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Abstract

FtsZ is a tubulin-like GTPase that is the major cytoskeletal protein in bacterial cell division. It polymerizes into a ring, called
the Z ring, at the division site and acts as a scaffold to recruit other division proteins to this site as well as providing a
contractile force for cytokinesis. To understand how FtsZ performs these functions, the in vivo architecture of the Z ring
needs to be established, as well as how this structure constricts to enable cytokinesis. Conventional wide-field fluorescence
microscopy depicts the Z ring as a continuous structure of uniform density. Here we use a form of super resolution
microscopy, known as 3D-structured illumination microscopy (3D-SIM), to examine the architecture of the Z ring in cells of
two Gram-positive organisms that have different cell shapes: the rod-shaped Bacillus subtilis and the coccoid Staphylococcus
aureus. We show that in both organisms the Z ring is composed of a heterogeneous distribution of FtsZ. In addition, gaps of
fluorescence were evident, which suggest that it is a discontinuous structure. Time-lapse studies using an advanced form of
fast live 3D-SIM (Blaze) support a model of FtsZ localization within the Z ring that is dynamic and remains distributed in a
heterogeneous manner. However, FtsZ dynamics alone do not trigger the constriction of the Z ring to allow cytokinesis.
Lastly, we visualize other components of the divisome and show that they also adopt a bead-like localization pattern at the
future division site. Our data lead us to propose that FtsZ guides the divisome to adopt a similar localization pattern to
ensure Z ring constriction only proceeds following the assembly of a mature divisome.
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Introduction

Cell division is essential for the propagation of all living species.

Division in many prokaryotic organisms relies on the polymeri-

zation of the protein FtsZ into a ring structure, called the Z ring, at

the division site. FtsZ is found in virtually all bacterial species,

many species of archaea, and even in higher plants where FtsZ is

involved in chloroplast division [1,2]. In bacteria, the ability of

FtsZ to assemble into the Z ring marks the beginning of the

division process [3]. Following its formation on the inner cell

membrane the Z ring acts as a scaffold to recruit the other cell

division proteins to this site [4,5]. Several studies have indicated

that the Z ring has an additional role in providing the contractile

force required to ‘‘pull in’’ the cell envelope during cytokinesis

[6,7,8,9].

FtsZ is homologous to eukaryotic tubulin and they belong to a

distinct family of GTPases which share similar tertiary structure

[3,10,11]. FtsZ subunits can assemble into single-stranded

protofilaments in a GTP-dependent manner [12,13]. These FtsZ

protofilaments can also form higher order structures such as

ribbons, tubules, and other types of polymers in vitro

[14,15,16,17,18]. The formation of these different higher order

structures has been suggested to play a role in the formation of the

Z ring and its ability to constrict during cytokinesis. However, the

various FtsZ structures form under various experimental condi-

tions that do not often mimic conditions in vivo. Thus knowing

how FtsZ assembles into physiologically relevant structures inside

the bacterial cell is vital for establishing how the Z ring forms and

subsequently how it constricts in vivo.

Conventional fluorescence microscopy, using either immuno-

fluorescence in fixed cells or FtsZ-GFP fusion proteins in live cells,

shows the Z ring as a uniformly labeled fluorescent band,

suggesting a single continuous structure of uniform density. While

conventional electron microscopy has failed to detect the Z ring in

bacterial cells, more recent electron cryotomography (ECT)

studies have shown the Z ring of the Gram-negative marine

bacterium, Caulobacter crescentus, to be a largely disconnected

structure composed of sparse and irregularly distributed filaments

of FtsZ [19]. This is in stark contrast to the continuous, uniform Z

ring structure observed by conventional fluorescence microscopy.
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Unfortunately, ECT studies cannot be performed in other well-

studied model bacteria such as Bacillus subtilis and Escherichia coli

because the cells are either too thick or the Z ring cannot be

detected [20]. An outstanding question that remains is whether the

Z ring is a continuous or discontinuous structure [21]. Determin-

ing the structure of the Z ring has implications towards

understanding how the structure of the Z ring changes during

constriction.

Although conventional fluorescence microscopy has not been

able to answer this question, it is still the most widely used method

to examine FtsZ structures because it offers several advantages

over electron microscopy. Most notable is the ability to specifically

label the protein of interest and to visualize proteins in live,

untreated cells using GFP fusions. These fusion proteins have

demonstrated that the Z ring is actually assembled from helical

FtsZ precursor structures in B. subtilis, E. coli and C. crescentus

[22,23,24,25]. Furthermore, the use of fusion proteins in a

technique known as fluorescence recovery after photo-bleaching

(FRAP) has shown that the Z ring is in fact a highly dynamic

structure, constantly undergoing subunit turnover throughout its

lifetime [26,27]. Taken together it is clear how valuable it is to

visualize a specifically labeled protein of interest in live cells.

However, conventional fluorescence microscopy is limited by the

diffraction barrier, which affects our ability to clearly visualize how

FtsZ assembles into the Z ring and how it is organized within the Z

ring.

New forms of high resolution fluorescence-based imaging have

recently been developed and are collectively known as super

resolution microscopy [28]. These techniques break the diffraction

barrier through various means of point-spread-function engineer-

ing. The end result allows visualization of sub-cellular structures at

much higher resolution, while still maintaining all the advantages

of conventional wide-field fluorescence microscopy. Recently,

super resolution microscopy techniques such as photoactivated

localization microscopy (PALM) and stimulated emission depletion

(STED) microscopy have been used to examine FtsZ localization

in E. coli and B. subtilis, respectively [29,30,31]. Despite the

substantial increase in sub-diffraction resolution provided by these

imaging modalities, PALM and STED do not depict the Z ring as

a discontinuous structure in the cell [29,30,31]. One of the major

limitations in these techniques is that they only improve the lateral

image resolution obtained from the sample and consequently they

could not determine the whole 3D architecture of the Z ring

[29,30,31].

Another super resolution fluorescence microscopy technique,

known as 3D-structured illumination microscopy, or 3D-SIM,

allows complete 3D visualization of structures inside cells. 3D-SIM

is the only form of super resolution microscopy that offers a 2-fold

increase in both lateral and axial resolution to generate true 3D

super resolution images [32]. Here we report the use of 3D-SIM to

visualize the Z ring in two Gram-positive organisms: rod-shaped B.

subtilis and spherical Staphylococcus aureus. We show that the overall

structure of the Z ring in both organisms is very similar and

composed of a heterogeneous distribution of FtsZ, suggesting a

discontinuous Z ring structure. The increased axial resolution

capabilities of 3D-SIM uniquely allow visualization of the

localization of FtsZ within the Z ring as well as the dynamic

changes that occur to this localization in live cells over time using a

new form of fast live 3D-SIM, known as OMX Blaze. The

dynamic changes in FtsZ localization within the Z ring support the

previously proposed iterative pinching model for constriction, but

they are not responsible for triggering this process. Finally we

visualize the localization of other divisome proteins to show that

they share a similar heterogeneous and dynamic distribution at the

site of cytokinesis.

Results

FtsZ Concentration within the Z Ring Is Heterogeneous
Our initial approach to visualize the 3D structure of the Z ring

was performed in live cells of B. subtilis in a strain designated

SU570. In this strain, the wild-type ftsZ gene has been replaced

with an ftsZ-gfp fusion gene under the control of the native

promoter (see Table 1) [33]. Consequently, the FtsZ-GFP fusion

protein is the only source of FtsZ inside the cell capable of forming

a Z ring. This enables direct visualization of all the FtsZ present in

the cell and thus a genuine 3D image of the Z ring. At 30uC, we

can confirm that B. subtilis SU570 is able to utilize the fusion

protein as the sole source of FtsZ required for division [33].

Figure 1A shows a typical image of FtsZ localization in SU570

using conventional wide-field fluorescence microscopy (Zeiss). The

most conspicuous FtsZ structure is the Z ring that appears as a

uniform transverse band when it is imaged in a single focal plane.

A total of 240 individual images were acquired using 3D-SIM and

subsequently reconstructed to generate a complete 3D fluores-

cence image. Figure 1B shows an example of a 3D-SIM image of

SU570 cells that have also been stained with FM4-64 dye to

visualize the membrane. The increase in both lateral (x-y axis) and

axial (z-axis) resolution of 3D-SIM enabled visualization of very

clear membrane stain and 3D ring structures of FtsZ that can be

rotated and viewed from any angle (Figure 1C–D).

The Z ring is normally visualized as a transverse band due to its

orientation within B. subtilis cells (Figure 2Ai), but when the 3D-

SIM image is rotated around the z-axis so that it is viewed in the

axial plane, it is clear that the fluorescence intensity of the Z ring is

not uniform throughout (Figure 2Aii and Movie S1). Rather, FtsZ-

GFP appears heterogeneously distributed in all Z rings with a

diameter between ,300 and 900 nm (n = 84) (Figure 2Bi–iv). In

the few constricting Z rings with a diameter less than ,300 nm

(n = 3), the Z ring appears as an intense focus in the center of the

cell and it is difficult to clearly visualize the heterogeneous

distribution of FtsZ-GFP in Z rings with such small physical

dimensions (Figure S1). To confirm this image of the Z ring using

3D-SIM in cells containing only native FtsZ, we examined Z rings

Author Summary

Because bacterial cells are so small, it is challenging to
image the spatial organization of proteins inside them. All
the proteins that orchestrate cell division in these
organisms localize to the division site prior to division,
but it has not so far been possible to obtain a clear high-
resolution three-dimensional picture of the dynamics of
their localization. In this study we use a new type of super
resolution microscopy called three-dimensional structured
illumination microscopy (3D-SIM) to analyze the localiza-
tion of proteins involved in cell division in two types of
bacteria that have different cell shapes: the rod-shaped
Bacillus subtilis and the spherical Staphylococcus aureus.
We show that FtsZ, a cytoskeletal protein that serves as a
scaffold for the cytokinetic ring, localizes to the division
site in a dynamic bead-like pattern, rather than a uniform
ring as was previously proposed, in both types of bacteria.
Our observations also provide an explanation of how this
ring constricts to split a bacterial cell in two and suggests
that this spatial organization of division proteins is
conserved among bacteria and is crucial for the regulation
of this central cellular process.

3D-SIM Imaging of the Cytokinetic Ring in Bacteria
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in wild-type B. subtilis cells using immunofluorescence (Figure S2).

As with FtsZ-GFP, the distribution of native FtsZ in Z rings in wild

type cells (n = 73) was heterogeneous and closely resembled the

appearance of the Z ring when visualized using the FtsZ-GFP

fusion.

Interestingly, we could visualize small regions of the Z ring

where the fluorescence intensity of FtsZ-GFP (or FtsZ with

immunofluorescence) is very low (indicated by white arrowheads

in Figure 2A and 2B). These regions of low fluorescence intensity

in the Z ring, which we will refer to as gaps, were observed in

approximately 15% of all Z rings (n = 84). The gaps are

approximately 118–200 nm in size and thus would not be resolved

by conventional fluorescence microscopy. Moreover, visualization

of these gaps requires that the 3D-SIM image is rotated around

the z-axis and viewed in the axial plane in B. subtilis. To quantify

the distribution of FtsZ-GFP within the Z ring we analyzed the

image data using Figure 2Biii and 2Biv as examples (20 were

analyzed in detail). The image data from these figures was used to

generate 3D fluorescence intensity plots shown in Figure 2Ci and

2Cii (additional examples are presented in Figure S3). The

intensity profiles of Z rings with gaps demonstrated that

fluorescence could still be detected in these gaps (indicated by

black arrow in Figure 2Ci). The vast majority of these gaps (93%)

were observed in Z rings with a diameter of ,800–900 nm. This

correlation between the appearance of gaps in the Z ring and Z

ring diameter prompted us to determine if the amount of FtsZ

within the Z ring changes during constriction to fill in the gaps.

The sum of FtsZ-GFP fluorescence intensity from 56 different Z

rings was measured and plotted against ring diameter (Figure 2D).

It is clear from this analysis that the total intensity of FtsZ in the Z

ring remains relatively constant even when the diameter of the Z

ring is decreasing. Thus the density of FtsZ in the ring becomes

greater as the physical dimensions of the Z ring become smaller.

However, due to resolution limits we cannot rule out the possibility

that gaps continue to be generated in Z rings with a diameter less

than 800 nm.

3D-SIM of Z Rings in S. aureus Cells Also Reveals a
Heterogeneous Distribution of FtsZ

It is important to note that the heterogeneous FtsZ staining and

gaps seen within the B. subtilis Z ring were more apparent in some

regions of the ring than others (Figure 2B). This arises due to

differences between the lateral and axial resolution achieved by

3D-SIM. Under our experimental conditions we calculated the

limit of resolution in the lateral plane (x-y axis) to be 118 nm while

in the axial plane (z-axis) it is 280 nm (refer to Materials and

Methods). This means that in a rod-shaped cell that lies parallel to

the microscope objective, only the top and bottom regions of the Z

ring are imaged with the optimal resolution of 118 nm (see

Figure 2B). Fortuitously, we noticed that fixed B. subtilis cells

sometimes do not lie flat on the microscope coverslips (Figure 3A).

As a result, the orientation of the Z ring is changed, moving closer

towards the lateral plane where the optimal level of image

resolution can be obtained in 3D-SIM. Importantly, when

visualized under these conditions, the distribution of FtsZ is

heterogeneous throughout the entire Z ring (Figure 3B).

To examine the level of heterogeneity of the Z ring in more

detail, we took advantage of the fact that in spherical bacterial

cells, such as S. aureus, Z rings will be orientated in all possible

planes (Figure 3C). S. aureus is a human pathogen that is

increasingly problematic in hospitals due to its ability to cause

disease and develop resistance to antibiotics [34]. Furthermore, S.

aureus FtsZ has been shown to be essential for cell viability [35] and

lead compounds which show inhibitory action against FtsZ have

been discovered [36,37,38]. However, the small size of S. aureus

cells and their division in three different planes has made imaging

of Z-ring structure and dynamics in vivo in this organism

particularly challenging.

To examine the structure of the Z ring in live S. aureus cells, we

utilized a strain ectopically expressing an FtsZ-GFP fusion from a

low copy number plasmid [39]. In this strain, induction of FtsZ-

GFP production with just 50 mM IPTG (isopropyl b-D-1-

thiogalactopyranoside) had no detectable effect on cell growth or

Table 1. S. aureus and B. subtilis strains.

Strain Descriptiona Source/Reference

S. aureus strains

SH1000 NCTC-8325 derivative strain with restored sigma B activity [63]

SA89 RN4220 strain carrying plasmid pLOWErmFtsZ-GFP and pGL485; Ermr, Cmr [39]

SA98 SH1000 strain carrying plasmid pLOWErmFtsZ-GFP and pGL485; Ermr, Cmr [39]

JGL227 SH1000 ezrA-GFP; Ermr [48]

ELC2 SH1000 derivative with the protein A locus replaced with a Tetracycline resistance marker; Tetr [64]

SA126 JGL227 strain transduced into the ELC2 background carrying plasmid pGL485; Ermr, Cmr, Tetr This study

RNpPBP2-31 RN4220 strain GFP-PBP2 [51]

B. subtilis strains

SU5 168 trpC2 E. Nester

PL91 PY79 div-355 [45]

SU347 168 trpC2 div-355 Lab stockb

SU568 168 trpC2 amyE::Pspac-ftsZ-gfp Cmr Lab stock

SU570 168 trpC2 ftsZ::ftsZ-gfp Specr Lab stock

SU744 168 trpC2 amyE::Pspac-ftsZ-gfp Cmr div-355 This study

aAntibiotic resistance markers present in the strain: Tetr, tetracycline resistance; Ermr, erythromycin resistance; Cmr, chloramphenicol resistance; Specr, spectinomycin
resistance.
bThe div-355 mutation was introduced into the SU5 background by congression with glnA+.
doi:10.1371/journal.pbio.1001389.t001

3D-SIM Imaging of the Cytokinetic Ring in Bacteria

PLOS Biology | www.plosbiology.org 3 September 2012 | Volume 10 | Issue 9 | e1001389



division [39]. Conventional microscopy on these cells confirmed

that S. aureus Z rings could be detected readily in both the axial and

lateral planes as predicted (Figure 3C). These Z rings appeared as

smooth, uniformly stained structures by conventional optics. 3D-

SIM, however, revealed a distinctly heterogeneous architecture for

the S. aureus Z ring (Figure 3D). When imaged in the axial plane, S.

aureus Z rings were almost identical to typical 3D-SIM images of

the B. subtilis Z ring acquired in the same orientation (Figure 3E,

Movie S2). Imaging in the lateral plane, however, confirmed that

there was a heterogeneous, bead-like distribution of FtsZ

throughout the entire Z ring (Figure 3D and 3F). Examination

of the intensity plots of Z rings imaged in the lateral plane reveals

that the concentration of FtsZ-GFP within the ring can typically

vary by up to 4-fold (Figure 3G). In addition, visible ‘‘gaps’’ were

often observed within the ring, similar to B. subtilis, which probably

represent areas of the ring where little or no FtsZ is present.

Restricting our analysis to Z rings imaged in the lateral (optimal)

orientation, 26% of rings (n = 43) contained at least one visible

gap. Measurements were also performed to examine the length

and depth of the beads as shown schematically in Figure 3H. It

was found that the majority of Z rings (80%; n = 43) had a bead

length (measured along the circumference of the cell membrane) of

200 nm, with a maximum length of 400 nm. The maximum depth

of the beads (measured across the axial plane of the bead;

perpendicular to the cell membrane) was up to 200 nm. On

average, the number of FtsZ beads per Z ring was 1262 (SEM;

standard error of the mean).

To ensure that this heterogeneous and bead-like localization

pattern was not due to an ftsZ-gfp fusion being expressed in

conjunction with native ftsZ, we visualized S. aureus Z rings in wild-

type cells using immunofluorescence with anti-FtsZ antibodies

raised against B. subtilis FtsZ [40]. Z rings visualized with anti-FtsZ

antibodies showed an identical localization pattern to live cells

(n = 113; compare Figure 3D and 3I). As expected, the number of

FtsZ beads per Z ring observed with immunofluorescence was

similar to rings observed in live-cell microscopy (1062, compared

to 1262, respectively) and with similar dimensions. We noticed,

however, that the number of cells containing at least one gap

within the ring varied according to the concentration of antibody

used. Using the highest antibody concentration tested (1:50

dilution), 18% of cells contained a visible gap (n = 49), while

50% and 85% of the cells showed gaps when 1:100 (n = 44) and

1:10,000 (n = 20) dilutions were used, respectively. This is different

to the 26% value obtained with live cells and likely reflects

differences due to the fixation process and antibody concentrations

[41]. However, the overall localization pattern of FtsZ is very

similar in live and chemically fixed cells, indicating that the Z ring

in S. aureus has a genuine bead-like arrangement.

Z rings of B. subtilis and S. aureus Are Structurally
Dynamic

Previous studies using FRAP have shown that there is a

continual exchange of FtsZ molecules between the Z ring and the

non-ring FtsZ pool throughout the entire lifetime of the Z ring

[26,27]. This rapid turnover is believed to allow a constant influx

of FtsZ and GTP into the ring that is required for Z ring

remodeling and constriction [26,27]. However, these studies have

been performed using conventional optics and do not reveal how

the architecture of the Z ring is affected by this dynamic exchange.

To address this issue we performed time-lapse using 3D-SIM. One

major problem with all time-lapse studies is preventing photo-

bleaching of the sample during the course of the experiment. This

is particularly relevant with 3D-SIM, as decreasing signal-to-noise

ratio with a sample over time will result in poor reconstructions.

This is at least partially attenuated by the application of the new

OMX Blaze technology. OMX Blaze allows minimal excitation

energy to enter the sample by using light beam inferometry to

create the structured pattern upon the sample and by utilizing the

increased sensitivity and quantum efficiency of scientific CMOS

(complementary metal oxide semiconductor) cameras as detectors

(see Materials and Methods). This combination results in

Figure 1. 3D-SIM images of FtsZ-GFP localization in live cells of
B. subtilis. (A) Conventional wide-field fluorescence microscopy (Zeiss)
image of B. subtilis strain SU570 (ftsZ-gfp) stained with the membrane
dye FM4-64 shows how FtsZ-GFP assembles into Z rings. Scale bar,
5 mm. (B) When the same strain is imaged using 3D-SIM (OMX V3),
regions of interest from the image can be selected (dashed box) to
zoom in and rotate the image around the z-axis to view 3D FtsZ
structures in the axial plane. (C–D) The improved image resolution
provided by 3D-SIM allows visualization of constricting Z rings and the
inner the cell membrane during division (indicated by white arrows).
doi:10.1371/journal.pbio.1001389.g001
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Figure 2. Examining the distribution of FtsZ inside the Z ring of B. subtilis in live SU570 (ftsZ-gfp) cells. (A) When the Z ring is visualized in
live B. subtilis rod-shaped (SU570) cells, it appears as a transverse band of fluorescence. However, 3D-SIM (OMX V3) allows images of the Z ring to be
rotated around the z-axis to clearly see how FtsZ is distributed within the Z ring in live cells of this strain. Small regions of low fluorescence intensity
(gaps) in the Z ring are indicated by white arrowheads and cannot be seen without rotating the image. (Bi–iii) Additional examples of heterogeneous
Z rings with a typical Z ring diameter of ,0.9 mm. (Biv) A constricting Z ring with a diameter of 0.65 mm. (Ci) A typical 3D intensity profile reveals
differences in fluorescence intensity and thus concentration of FtsZ-GFP in the Z ring with a diameter of 0.85 mm. The amount of fluorescence
emanating from gaps is minimal and almost approaches baseline levels of fluorescence (black arrow). (Cii) A similar 3D intensity profile shows FtsZ-
GFP distribution remains heterogeneous in a constricting Z ring; diameter, 0.65 mm. (D) The total fluorescence intensity of 56 different Z rings was
analyzed. The relative amount of FtsZ-GFP fluorescence stays constant even as the diameter of the Z ring decreases.
doi:10.1371/journal.pbio.1001389.g002
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decreased image capture time and decreased photo damage to the

living cells.

In B. subtilis, we were able to obtain 3D-SIM time-lapse movies

at 5- or 10-s time intervals over a 1-min period with OMX Blaze.

A total of 77 Z rings were analyzed by this approach and Figure 4A

shows a typical experiment in which a 3D-SIM image was

captured every 10 s over a period of 1 min. The most noticeable

feature of these time-lapse movies was how dramatically the

fluorescence intensity of FtsZ-GFP dynamically changed within

the Z ring (Movie S3). The distribution and position of FtsZ-GFP

within the ring rapidly changed from one frame to the next

(Movies S4 and S5). The diameter of the ring, however, tended to

remain constant over the course of these 1 min movies, suggesting

that active constriction itself did not occur within this time-scale in

these cells. To illustrate the dynamic changes in FtsZ-GFP

distribution around the Z ring, we generated 3D intensity plots

that track differences in the position and intensity of fluorescence

throughout the entire ring over time (Figure 4B). We also

measured changes in FtsZ-GFP signal intensity in particular

regions of interest (Figure 4C). Together these data demonstrate

for the first time, to our knowledge, that the gross architecture of

the Z ring, and not just the FtsZ molecules within this structure, is

extremely dynamic and constantly changing.

Next we attempted to establish whether S. aureus FtsZ undergoes

a similar dynamic movement to that of B. subtilis. To do this, S.

aureus SH1000 cells expressing FtsZ-GFP were visualized using

3D-SIM (with OMX Blaze) at 10-s time intervals for 50 s.

However, unlike B. subtilis, visualization of the Z ring at later time

points (30–50 s onwards) in S. aureus SH1000 was hampered by

extensive bleaching of the GFP signal (unpublished data). We

were, however, able to obtain images of S. aureus RN4220 cells

expressing FtsZ-GFP [39]. 3D-SIM images taken every 10 s for

50 s showed changes to the heterogeneity of the ring similar to

those seen with B. subtilis FtsZ (see arrowheads and arrows in

Figure 5A; see also Movie S6). Indeed, using conventional wide-

field deconvolution time-lapse microscopy of the SH1000 strain of

S. aureus, we were still able to observe differences in FtsZ-GFP

fluorescence intensity within the Z ring similar to those seen with

3D-SIM as shown in Figure 5B and Movie S7. This confirms that

the overall localization pattern of FtsZ is similar in both S. aureus

backgrounds. The architectural changes seen with 3D-SIM and

conventional wide-field deconvolution fluorescence are consistent

and similar to the dynamic changes in FtsZ localization seen with

B. subtilis Z rings.

Although we also observed slight movement of individual cells

during the length of the movies, it is unlikely that this movement

explains the change in ring heterogeneity over time because each

ring taken at the different time intervals shows a completely

different architecture (i.e., images of the ring are non-super

imposable through rotation). Therefore, it is unlikely that the

changes in Z ring structure are due to the rotation of the ring

around its axial plane caused by passive movement of the cells and

are more likely due to remodeling of FtsZ.

Z ring Dynamics Occurs Independently of Constriction
To fully understand how the Z ring functions in division, we

need to understand how FtsZ is distributed within the Z ring and

how the ring architecture changes during the process of

constriction. While all Z rings appeared dynamic in our initial

time-lapse experiments described above, these experiments were

performed over a short time period in which it was not possible to

see visible constriction. For this reason, we then carried out longer

3D-SIM time-lapse experiments over a period of 10 min (using a

longer interval of 1 min between images) in an attempt to capture

the constriction process and to determine if FtsZ dynamics differ

between constricting versus non-constricting Z rings in B. subtilis.

Indeed, we were able to visualize Z ring constriction in some cells

using this approach (n = 25). Interestingly, all Z rings (n = 99)

showed a similar dynamic redistribution of FtsZ in these

experiments, including those that were undergoing active

constriction (Movies S8 and S9). This suggests that the Z ring is

structurally dynamic both before and during constriction.

However, to establish more conclusively whether FtsZ dynamics

within the ring can occur completely independently of Z ring

constriction, we used the B. subtilis temperature-sensitive mutant,

div-355, which contains a mutation in the essential division gene

divIC and produces Z rings that do not constrict at high

temperatures. DivIC is a late cell division protein, which forms a

complex with other cell division proteins including FtsL, DivIB,

and PBP2B [4,42,43,44], and their recruitment to the division site

requires FtsZ. PL91 cells (div-355 mutant) divide normally at the

permissive temperature of 30uC, but at 45uC, Z rings do not

constrict and division is completely inhibited, producing filamen-

tous cells with no division septa [45].

To visualize FtsZ dynamics at the non-permissive temperature,

we could not use the single copy FtsZ-GFP fusion protein because

it is not functional at 45uC. Instead we used an inducible second

copy of the FtsZ-GFP fusion protein, which co-localizes with

native FtsZ. Low level expression of the fusion protein in SU568

(amyE::Pspac-ftsZ-gfp) cells also revealed a heterogeneous distribu-

tion of FtsZ-GFP inside the Z ring without perturbing cell division

(unpublished data). The fusion protein was susceptible to photo-

bleaching during time-lapse experiments even with OMX Blaze in

3D-SIM mode, presumably because of the low abundance of the

fusion protein in the cell (unpublished data). Therefore, conven-

tional wide-field fluorescence time-lapse experiments were per-

formed. The superior optics on the OMX microscope produce a

3D deconvolved image with improved signal-to-noise ratio when

compared to the raw conventional image (refer to Materials and

Methods). Deconvolved time-lapse movies of SU568 cells showed

that FtsZ-GFP, when expressed as a second copy, undergoes

dynamic changes in the Z ring that closely resembled SU570 cells

at 37uC (Movie S10). Furthermore, FtsZ-GFP inside the Z ring

appeared heterogeneous and dynamic when SU568 cells were

grown at 45uC and divided normally (Movie S11). Next the FtsZ-

GFP construct was introduced into cells harboring the div-355

mutation to create strain SU744 (div-355 amyE::Pspac-ftsZ-gfp). This

Figure 3. Z ring structure in S. aureus and B. subtilis. (A and B) When the Z ring is examined closer to the x-y orientation in B. subtilis, it reveals
that it is heterogeneous throughout the entire Z ring (white line represents microscope slide). Z ring diameter, 0.8 mm. (C and D) S. aureus expressing
FtsZ-GFP cells (SA94) visualized using conventional wide-field fluorescence image (Zeiss) and 3D-SIM (acquired using OMX V3), respectively. (E) The
appearance of the Z ring in SA94 cells imaged in the axial orientation with 3D-SIM. (F) A close up image of a Z ring in SA94 cells imaged in the lateral
orientation with 3D-SIM (OMX V3). (G) A 3D intensity plot shows how the relative abundance of FtsZ-GFP in all regions of the Z ring shown in panels
(F) and (H). A graphical representation of the heterogeneous Z ring in S. aureus. Red arrows indicate dimensions used for measuring bead size and
width in S. aureus cells. (I) 3D-SIM (OMX V3) image of the Z ring visualized using 1:100 dilution of anti-FtsZ antibodies. S. aureus SA94 cells were grown
in L-broth induced with 0.05 mM IPTG.
doi:10.1371/journal.pbio.1001389.g003
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strain was used to examine whether FtsZ remains dynamic in cells

in which Z ring constriction and division are inhibited. Growth

and division in SU744 cells at the permissive temperature was

normal as previously reported and ,36% of Z rings appeared to

be in the process of constriction (n = 115; Figure 6A, left panel).

However, when these cells were grown at the non-permissive

temperature, the cells became filamentous and the percentage of

constricting Z rings decreased to ,2% (n = 125; Figure 6A, right

panel). FtsZ-GFP distribution in the Z ring was heterogeneous and

dynamic at the permissive temperature in SU744 cells. However,

there was no apparent effect on FtsZ-GFP distribution inside the Z

ring or its dynamics when division was inhibited at the non-

permissive temperature (Figure 6B and Movie S12). These results

confirm that the Z ring remains structurally dynamic even in the

complete absence of Z ring constriction.

EzrA and PBP2 Localization Are Heterogeneous and
Dynamic in S. aureus

The heterogeneous structure of the Z ring revealed by 3D-SIM

raises the question of how other division proteins are arranged at

the division site. To address this question, we examined the

localization pattern of two divisome proteins: EzrA and PBP2

(penicillin binding protein-2). In B. subtilis, EzrA is recruited to the

Z ring early in an FtsZ-dependent manner. EzrA is an important

regulator of Z ring formation and promotes the efficient

recruitment of PBP1 to the divisome [33,46,47]. In S. aureus,

EzrA interacts with almost all the known cell division proteins in a

BACTH assay, indicating that EzrA is a central component of the

S. aureus divisome [48,49].

We used 3D-SIM to visualize EzrA localization in S. aureus cells

in which the wild-type ezrA gene is replaced by a functional ezrA-gfp

fusion expressed from its native promoter [48]. EzrA-GFP in live

cells localized in a bead-like pattern that appeared identical to that

of FtsZ (Figure 7A and 7B). Fluorescence intensity quantification

of the EzrA ring showed distinct peaks and noticeable gaps within

the ring (Figure 7C). Similar to FtsZ in the Z ring, the average

number of EzrA beads per ring was about 1362 SEM in all the

cells that were scored (n = 43), with most of the beads (83%)

measuring 200 nm in length. About 23% of the EzrA rings

observed showed at least one visible gap within them, which is very

similar to the number of gaps observed in Z rings in live S. aureus

cells (26%). Time-lapse microscopy of EzrA-GFP in S. aureus using

conventional wide-field fluorescence microscopy and deconvolu-

tion (performed under the same conditions used for FtsZ-GFP)

showed EzrA to have the same dynamic nature as FtsZ-GFP, with

changes to the overall heterogeneity of the ring over time in all the

cells observed (n = 50) (Figure 7D; Movie S13).

PBP2 is an essential protein in S. aureus that catalyzes the final

stages of peptidoglycan synthesis during the formation of the

division septum. It does not interact with S. aureus FtsZ in a

BACTH assay [50] but is recruited to the division site possibly

through interaction with other divisome components as well as

through substrate recognition [51]. We used an N-terminal GFP-

PBP2 fusion [51] that was expressed through a xylose-inducible

promoter to determine its localization and dynamics. Like FtsZ

and EzrA, 3D-SIM images of PBP2 rings also showed a

heterogeneous structure (Figure 8A and 8B). Furthermore,

conventional wide-field deconvolution time-lapse microscopy of

GFP-PBP2 displayed a similar dynamic movement in all cells

examined (n = 50; Figure 8C and Movie S14).

Taken together, S. aureus FtsZ, EzrA, and PBP2 all show a very

similar heterogeneous localization pattern. It is therefore tempting

to speculate that the entire divisome in S. aureus is heterogeneous

and dynamic.

Discussion

In this work, we visualized the Z ring using 3D-SIM to further

understand how FtsZ is localized within this structure and

subsequently how it constricts to allow cytokinesis in bacteria.

Previous attempts to address this issue using different microscopy

techniques have been hampered by the inability to visualize the

complete 3D architecture of the Z ring and examine how it is

dynamically remodeled in live cells. We were able to overcome this

problem through the use of 3D-SIM, as this form of super

resolution microscopy breaks the diffraction barrier of resolution

in both lateral and axial planes. We found that the Z ring is

composed of a heterogeneous distribution of FtsZ in a bead-like

arrangement in both B. subtilis and S. aureus. Moreover, we used

OMX Blaze technology to show that this bead-like distribution

undergoes constant changes both before and during Z ring

constriction. This has important implications for understanding

constriction (see below), and also shows that the Z ring is not a

fixed ‘‘scaffold’’ upon which FtsZ molecules can move in and out.

Rather, dynamic turnover of the Z ring additionally involves gross

changes in the organization of the ring. Lastly, we examined other

components of the divisome and found that they also exhibit a

dynamic bead-like localization pattern remarkably similar to FtsZ.

The 3D Architecture of the Z Ring
For decades conventional fluorescence microscopy has depicted

the Z ring as a smooth cable-like structure, hinting that the ring is

composed of a single continuous polymer that wraps around the

cell [52]. More recently, electron cryotomography (ECT) of C.

crescentus cells provided evidence for a very different Z ring

structure, showing the ring to be composed of just a few short FtsZ

filaments with a sparse and discontinuous arrangement at the

division site [19]. While ECT offers a large increase in resolution

over conventional light microscopy, the relatively low number of

FtsZ protofilaments observed using this technique, coupled with

the inability to label FtsZ directly, raises concerns about the

sensitivity in detecting total FtsZ present within the Z ring.

Using super resolution 3D-SIM microscopy in live cells of B.

subtilis and S. aureus labeled with FtsZ-GFP as well as in fixed cells

with immunofluorescence, we now show that FtsZ is distributed in

a heterogeneous, bead-like pattern around the entire Z ring. This

confirms that the Z ring is not a homogenous band of FtsZ, but

rather it contains regions of high FtsZ abundance and regions of

little or no FtsZ protein. Interestingly, the lengths of the beads we

measured in the Z ring (average bead length 200 nm and

maximum length 400 nm) correlate quite closely with the lengths

of FtsZ protofilaments typically observed in vitro (50–300 nm),

suggesting that the beads may be composed of short FtsZ filaments

similar to those detected by ECT [13,53]. In addition, we

Figure 4. Time-lapse analysis of FtsZ localization within the Z rings of B. subtilis using 3D-SIM Blaze. (A) Changes in the distribution of
FtsZ-GFP were clearly evident in the top and bottom regions of the Z ring when using 3D-SIM (OMX Blaze) in the B. subtilis strain SU570 grown in PAB
at 30uC. Time (seconds) is indicated on the upper left corner of each image. Z ring diameter, 0.89 mm. (B) 3D intensity plots clearly show that the
distribution of FtsZ in the Z ring remains heterogeneous and dynamic. Each graph represents an image for each time point as shown above. (C) To
analyze FtsZ dynamics in more detail, two regions of interest were monitored over time showing how FtsZ-GFP fluorescence fluctuates in the Z ring.
doi:10.1371/journal.pbio.1001389.g004
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Figure 5. Z ring dynamics in S. aureus. (A) 3D-SIM (OMX Blaze) time-lapse images show how FtsZ localization changes within the Z ring in S.
aureus RN4220 cells (SA89). A white arrowhead marks the position of a gap when it initially forms inside the Z ring. The subsequent position of the
arrowhead in each time point does not change and indicates how FtsZ is redistributed to a region of the Z ring, which previously had very little FtsZ
present. White arrows indicate the formation of additional gaps in the Z ring. (B) Deconvolution time-lapse microscopy of SA94 cells expressing FtsZ-
GFP. Time (s) is indicated on the upper left-hand side for each image. Cells were grown in L-broth at 37uC in the presence of 0.05 mM IPTG.
doi:10.1371/journal.pbio.1001389.g005
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visualized gaps in the Z ring that hint at a discontinuous structure.

We cannot state unequivocally that the ring is discontinuous

because 3D-SIM is not capable of single molecule detection.

However, given the large size of these gaps (at least 118 nm), and

taking into account that every FtsZ molecule is labeled with GFP

in some of our strains, we believe it is unlikely that a continuous

Figure 6. Monitoring FtsZ dynamics in non-dividing B. subtilis
cells. (A) At the permissive temperature SU744 (div-355) cells are able
to divide, but at the non-permissive temperature division is inhibited as
seen by the increased cell length. FtsZ-GFP was induced with 0.005 mM
IPTG and grown in PAB at 30uC until mid-exponential growth before
dilution and further growth at 45uC for 30 min to inhibit division. Scale
bar, 5 mm. (B) To monitor FtsZ dynamics in non-dividing cells we
visualized FtsZ-GFP localization in cells with the div-355 mutation at
non-permissive temperature using conventional deconvolved micros-
copy (images acquired on the OMX Blaze system). FtsZ remains
dynamic even when division is inhibited and Z ring constriction does
not occur. A white arrowhead marks the position of a gap when it
initially forms inside the Z ring. White arrows indicate the formation of
additional gaps in the Z ring. Time (s) is indicated in the upper left
corner. Z ring diameter, ,0.9 mm.
doi:10.1371/journal.pbio.1001389.g006

Figure 7. EzrA rings in S. aureus are also heterogeneous and
show dynamic movement. (A) To examine EzrA-GFP localization
using 3D-SIM (OMX V3), S. aureus strain SA126 was grown in L-broth at
37uC. The EzrA-GFP fusion protein displays a similar type of localization
at the division site as FtsZ. (B) A close-up image of an EzrA ring in SA126
cells imaged in the lateral orientation with 3D-SIM (OMX V3). (C) A 3D
intensity plot of EzrA rings orientated in the lateral plane shows a
similar profile to FtsZ-GFP. (D) Deconvolved images were obtained
through conventional wide-field fluorescence to monitor the localiza-
tion of EzrA-GFP over time (acquired using OMX Blaze system). EzrA-
GFP localization is dynamic and similar to that observed using FtsZ-GFP
in S. aureus. White arrowheads show areas where the EzrA concentra-
tion is reduced. Arrowheads indicate the formation of additional gaps in
the EzrA-GFP rings. Time (s) is indicated on the upper left-hand side for
each image.
doi:10.1371/journal.pbio.1001389.g007
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Figure 8. PBP2 rings in S. aureus are also heterogeneous and show dynamic movement. (A) To examine GFP-PBP2 localization using 3D-
SIM (OMX V3), S. aureus strain SA136 was grown in L-broth at 37uC. (B) A 3D intensity plot of a GFP-PBP2 ring orientated in the lateral plane shows a
similar profile to FtsZ-GFP (left) and a close-up image of a PBP2 ring (right) in SA136 cells imaged in the lateral orientation with 3D-SIM (OMX V3) (C)
Deconvolved images were obtained through conventional wide-field fluorescence microscopy; the localization of GFP-PBP2 over time is dynamic and
similar to that observed using FtsZ-GFP. Arrowheads indicate the formation of additional gaps in the PBP2 rings. Images were acquired on the OMX
Blaze system. Time (s) is indicated on the upper left-hand side for each image.
doi:10.1371/journal.pbio.1001389.g008
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FtsZ polymer strand spanning this entire region would fail to be

detected by 3D-SIM.

Combining new insights from 3D-SIM with previously

published data we propose two models to account for how FtsZ

is distributed inside the Z ring and this is illustrated in Figure 9A.

Both models predict that the Z ring is composed of a

heterogeneous arrangement of short FtsZ protofilaments around

the inner cell membrane. Some regions of the Z ring (beads)

contain a high density of FtsZ protofilaments that are distributed

around the inner cell membrane in a heterogeneous fashion, while

others (gaps) contain little or no FtsZ. In the ‘‘overlapping’’ model

(Figure 9A, left panel), short FtsZ protofilaments on the membrane

are loosely bundled with radial thickness (out from the membrane

towards the cell center) as well as along the cell membrane as

suggested by PALM imaging [31]. In the second ‘‘non-overlap-

ping’’ model for Z ring architecture, the short FtsZ protofilaments

are distributed on the membrane with only a single layer in the

radial direction (Figure 9A, right panel). We favor the non-

overlapping model for Z ring architecture because EM techniques

like ECT are currently the only way to visualize individual FtsZ

protofilaments and always depict FtsZ in a single, radial layer

around the inner cell membrane, even when it is overproduced

[19].

Implications for Generating a Contractile Force
What role does the architecture of the Z ring have in the process

of constriction? Previously, a model was proposed to describe how

discontinuous Z rings might generate a contractile force based on

ECT images of the Z ring in C. crescentus [19]. Known as the

iterative pinching model, it was suggested that FtsZ undergoes

continual cycles of polymerization (forming short linear filaments

on the membrane), polymer bending (generating a localized

inward force), and disassembly from the membrane. Over many of

these cycles, enough force is generated to pull in the cytoplasmic

membrane and facilitate cell division. A central idea of this model

is that FtsZ is continually redistributed around the Z ring.

However, this could not be tested by the ECT technique as it

requires samples to be fixed. Using OMX Blaze technology, we

were able to observe the structural dynamics of FtsZ localization in

live cells by 3D-SIM, on a time scale of as little as 5 s. This showed

directly that FtsZ is indeed rapidly redistributed within the Z ring

during constriction, and is fully consistent with an ‘‘iterative

pinching’’ type mode of constriction.

The gaps observed in the Z ring by 3D-SIM might also serve an

important purpose during constriction. In a recent study it was

predicted that continual constriction of the Z ring may require the

generation of gaps in the ring through turnover of FtsZ. This was

based on the observation that Z rings, assembled in vitro in tubular

liposomes, could only constrict to a small extent before quickly

halting in the absence of GTP hydrolysis [54]. This presumably

occurred because additional gaps within the Z ring could not be

generated to accommodate the structural changes that occur in the

Z ring during constriction. Our results with 3D-SIM now confirm

the existence of gap regions in the Z ring containing little or no

FtsZ.

Taken together, it appears that the gaps and beads we observe

in the Z ring may serve different roles required for the continual

constriction of the ring (Figure 9B). The beads most likely

represent regions where increased amounts of FtsZ generate a

localized contractile force on the inner membrane, while the gaps

represent areas that allow the Z ring to continually reduce its

circumference as it pulls in the cell envelope. This may explain

how a heterogeneous arrangement of FtsZ can provide an equal

contractile force on the inner cell membrane over time.

Coordination between Early and Late Cell Division
Proteins Triggers Z Ring Constriction?

Interestingly, our results demonstrate that the Z ring is

heterogeneous and structurally dynamic throughout its entire

Figure 9. Models for the arrangement of FtsZ protofilaments
inside the Z ring. (A) We propose two models to describe the
architecture of the Z ring. The overlapping model predicts that short
FtsZ protofilaments begin to bundle in both lateral (circumferential)
and radial directions of the cell. Alternatively, FtsZ protofilaments could
be arranged into a single layer in the radial direction and only bundle in
the lateral direction. (B) The amount of FtsZ inside the Z ring is constant
throughout constriction, but the distribution of FtsZ inside the rings
fluctuates over time. As constriction begins the Z ring exerts a localized
pinching force on the membrane where increased levels of FtsZ are
found. Gaps (indicated by red brackets) in the Z ring allow constriction
to occur continuously as the circumference of this structure becomes
reduced (indicated by the decrease in height of the blue rectangle).
doi:10.1371/journal.pbio.1001389.g009
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lifetime, not just during constriction. Moreover, these same

structural dynamics are seen in a mutant that is unable to

undergo Z ring constriction at all. This indicates that while FtsZ

dynamics are likely to play an important role in the constriction

process (see above), these dynamics alone are not sufficient to

initiate constriction. Rather, an additional factor must be required

to trigger the constriction process and allow cytokinesis at the

appropriate time.

What might this trigger be? One idea is that the signal to

constrict may be provided by later acting cell division proteins,

which connect directly to FtsZ via the divisome. These proteins

also interact with the cell wall synthesis machinery and could

function to coordinate Z ring constriction with septal peptidogly-

can production. In support of this idea, previous studies have

shown that the inactivation of one or more components of the

divisome results in an inhibition of Z ring constriction [55,56,57].

Indeed, we found in the present study that DivIC inactivation

caused a defect in Z ring constriction without affecting the

structure or dynamics of the ring. Under these conditions the Z

ring appears ready to commit itself to constrict, but cannot go

ahead until the divisome properly assembles.

Presumably, to properly coordinate Z ring constriction and cell

wall synthesis direct interactions must be maintained between all

necessary components of the divisome throughout the cell division

process. Consistent with this idea we found that EzrA and PBP2

localization closely resembled FtsZ in both structure and

dynamics. This suggests that bacterial cell division is mediated

by a heterogeneous and highly dynamic multi-protein machine.

Materials and Methods

Bacterial Strains and Growth Conditions
See Table 1 for a list of the strains used in this study. To

construct strain SA126, JGL227 was transduced into the ELC2

(protein A-deficient NCTC 8325 S. aureus strain) background using

Q11 phage transduction as previously described [58]. In all

experiments bacterial cells were harvested and analyzed at the

mid-exponential phase of growth. All B. subtilis strains were grown

in Penassay broth (1.75% Bacto antibiotic medium 3) or Spizizen

minimal medium (0.5% w/v glucose, 0.02% w/v MgSO4, 16
mineral salts A) [59] supplemented with L-tryptophan

(50 mg ml21), casamino acids (0.05% w/v), and 16 trace metals

[25] in the absence of antibiotics with vigorous shaking. IPTG was

added to 0.005 mM where appropriate. SU570 cells were grown

and imaged at the permissive temperature of 30uC [33]. Cells with

the div-355 mutation were grown at the permissive temperature of

30uC, or to inhibit DivIC function, these cells were transiently

grown at the non-permissive temperature of 45uC for 30 min

before imaging [45]. All S. aureus strains were cultured at 37uC in

L-broth with 2% glucose and, where appropriate, 5 mg erythro-

mycin ml21, 25 mg lincomycin ml21, 10 mg chloramphenicol

ml21, and 0.05 mM of IPTG. Total cellular FtsZ levels (FtsZ-GFP

and native FtsZ) in S. aureus cells grown with this concentration of

IPTG have previously been shown to be approximately 2-fold

higher relative to wild-type S. aureus cells [39]. However, no growth

or cell division defects were associated with this level of FtsZ

overproduction.

Live Cell Microscopy
B. subtilis and S. aureus cells were prepared for live cell

microscopy as described previously [25] on 2% (w/v) agarose

pad containing the same media used for growth. The agarose pad

was then inverted so that the cell suspension is in contact with the

coverslip of a Fluorodish (refractive index: 1.525).

Immunofluorescence
Immunofluorescence of B. subtilis cells was performed as

previously described [25], with the exception that cells were

adhered to a poly-L-lysine-treated Fluorodish (World Precision

Instruments) and treated with lysozyme. Cells were fixed in 10 ml

of ice-cold (220uC) methanol for 1 h prior to lysozyme treatment.

Anti-FtsZ antibodies (raised against B. subtilis FtsZ in rabbits) were

added at different concentrations and incubated overnight at 4uC.

These antibodies react specifically against S. aureus and B. subtilis

FtsZ and therefore provide an accurate localization pattern of FtsZ

in both organisms [35,39]. Secondary antibody (goat anti-rabbit

IgG conjugated to Alexa488; Sigma) was added at a dilution of

1:100 and the cells were then mounted in Vectashield (Vector

Laboratories) mounting medium. Immunofluorescence of S. aureus

cells was performed as previously described [35] except that a

gentle lysis was performed using lysostaphin (Sigma) at a final

concentration of 30 ng ml21 for 30 s before the addition of the

anti-FtsZ primary rabbit antibody, a Fluorodish was used, and

cells were mounted in Vectashield.

Conventional Fluorescence Microscopy Using the Zeiss
Axioplan 2 Microscope

Conventional (wide-field) fluorescence microscopy was per-

formed using a Zeiss Axioplan 2 microscope (Carl Zeiss) as

described previously [25]. In B. subtilis, FtsZ-GFP and the cell

membrane were co-visualized with FM 4-64 (Invitrogen) at a final

concentration of 1 mg ml21. GFP and FM 4-64 fluorescence were

visualized with filter sets 488009 and 488015 (Carl Zeiss),

respectively.

Conventional Wide-Field Deconvolution Fluorescence
Microscopy and 3D-SIM Super-Resolution Microscopy
using the Deltavision OMX Imaging Systems

Both conventional fluorescence microscopy and three dimen-

sional-structured illumination microscopy (3D-SIM) were imple-

mented on two versions of the DeltaVision OMX imaging system

(Applied Precision Inc, Issaquah, USA): the OMX V3 and a new

system known as OMX Blaze (Applied Precision, a GE Healthcare

Company).

The DeltaVision OMX V3, based on the system described in

[32,60] uses solid state multimode lasers (488, 593 nm) to provide

wide-field illumination and multi-channel images that are

captured simultaneously using two Photometrics Cascade (Photo-

metrics, Tucson, USA) back-illuminated EMCCD cameras

(.90% QE) with a 5126512 CCD, and on-chip charge

multiplication. Data capture used an Olympus UPlanSApo

1006 1.4 NA oil objective and standard excitation and emission

filter sets (in nm, 488 EX/500–550 EM and 592.5 EX/608–648

EM). 3D-SIM images were sectioned using a 125 nm z-step.

The new Deltavision OMX Blaze allows ultra-high speed

illumination and acquisition. A full description of this new system

follows. Laser excitation light (488 nm and 592 nm) was shuttered

using a high speed tilt mirror with open times and close times of

0.2 ms. The laser excitation light was subsequently coupled into a

broadband single mode optical fiber. Light exiting the fiber was

first split into three beams, then passed through separate modules

to control the phase and angle of the three beam pattern, and

finally focused downstream at the back focal plane of the objective

lens to generate a 3D interference pattern at the sample plane.

Within the phase control module, each of the two outer beams was

directed to propagate through a separate pair of windows with

individual tilt control. By tilting a given window pair in

complementary directions (to cancel the lateral refractive beam
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translation), a path length change was imparted on the respective

outer beam to shift the phase of the interference pattern at the

sample plane. Phase shifts of the interference pattern were

completed in 0.2 ms. Within the angle control module, a tilt mirror

was employed to direct the three beam pattern to one of three

mirror clusters, each of which imparted a distinct rotation to the

three-beam pattern. The beam pattern from each of the three

rotation paths was redirected back to a common exit path by

reflecting a second time from the tilt mirror. Angle shifts of the

interference pattern were completed in 4 ms. Images were captured

on two PCO Edge scientific CMOS cameras (each dedicated to a

specific channel) with acquisition rates of up to 400 fps, using an

Olympus PlanApo N 6061.42 NA oil objective and excitation and

emission filters as above. Unprocessed image stacks were composed

of 15 images per z-section (five 72 degree phase-shifted images per

angle at each of three interference pattern angles, +60, 0, and 260

degrees). The z-sections were completed at a spacing of every

125 nm for a total raw data image count of 120 images per 1 mm

sample z-stack. Full super-resolution 1 mm thick image stacks with

40640 mm field of view (5126512 pixels unprocessed image size

with 16 bit dynamic range) could be captured with a total

acquisition time of 1 s. The output of raw data from the OMX

Blaze was processed as for OMX V3 data. The microscope is

routinely calibrated to calculate both the lateral and axial limits of

image resolution under our experimental conditions [32,60].

Reconstructed images were rendered in 3D, with interpolation,

using Imaris version 7.0.0 (Bitplane Scientific).

Both the OMX V3 and OMX Blaze systems were used in this

study to capture conventional wide-field fluorescence images [61].

Immunofluorescence microscopy was performed using the Delta-

vision OMX V3 imaging system in 3D-SIM mode. Live cell time-

lapse fluorescence microscopy was performed using both OMX

V3 and OMX Blaze systems, either in the conventional or 3D-

SIM mode.

Image Analysis
For 3D-SIM OMX V3 images, time series were compiled from

single time points using Imaris software version 7.0.0 (Bitplane

Scientific) to create a time-lapse series. The fluorescence at each

time point was normalized. All raw images obtained in conven-

tional mode were deconvolved using a constrained iterative

algorithm (SoftWorX 4.0, Applied Precision Inc). This algorithm

has been quantitatively verified [62] to accurately represent the

original 3D object. All 3D-SIM and conventional mode images

were analyzed using Imaris version 7.0.0 (Bitplane Scientific). For

clarity of display, small changes to brightness and contrast were

performed on 3D reconstructions. Only linear changes were made

to brightness and contrast of the images. Non-linear (gamma

setting) changes to the images were not performed. 3D intensity

plots were generated using data obtained through the data

inspector tool in SoftWorX. The total sum of fluorescence within

the Z ring was quantified in Imaris.

Supporting Information

Figure S1 Non-constricting and constricting Z ring appearance

in live cells of SU570 using 3D-SIM (OMX V3). Visualizing the

heterogeneous distribution of FtsZ-GFP is easier in Z rings with a

diameter between ,0.3 and 0.9 mm. Constricting Z rings (white

arrow) with a diameter less than 0.3 mm are harder to visualize any

heterogeneous distribution of FtsZ-GFP.

(TIF)

Figure S2 Immunofluorescence labeling of wild-type B. subtilis

cells (SU5) reveals a similar heterogeneous distribution of FtsZ

inside the Z ring. (Ai–Aii) 1:100 dilution of anti-FtsZ. Z ring

diameter, 0.9 mm (Bi–Bii) 1:10,000 dilution of anti-FtsZ. Z ring

diameter, 0.7 mm and 0.5 mm, respectively. Cells were grown at

30uC in PAB and imaged using 3D-SIM (OMX V3).

(TIF)

Figure S3 Additional examples of 3D intensity plots of B. subtilis

Z rings. See Figure 4. SU570 cells were imaged using 3D-SIM

(OMX V3).

(TIF)

Movie S1 The Z ring in B. subtilis can be rotated around the z-

axis to view how FtsZ-GFP is distributed around the ring in

SU570. Cells were grown at 30uC in PAB and imaged using 3D-

SIM (OMX V3).

(MPG)

Movie S2 The Z ring is also heterogeneous in S. aureus and can

be viewed in different orientations. SA98 cells were grown in L-

broth with 0.05 mM IPTG and imaged using 3D-SIM (OMX

V3).

(MOV)

Movie S3 Field of view of SU570 cells grown in PAB at 30uC
imaged using OMX Blaze. One image was acquired every 5 s over

a period of 1 min.

(AVI)

Movie S4 3D-SIM (OMX Blaze) time-lapse movies in B. subtilis

show FtsZ-GFP dynamically changes its localization within the Z

ring in SU570. One image was acquired every 5 s over a period of

1 min.

(AVI)

Movie S5 3D-SIM (OMX Blaze) time-lapse movie of a

constricting Z ring in B. subtilis reveals dynamics continue

throughout division in strain SU570. One image was acquired

every 5 s over a period of 1 min.

(AVI)

Movie S6 Visualization of Z ring dynamics in S. aureus using 3D-

SIM (OMX Blaze) in SA98 cells induced with 0.05 mM IPTG.

One image was acquired every 10 s over a period of 1 min.

(WMV)

Movie S7 Visualization of Z ring dynamics in S. aureus using

conventional deconvolved time-lapse microscopy. One image was

acquired every 10 s over a period of 1 min. SA98 cells were grown

in L-broth with 0.05 mM IPTG and imaged on the OMX Blaze

system.

(WMV)

Movie S8 Visualization of Z ring dynamics in a non-constricting

B. subtilis Z ring over 10 min. A 3D-SIM image was acquired every

minute over a period of 10 min. SU570 cells were grown in PAB

at 30uC. Images acquired using 3D-SIM (OMX V3).

(MOV)

Movie S9 Visualization of Z ring dynamics in a constricting B.

subtilis Z ring over 10 min. A 3D-SIM image was acquired every

minute over a period of 10 min. SU570 cells were grown in PAB

at 30uC. Images acquired using 3D-SIM (OMX V3).

(MOV)

Movie S10 Conventional wide-field time-lapse movie of SU568

cells grown in PAB at 37uC with 0.005 mM IPTG. Similar to

SU570 cells the distribution of a second copy FtsZ-GFP in the Z

ring is heterogeneous and dynamic. One image was acquired every

10 s over a period of 1 min. Images acquired using OMX Blaze.

(AVI)
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Movie S11 Conventional wide-field time-lapse movie of SU568

cells grown in PAB at 45uC with 0.005 mM IPTG. Growth at

higher temperatures does not affect Z ring structure or dynamics.

One image was acquired every 10 s over a period of 1 min.

Images acquired using OMX Blaze.

(AVI)

Movie S12 Conventional deconvolved time-lapse microscopy of

SU744 cells at the non-permissive temperature of 45uC. FtsZ

remains dynamic even in non-dividing B. subtilis cells. One image

was acquired every 10 s over a period of 1 min. Images acquired

using OMX Blaze.

(AVI)

Movie S13 EzrA-GFP rings are also dynamic in S. aureus. One

image was acquired every 10 s over a period of 1 min using

conventional deconvolved time-lapse microscopy. SA126 cells

were grown in L-broth at 37uC. Images acquired using OMX

Blaze.

(AVI)

Movie S14 GFP-PBP2 rings are dynamic and similar to FtsZ

and EzrA. One image was acquired every 10 s over a period of

1 min using conventional deconvolved time-lapse microscopy.

SA136 cells were grown in L-broth at 37uC. Images acquired

using OMX Blaze.

(WMV)
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