
Looking to the Future of Analytical Chemistry Education: A New
Resource to Help Instructors

Cite This: ACS Meas. Sci. Au 2022, 2, 76−77 Read Online

ACCESS Metrics & More Article Recommendations

When faced with the task of constructing a syllabus for an
analytical chemistry course, we suspect that most

instructors begin by identifying a list of content areas they
intend to cover. A content-coverage model characterizes the
courses we ourselves took in college and is the format of
textbooks that are usually the primary supporting resource for
most courses. While we do not intend to dismiss the relevancy
of content areas, there are issues with an approach that is
primarily focused on content areas in analytical chemistry.
Modern analytical chemistry is an interdisciplinary effort in
molecular measurements that is continually inventing new
techniques, refining established ones, and seeking out new
applications. As a result, it is impossible to cover all the topics
that might be considered relevant in the typical number of
courses required for an undergraduate or even a graduate
degree. One of us (M.L.K.) recently coordinated a survey of
the analytical chemistry curriculum for the Analytical Division
of the American Chemical Society (ACS). In their responses,
many analytical chemistry instructors indicated that they
struggle to decide what topics to include in their courses, due
to the limited time available for a large number of topics and
the ever-changing landscape of measurement science as
techniques develop. Indeed, we can personally relate to this
challenge. Fused silica capillary columns and liquid chromato-
graphic bonded phases are just two examples of developments
that have occurred since the oldest one of us (T.J.W.)
completed an undergraduate degree in the mid-1970s.
Numerous advances in bioanalytical methods and nanoscience
have occurred since the youngest of us (M.L.K.) completed
her degrees in the mid-2000s. Thus, scientists who rely on
analytical chemistry and measurement science must stay
abreast of continuing advances in the field, and instructors
must make thoughtful choices about what content to prioritize
in their courses.
An alternative to the broad content-coverage model is to

design analytical courses that provide depth in selected areas
while at the same time developing the skills students need to
be successful in undertaking analytical science. The ACS
Guidelines for the certified undergraduate degree provide a
useful list of process skills that students need in chemistry
careers.1 These include competence in use of the chemical
literature, written and oral communication, teamwork, ethical
decision-making, and problem-solving. Competence in prob-
lem-solving is further defined as having the following abilities:
clearly define problems, develop testable hypotheses, design
and execute experiments, analyze data using appropriate
statistical methods, understand uncertainties in experimental

methods, and draw appropriate conclusions. Mastery of these
skills ensures that students are equipped to learn independ-
ently about new techniques, and even propose their own
advances, regardless of the specific course content covered
during their formal education. However, courses that include
meaningful development of these skills will have a different
structure from conventional analytical chemistry classroom and
laboratory experiences. Classroom lectures are reduced
significantly and replaced with small-group or other activities
that engage students in the material being covered. Students
are given more decision-making authority in the design and
execution of laboratory experiments, which typically involve
multiweek projects completed by small teams. In addition to
promoting skills development, these evidence-based or active
learning approaches have also been shown to enhance student
achievement on the content areas that are still key to the
course.2−12 Finally, if well facilitated, active learning has the
potential to create a more inclusive course environment where
all students feel valued.13−21

The success of active learning is dependent on the quality of
the exercises as well as the effectiveness of facilitation by the
instructor. The need for suitable exercises and knowledge of
how to effectively facilitate them have been barriers to the
implementation of active learning in many fields.22,23 Within
analytical chemistry, there has been a sustained effort to
remove these barriers through a 20+ year, NSF-supported
collaboration of faculty. We recently edited a book titled Active
Learning in the Analytical Chemistry Curriculum that collects the
expertise and curricular innovations of many of these faculty.24

Composed of 16 chapters with 39 different coauthors, this
book will be a helpful resource for instructors wishing to
incorporate more skill development and active learning into
their courses. Authors represent Ph.D.-granting, 4-year public
and private, community college, historically Black, and
Hispanic-serving institutions. While all but one of the authors
are from institutions in the United States, descriptions of the
activities, their facilitation and assessment are applicable
worldwide. Many of the exercises described in the book are
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freely available for instructors and students on the Active
Learning site of the Analytical Sciences Digital Library.25

The first two chapters discuss prior research that justifies
why instructors should use active learning in their courses and
provide strategies for getting started in the effective use of
active learning. Subsequent chapters describe different
strategies for using active learning in the classroom and the
laboratory that will be of interest even to faculty experienced in
active learning. One chapter focuses on the use of simulations
to expand student’s facility with analysis methods. Another
focuses on the use of active learning in graduate courses.
Examples of assessment strategies are presented throughout
the book, and analytical chemistry instructors are encouraged
to contact authors of the chapters for additional insights into
the use and facilitation of their exercises.
We and the other chapter authors value our use of active

learning. We get to know students better with this approach,
and we are better able to adapt instruction to students’ specific
needs. Being freed from concerns about whether our courses
cover a sufficient breadth of content and seeing our students
develop skills that we know will be useful in their future careers
makes teaching a more rewarding experience. We hope that
members of the measurement science community will find this
resource helpful in the education of future generations of
analytical scientists.
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