosis type IV, which is characterized by enlarged lyso-
somes®l. The role of TRPML1 in lymphocytes is largely
unknown. In other cell types, TRPMLI1 plays a role in lysosomal
pH regulation®2, while more recent data support a role for
TRPMLI in lysosomal fission?. Park et al. have suggested that
TRPMLI guard against unintended, pathological fusion of lyso-
somes with other intracellular organelles, e.g., secretory vesicles*3.
TRPMLLI has also been attributed to mediate lysosomal traffick-
ing via Ca2*-dependent motor protein recruitment, its activity
favoring retrograde lysosomal movement®3.

To explore a possible role for PIKfyve and TRPMLLI in lyso-
somal modulation in NK cells, we used a combination of phar-
macological agonists and antagonists combined with genetic
approaches to interfere with the PIKfyve/TRPML1 pathway.
Pharmacological inhibition of PIKfyve by small chemical com-
pounds, including vacuolin-1 and apilimod, is known to cause
enlarged lysosomes in several cell types, including mast cells and
macrophages#46495. Here, we show that the inhibition of PIKfyve
by three different chemical compounds caused enlargement of the
lysosomal compartment in NK cells. Importantly, this was asso-
ciated with increased granzyme B expression, increased Ca?
T-flux, and more potent effector function, thus mimicking the
educated NK cell state (Fig. 8). A similar functional phenotype
was obtained when silencing the lysosome-specific Ca?* release
channel TRPMLI. Together, these data are compatible with a
model where tonic or intermittent activation signals, possibly
acting through the PI3K/AKT pathway, result in PIKfyve acti-
vation and TRPMLI-induced lysosomal modulation, ultimately

leading to the lack of large secretory lysosomes and reduced
functional potential in NK cells (Fig. 8).

In Chediak-Higashi Syndrome (CHS), mutation of the LYST
gene leads to the formation of giant secretory lysosomal struc-
tures®®. NK cells in CHS patients are hyperresponsive and
hypersecretory but are unable to degranulate®’:%8, Although NK
cell activation followed by secretory lysosome convergence and
polarization appears to be normal in LYST-deficient NK cells, the
enlarged secretory lysosomes fail to pass through the cortical
actin meshwork openings at the immunological synapse®®. By
monitoring lysosomal size and granzyme B density prior to and
following degranulation, we observed a selective loss of the pre-
converged, large secretory lysosomes after degranulation. These
large lysosomes had an area above 0.2 um?, corresponding to a
diameter of around 500 nm, pointing to a possible difference in
the density of the actin meshwork and physical restriction of
degranulation between resting primary NK cells and NK92 cells.
However, another contributing factor may be LYST-mediated
modulation of lysosomal size during NK cell activation allowing
smaller proportions of the large lysosomes to be released during
the effector response, as has been demonstrated for degranulation
in mast cells”°.

An outstanding question is how lysosomal fission leads to the
loss of matrix component and lower levels of granzyme B in non-
self KIRT NK cells. Granzyme B can be synthesized and secreted
directly through the constitutive secretory pathway”’l. It is pos-
sible that an enhanced rate of lysosomal fission during weakly
agonistic cell-cell interactions and the corresponding failure to
accumulate dense-core lysosomes in NK cells lacking self-specific
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receptors leads to the loss of granzyme through the secretory
route’!, Indeed, NK cells in serglycin—/— mice lack dense-core
lysosomes, retain less granzyme B which is secreted from the cell
at a greater rate, and exhibit reduced degranulation in response to
stimuli?’.

Another remaining challenge is to decipher when and where
TRPMLI-mediated physical disarming takes place. Transfer
experiments in mice have established an indisputable role for cell-
to-cell interactions in shaping the functionality of mature NK
cells”>73. Although the detailed time-scale and spatial aspects of
such cell interactions remain largely unknown, transfer of func-
tional NK cells to MHC-deficient environments leads to the
induction of hyporesponsiveness®. SHP-1 intersects signaling of
activating receptors upstream of Vav-1°?, and rapidly shuts down
the process of forming an activating NK cell synapse with target
cells”%. While the inhibitory synapse and the productive cytolytic
synapse have been studied in great detail, much less is known
about immune synapses formed between resting immune cells
during homeostasis. It is possible that cells lacking self-specific
inhibitory receptors form a succession of non-cytolytic immune
synapses under homeostasis leading to the loss of dense-core
secretory lysosomes and leakage of their functional potential®l. It
has previously been shown that trans-presentation of IL-15 to NK
cells, resulting in the activation of AKT is negatively regulated by
inhibitory interactions with self MHC?>. Thus, it is possible that
unopposed constitutive IL-15 activation may occur in NK cells
that lack self-specific inhibitory KIR, which in turn would affect
lysosome stability and/or retention through the mechanism
described here.

The dose-dependent induction of granzyme B expression in
response to cytokine, or viral infection, is connected to the acti-
vation of the metabolic check-point kinase mTOR’°. Notably,
however, we did not observe any transcriptional imprint in the
mTOR pathway when we examined circulating NK cells at rest,
arguing against a major role for metabolism in the persistence of
the distinct organization of the lysosomal compartment seen in
circulating blood self-KIRT NK cells. It was recently shown that
mTOR activation contributed to the functional rheostat during
effector responses in educated murine NK cells’””. Moreover,
cytokine-activated educated human NK cells display unique
metabolic regulation that influence their functionality’®. Inter-
estingly, mTOR activation and function are dependent on its
lysosomal localization and the vacuolar H(+)-ATPase (V-
ATPase) activity’®. Furthermore, TRPML1 provides a negative
feedback loop on mTOR activity*3. Thus, the difference in lyso-
somal composition described in the present study could poten-
tially contribute to enhanced mTOR activation and metabolic
reprogramming observed in educated NK cells upon
stimulation”778,

In conclusion, our findings suggest a mechanism by which NK
cell education operates through modulation of the lysosomal
compartment under the influence of inhibitory receptor-ligand
interactions. Differences in the morphology of the lysosomal
compartment and signaling from acidic Ca’* stores allow the
cytolytic machinery to operate independently of transcription
during the effector response. Furthermore, the data suggest that it
may be possible to boost NK cell functionality through targeted
manipulation of Ca?T homeostasis within lysosome-related
organelles.

Methods

Cells. Buffy coats from random healthy blood donors were obtained from the
Karolinska University Hospital and Oslo University Hospital Blood banks with
written informed consent. The approvals were obtained from the regional ethics
committee in Stockholm 2006/229-31/3, 2016/1415-32, and the regional commit-
tees for medical and health research ethics in Norway: 2015/2095, 2015/2142, 2017/

420. Peripheral blood mononuclear cells were separated from buffy coats by density
gravity centrifugation (Lymphoprep; Axis-Shield) using fretted spin tubes (Sep-
Mate; Stemcell Technologies). Genomic DNA was isolated from 200 pl of whole
blood using DNeasy Blood and Tissue Kit (Qiagen). KIR ligands were determined
using the KIR HLA ligand kit (Olerup SSP) for detection of the HLA-Bw4, HLA-
C1, and HLA-C2 motifs. NK cells were purified using negative selection (Miltenyi)
with an AutoMACS Pro Separator. 221.Cw6 transfected with GFP were kindly
provided by D. Davis, University of Manchester, England. K562 was purchased
from ATCC. NKL and YTS cells were kindly provided by Dr. E. Alici, Karolinska
Institute, Sweden. All cell lines were maintained in RPMI - 10% FCS and for NKL,
the media was supplemented with 100 IU/mL of IL-2. All cell lines were main-
tained for a maximum of 20 passages and tested regularly for mycoplasma infection
using the MycoAlert mycoplasma kit (Lonza).

Phenotyping by flow cytometry. Isolated PBMC were stained for flow cytometric
analysis using an appropriate combination of antibodies as detailed in the Methods
section. After surface staining, cells were fixed and permeabilized using a fixation/
permeabilization kit (BD Bioscience Cytofix/Cytoperm) prior to intracellular
staining with anti-granzyme B-A700 (GB11). Samples were acquired using LSRII
or LSR Fortessa flow cytometers (both Becton Dickinson) and data was analyzed
using FlowJo V10.0.8 (TreeStar). Fluorochrome-labeled antibodies used for phe-
notypic studies were as follows: CD14-V500 (M5E2), CD19-V500 or BV570
(HIB19), CD3-V500 or BV785 (UCHT1), CD56 ECD (N901), CD57-PB (HCD57),
CD57-BV605 (QA17A04), CD57 purified (TB01), anti-mouse-IgM-EF650 (I1/41),
NKG2A-PE, APC or APC-AF750 (Z199), CD16-BV785 or BUV395 (3G8),
KIR2DL3-FITC or Biotin (REA147), KIR2DL1-APC or APC-Vio770 (REA284),
KIR3DL1-AF700 or BV421 (Dx9), KIR2DS4-QD585 (1847), KIR3DL2-biotin
(Dx31), KIR2DL2/L3/S2-PE.Cy5.5 (GL183), KIR2DL1/S1-PE.Cy7 (EB6) or PE-
Vio770 (11PB6). All mAbs were titrated and used at dilutions ensuring saturated
staining of 1 x 10° cells. Dead cells were labeled using live/dead aqua (Life Tech-
nologies). Biotin-conjugated antibodies were visualized using streptavidin-Qdot
585 or 605 (Life Technologies) or BV711 (BD). Granzyme B-AF700 (GB11),
Perforin-FITC (dG9), and Granulysin-AF488 (RB1).

FACS sorting. Purified NK cells were stained for FACS using the following
combination: CD56-ECD, CD57-FITC, NKG2A-PE, KIR2DL1-APC-Vio770,
KIR2DL1/S1-PE-Vio770, KIR3DL1/S1-APC (Z27.7.3), KIR2DL2/L3/S2-PE.Cy5.5
(GL183). Cells were sorted using a FACSAria at 4 °C (BD).

RNA-Seq and qPCR. RNA-Seq was performed using single-cell tagged reverse
transcription (STRT), a highly multiplexed method for single-cell RNA-Seq. Real-
time quantitative PCR was used to study the difference in the expression of genes of
interest in sorted differentiation and education subsets of NK cells. Primer
sequences are provided in Supplementary Methods.

Confocal fluorescence microscopy and image analysis. Sorted NK cells were
prepared for confocal microscopy using fixation/permeabilization (BD Bioscience
Cytofix/Cytoperm) prior to intracellular staining with mouse anti-human gran-
zyme B-A647 (GB11), rabbit anti-human pericentrin (Ab4448) followed by Don-
key anti-Rabbit IgG Alexa555. After staining, the fixed cells were adhered to glass
coverslips using Cell Tak (Corning) and mounted using Pro-long Gold Antifade
with DAPI. The cells were examined with a Zeiss LSM 710 confocal microscope
(Carl Zeiss Microlmaging GmbH, Jena, Germany) equipped with an Ar-Laser
Multiline (458/488/514 nm), a DPSS-561 10 (561 nm), a laser diode 405-30 CW
(405 nm), and a HeNe-laser (633 nm). The objective used was a Zeiss plan-
Apochromat 63x NA/1.4 oil DICII. Image processing and analysis were performed
with basic software ZEN 2011 (Carl Zeiss Microlmaging GmbH, Jena, Germany)
and Imaris 7.7.2 (Bitplane AG, Ziirich, Switzerland). Confocal z-stacks were
deconvolved using Huygens Essential 14.06 (Scientific Volume Imaging B.V., VB
Hilversum, The Netherlands). ImarisCell was used to identify secretory lysosomes
and centrosomes in confocal Z-stacks of single cells, while Imaris Venture was used
to find the correlation between the intensity of the individual secretory lysosome
and their distance to the centrosome center.

Electron microscopy. Sorted NK cells for immuno-EM were fixed in a mixture of
4% formaldehyde and 0.1% glutaraldehyde in 0.1 M PHEM buffer (60 mM PIPES,
25 mM HEPES, 10 mM EGTA, and 2 mM MgCl, at pH 6.9), followed by
embedding in 10% gelatin, infiltration with 2.3 M sucrose and frozen in liquid
nitrogen (LN,). Ultrathin sections (70-90 nm) of cell pellets were cut on a Leica
Ultracut (equipped with UFC cryochamber) at —110 °C, picked up with a 50:50
mixture of 2.3 M sucrose and 2% methyl cellulose. Sections were then labeled with
antibodies against granzyme B (496B, eBioscience) or Chondroitin Sulphate 4 (2B6,
AMSBIO), followed by a bridging rabbit-anti-mouse antibody (DAKO, Denmark)
and protein A gold (University Medical Center, Utrecht, The Netherlands). Sam-
ples for Chondroitin Sulphate 4 staining were pretreated with chondroitinase ABC
(AMS.E1028-02, AMSBIO) for 2 h at 37 °C according to manufacturer’s recom-
mendations. Microscopy was done at 80kV in a JEOL_JEM1230 and images
acquired with a Morada camera. Further image processing was done in Adobe
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Photoshop. Quantification was done according to established stereological
procedures.

Functional assays. Functional assays were performed at 37 °C in complete med-
ium (RPMI + 10% FCS) for the times indicated. Purified NK cells were incubated
with K562 target cells for 5h at a ratio of 1:1 in the presence of anti-CD107a-
alexa488 (H4A3, Biolegend) for degranulation assays, or with the addition of
Brefeldin A (GolgiPlug BD) for degranulation plus intracellular cytokine assays.
Lysosomotropic reagents were added immediately prior to the addition of targets/
stimulation by agonistic antibodies and kept for the duration of the assay using the
following final concentrations: GPN (50 uM), mefloquine (10 uM), and vacuolin-1
(1-10 pM). The TRPML1/3 agonist MK6-83 was used at 10 uM.

Phospho-flow cytometry. Functional assays for phospho-flow cytometry were
performed at 37 °C in complete medium in NK cell suspensions between 5 and 10
M/mL for 20 min. Cells were pretreated for 1 h using GPN (50 uM) or Vacuolin-1
(10 uM), after which biotinylated CD16 (Biolegend, clone 3G8) was added to final
concentrations of 5 pg/mL each. After 1 min, the aliquot for the 0 min (unstimu-
lated) sample was taken out and mixed with Fix Buffer I (BD Biosciences). After 1
additional minute, the stimulation was started by crosslinking the biotinylated
antibodies with 50 pg/mL avidin (Thermo Fisher Scientific) and the aliquots for the
5, 10, and 20 min samples were transferred into Fix Buffer I (BD Bioscience) at the
corresponding time points. Cells were fixed at 37 °C for 10 min, washed and re-
suspended in PBS. To allow combination of the differently stimulated samples into
one, two-dimensional fluorescent cell barcoding (FCB) was utilized. Samples were
stained in distinct concentrations of amine-reactive pacific blue succinimidyl ester
(Thermo Fisher Scientific) for the time points (0 min—0.69 ng/mL, 5 min—6.25
ng/mL, 10 min—25 ng/mL, and 20 min—100 ng/mL) in combination with amine-
reactive pacific orange succinimidyl ester (Thermo Fisher Scientific) for the dif-
ferent stimulations (control—10 ng/mL, GPN—100 ng/mL, and Vacuolin-1—500
ng/mL). After 20 min at RT, samples were washed twice in wash solution (PBS
supplemented with 1% FCS and 0.09% sodium azide), combined, permeabilized
(Perm Buffer III, BD Biosciences), and stored at —80 °C. For thawing, samples were
incubated 20 min on ice. Then, they were washed in wash solution and stained with
Alexa Fluor 647-conjugated phospho-epitope-specific antibodies against ZAP70/
syk (pY319/pY352), Lck (pY505), Erkl/2 (pT202/pY204) (BD Bioscience), NF-kB
p65 (pS536) (Cell Signaling Technologies) or isotype control IgGlk (BD Bios-
ciences) for 30 min at RT. After washing, data was acquired on an LSR Fortessa
(BD Biosciences) and analyzed with FlowJo v10.0.8 (TreeStar).

Ca?* flux assay. Freshly isolated NK cells were incubated with Fluo-4 for 30 min
at 37 °C in PBS 4 2% FCS at the recommended dilution (Fluo-4 Imaging kit,
Molecular Probes). Cells were then washed twice and incubated with biotinylated
CD16 or biotinylated DNAM-1/2B4 (Miltenyi), with the addition of labeled spe-
cific antibodies for CD56, CD57, NKG2A, KIR2DL1, KIR2DL1/S1, KIR3DL1/S1,
and KIR2DL2/L3/S2 for 10 min at room temperature. The cells were washed once
more and placed on ice until assayed. Prior to FACS analysis, the cells were pre-
warmed at 37 °C for 5 min in the presence or absence of GPN (50 uM final con-
centration) or vacuolin-1 (10 pM final concentration). Cells were immediately run
on FACS for 30 s, followed by the addition of 10 ug/mL streptavidin and run for a
further 4 min. Ionomycin was added at 4 uM final concentration and run for a
further 1 min. Ca2*-flux kinetics were analyzed by FlowJo V10.0.8 (TreeStar).

Retroviral transduction of NK cell lines. Full-length human KIR2DLI and
KIR2DL3 were synthesized using standard gene synthesis with codon optimization
(Eurofins Genomics, Ebersberg, Germany), and subsequently subcloned into
PMSCYV using NotI and BamHI cloning sites. Retroviral particles were produced by
transfection of Phoenix-ampho 293T cells using Lipofectimine 3000 (Life Tech-
nologies). YTS and NKL cells were spinoculated with viral supernatants for 60 min
at 1000 x g. Cells were screened at five passages and positive cells were sorted using
a FACSAria.

siRNA interference. Primary NK cells were isolated, rested for 2 h, and transfected
either directly or primed with 1 ng/mL IL15 for 72 h and transfected. NK cells or
cell lines were transfected by Amaxa nucleofection (Lonza) using 300 pM of
Dharmacon ON-TARGET plus SMARTpool control siRNA, or SMARTpool RNA
targeting human TRPMLI. Nucleofection was performed using the human mac-
rophage kit using program Y-010. After nucleofection, cells were rested for 4 h in
OPTI-MEM, before an equal volume of culture medium with 2 ng/mL IL15 was
added. The cells were then cultured for 48 h before phenotypic and functional
testing. siRNA efficiency was determined using qPCR.

Cytotoxicity assay by flow cytometry. Target cell killing was determined using a
combination of viability stains. Cytotoxicity assays were performed using an NK
cell to target cell ratio of 5:1 at 37 °C for 5 h, after which cells were stained surface
markers (CD56) to discriminate NK cells from target cells, with the addition of

Live/dead aqua-fluorescent reactive dye (1:200; Life Technologies) for 20 min at 4 °
C (or 15 min at RT), washed in staining buffer and stained in 50 pl RPMI media

plus 1 uM Yo-Pro®-3 jodide (Life Technologies) for 15" at 37 °C. Finally, cells were
washed and either directly analyzed using a BD™ LSR-II cytometer or fixed in 100
ul PFA 2-4% for 10 min at 4 °C, pelleted, washed twice with 200 ul staining buffer,
and then rested at 4 °C until analyzed at the LSR-II machine.

Incucyte. YTS cells were incubated with GFP+ 221.Cw6 (C2) target cells at an E:T
ratio of 1:1. The number of viable target cells was monitored by hourly fluorescence
imaging over 24 h using an IncuCyte Live Cell Analysis System (Essen BioScience).
The area of dead target cells, made up by GFP and Cytotox red (Essen BioScience)
double positive cells, was quantified using IncuCyte Zoom software (Essen
BioScience).

RNA sequencing of education subsets. RNA was isolated from sorted KIR
single-positive NK cell subsets. Library preparation was performed using the
Illumina NeoPrep Library preparation system. Sequencing was performed using
the NextSeq (Illumina) (single read, 75 base pairs). Read alignment was carried out
using Bowtie (version 2.0.5.0) and Tophat (version 2.0.6), and transcript abun-
dance was estimated using Cufflinks (version 2.1.1). The resulting FPKM values for
each transcript were log2 transformed for visualization in scatterplots (Fig. 2a).

Quantitative PCR. RNA was isolated using RNeasy mini kit (Qiagen). Following
RNA isolation, cDNA was synthesized using First strand synthesis kit (Qiagen)
according to manufacturer’s protocol. Customized RT2 Profiler PCR array (Qia-
gen) was ordered with specific primers for the genes of interest, as well as two
housekeeping genes, a reverse transcriptase control, genomic DNA control, and a
positive PCR control (Supplementary Table 2). Real-time quantitative PCR was
performed on ¢cDNA from differentiation and education subsets and the data
obtained was normalized using 18S rRNA and B2M as housekeeping genes. All
target genes were run as triplicates and analysis of QPCR data was done using qBase
+ (Biogazelle).

Statistical analysis. Statistical tests were selected based on the number of groups,
pairing of samples, and whether or not the samples followed a Gaussian dis-
tribution and are indicated in the figure legends with reference to each panel. For
comparison of two groups with a Gaussian distribution, paired or unpaired t-tests
were used. ANOVA followed by multiple comparison tests were used for the
analysis of more than two groups of samples with a Gaussian distribution. For
comparison of two groups of unpaired samples with a non-Gaussian distribution,
Mann-Whitney tests were used. For paired samples, a Wilcoxon test was selected.
For comparison of more than two groups of paired samples with a non-Gaussian
distribution, Friedman’s test followed by Dunn’s multiple comparison test was
performed. For comparison of multiple unpaired groups with non-Gaussian dis-
tributions, Kruskal-Wallis test was used. n.s. indicates not significant; ****p <
0.0001; **p < 0.001; **p < 0.01; and *p < 0.05. Analyses were performed using
GraphPad Prism software.

Data availability

All data, including images, generated and/or analyzed during the current study are
available from the corresponding author on reasonable request. Due to the Nor-
wegian data legislation, the RNA Seq datasets of anonymous donors are available
upon request in the form of normalized FKPM values.
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