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Abstract

The testis specific X-linked genes whose evolution is traced here in the melanogaster species subgroup are thought to
undergo fast rate of diversification. The CK2ßtes and NACbtes gene families encode the diverged regulatory b-subunits of
protein kinase CK2 and the homologs of b-subunit of nascent peptide associated complex, respectively. We annotated the
CK2btes-like genes related to CK2ßtes family in the D. simulans and D. sechellia genomes. The ancestor CK2btes-like genes
preserved in D. simulans and D. sechellia are considered to be intermediates in the emergence of the D. melanogaster
specific Stellate genes related to the CK2ßtes family. The CK2ßtes-like genes are more similar to the unique autosomal
CK2ßtes gene than to Stellates, taking into account their peculiarities of polymorphism. The formation of a variant the
CK2ßtes gene Stellate in D. melanogaster as a result of illegitimate recombination between a NACßtes promoter and a
distinct polymorphic variant of CK2ßtes-like ancestor copy was traced. We found a close nonrandom proximity between the
dispersed defective copies of DINE-1 transposons, the members of Helitron family, and the CK2btes and NACbtes genes,
suggesting an involvement of DINE-1 elements in duplication and amplification of these genes.
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Introduction

The availability of genome sequences of related species permits

to retrace the origination of new gene families [1]. New X-linked

testis specific genes are thought to evolve frequently [2–4].

Recently, a role of the highly abundant transposable element

DINE-1 (also named INE-1 and DNAREP1) in the emergence of

these genes in the Drosophila genomes has been suggested [5–7].

Using available data sets of genome sequences from FlyBase [8],

we traced the origination and amplification in the melanogaster

subgroup species of the X-linked testes specific genes related to two

multigene families, CK2btes and NACbtes, encoding regulatory b-

subunit of protein kinase CK2 and b-subunit of protein nascent

associated complex (NAC), respectively. CK2 is a serine/threonine

kinase that participates in a wide variety of cellular processes

including cell differentiation, proliferation and survival [9–11].

The regulatory b-subunit ensures stability and specificity of CK2,

and may also have functions distinct from CK2 as a component of

some other protein kinases [9,11]. Both conservative a- and b-

subunits of NAC are known to contact with nascent polypeptide

chains on the ribosome and contribute to the prevention of

inappropriate interactions during the folding of nascent polypep-

tide [12]. The importance of NACb in vivo function is emphasized

by the early embryonically lethal bicaudal phenotype of a NACß

mutant in D. melanogaster [13]. The testis specific functions of both

CK2btes and NACbtes proteins remain elusive.

D. melanogaster contains several paralogous CK2 protein kinase

genes supposed to be involved in specification of CK2 targeting in

cells [14]. The single autosomal gene on chromosome 2 encodes

protein kinase CK2 regulatory b-subunit. The homologous

amplified copies of the X-linked Stellate genes are normally

silenced but have been shown to be expressed in the testes of D.

melanogaster due to the absence of their Y-linked specific suppressors

[14,15]. The unique autosomal CK2btes genes are located in

homologous regions in the D. melanogaster, D. sechellia, D. yakuba,

and D. erecta genomes according to FlyBase [8], while its presence

in D. simulans requires a much more detailed analysis of convincing

sequencing results. The amplified Stellate genes are found only in

D. melanogaster, their derepression in testes leads to male sterility or

semi-sterility owing to the abnormality of chromosome conden-

sation and nondisjunction of sex chromosomes [16,17]. Interest in

Stellate genes has been inspired by the discovery of a RNA silencing

mechanism of their repression [18]. The evolutionary significance

of Stellate genes emergence remains an enigma, possibly their

putative function is not limited to the modulation of protein kinase

CK2 activity, but is also related to chromatin assembly [19].

Actually, protein kinase CK2 is predominantly a nuclear protein

[9], Stellate protein has been detected in both cytoplasm and

nucleus, and an ability of lysine methylated Stellate to mimic

epitope of H3K9me3 histone has been shown [19]. This

observation suggests a capacity of Stellate protein to compete

with some chromatin ‘‘readers’’ of histone H3K9me3 mark. The
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emergence of the CK2ßtes family of Stellate gene has been driven by

an acquisition of promoter from the NACbtes gene [20].

Here we annotated in D. sechellia and D. simulans several

paralogous genes related to CK2ßtes family and designated as a new

multigene family of CK2ßtes-like genes. The estimation of a

similarity of these genes to the unique autosomal CK2btes genes

and Stellate genes in D. melanogaster allowed us to consider a putative

CK2ßtes-like ancestor as an intermediate in the origination of Stellate

genes. Although only single copy of the NACbtes gene is revealed in

D. yakuba, similar patterns of the X-linked amplifications of

NACbtes genes are detected in D. melanogaster and sister D. simulans/

D. sechellia species. The copies of amplified NACbtes and CK2btes

gene families are localized in a restricted syntenic region (,300–

400 kb) in D. melanogaster and D. simulans/D. sechellia.

Using available genomic data sets of FlyBase [8] we demon-

strated the juxtaposition of the repeated young X-linked Stellate,

CK2btes-like and NACbtes genes to polymorphic fragments of

DINE-1 transposable elements related to an enigmatic Helitron

type. A close nonrandom location of DINE-1s to these amplified

copies hints for DINE-1 participation in the expansion of these

protein-coding genes.

Results and Discussion

The structures of syntenic regions of the X-chromosomes of D.

melanogaster, closely related D. sechellia/D. simulans and D. yakuba are

presented in Fig. 1. These regions contain Stellate, CK2btes-like and

NACbtes genes. The synteny is clearly demonstrated by relative

positions of gene bendless (ben) as well as CG12480/GM17653/

GD17153/GE17116 and CG9400/GM17559/GD15853/

GE16115. The annotation procedure allowed us to present

orthologs CG18313/GM17676/GD17171/GE17140 at the right

border of the studied syntenic region. Paralogs CG18313/

CG32601/CG32598/CG18157/CG13402 have been annotated

earlier in D. melanogaster as NACbtes genes [20]. We have identified

in the syntenic regions of the X-chromosomes in D. simulans and D.

sechellia the CK2btes-like genes related to autosomal CK2btes gene

(CG13591) in D. melanogaster. We found the fragments of CK2btes

genes (yCK2btes) in D. simulans and D. sechellia at the same site

where a cluster of Stellate genes is known to be emerged in D.

melanogaster. The fragments of DINE-1 elements were localized in

syntenic region of D. melanogaster, D. simulans and D. sechellia.

The presented evolutionary tree of the representatives of the

CK2btes family. We traced the uprising of gene Stellate as a result of

illegitimate recombination between the NACbtes promoter and a

definite polymorphic variant of CK2btes-like ancestor. At last we

showed nonrandom associations of the remnants of DINE-1

elements with CK2btes-like, Stellate and NACbtes genes.

The family of the NACbtes genes
The NACßtes genes in D. melanogaster (CG13402, CG18157,

CG32598, CG32601 and CG18313) are indicated according to

our earlier published data [20]. D. melanogaster, D. sechellia and D.

simulans have several copies of highly homologous NACßtes genes

but the D. yakuba genome contains only a single copy (GE17140).

D. simulans and D. sechellia contain a pair of duplicated NACbtes

copies similar to those in D. melanogaster, demonstrating their

evolving in the common ancestor of these species. The NACbtes

genes may be considered the young ones, due to their presence in

the melanogaster subgroup species [20], but not in the D.

pseudoobscura taking into account available data sets of FlyBase.

The NACßtes pseudogenes are located adjacent to GM17553 and

GD24509 in D. sechellia and D. simulans, respectively, but a

complete sequence of D. simulans pseudogene is not yet available

(Fig. 1, Fig. S1). The duplicated copies of NACbtes in D. sechellia are

located in the same region in D. melanogaster, but in D. sechellia these

genes are flanked by CK2ßtes-like copies (pair of genes GM17555/

GM17556 and gene GM17552) (Fig. 1), forming a cluster of

NACßtes and CK2ßtes-like genes.

The family of the CK2btes genes
The CK2ßtes-like copies comprise a new gene family represented

by the variants of CK2btes family genes that has been amplified in

the D. sechellia/D. simulans lineage. The CK2ßtes-like genes are

homologous to the unique autosomal CK2ßtes gene located in

syntenic regions of the D. melanogaster, D. sechellia and D. yakuba

genomes. The precise genomic structure of homologous region in

D. simulans is not yet solved and only a single copy of CK2ßtes-like

(GD24508) is annotated here. However, some unannotated

CK2ßtes-like copies in D. simulans may be also attributed to this

region (Fig. 1). The testis specific transcription of a representative

of this family, GD24508 in D. simulans, was shown (Fig. S2). This

observation allows us to consider this gene family as a testis specific

one. D. yakuba contains no CK2btes-like genes on the X-

chromosome and elsewhere in the genome.

Multiple alignment of amino acid residues of proteins and

phylogenetic tree related to CK2btes family genes (CK2btes,

CK2btes-like and Stellate) is shown in Fig. S3. The peculiarities of

amino acid substitution patterns (Fig. S3A) as well as protein

phylogenetic analysis (Fig. S3B) allow us to discriminate CK2btes-

like proteins as a distinct novel subfamily, and the phylogenetic

tree demonstrates the origination of Stellate genes from CK2btes-like

ancestor.

The CK2 b-subunit is remarkably conserved among species

[21,22]. All CK2btes subunits carry at their N-termini the site S2

of autoposphorylation known to be involved in CK2b stabilization

[23]. All variants of CK2btes-like subunits preserve zinc fingers

with cysteines (Fig. S3) that are responsible for dimer CK2b
formation and its association with catalytic subunit [10]. CK2b is

reminiscent of cyclins that are regulatory subunits of cyclin-

dependent kinases and has a motif involved in regulation of cyclin

degradation. Significant similarity is observed in degradation motif

DKENTGLN [9] in different CK2btes subunits, the KFNL

sequence is preserved in CK2btes subunits encoded by unique

autosomal and amplified CK2btes-like genes but not in Stellate. The

acidic loop of CK2b is involved in regulation of catalytic subunit

activity by modulating polyamine binding [9]. The DPEFDNED

motif of acidic loop is significantly varied in CK2btes proteins: the

number of acidic residues in duplicated X-linked CK2btes-like

subunits is reduced to two residues compared to four residues in

autosomal CK2btes subunits encoded by unique genes. Possibly,

these differences may be related to the peculiarities of functional

modulations of the activity of these proteins.

The degree of nucleotide similarity between coding region of

CK2btes-like pairs GM17552/GM17570, GM17555/GM17552

and GD15860/GD24508 of paralogs approximates 83–86%.

The extent of interspecific similarity between pair of orthologous

copies GD15860/GM17570 and GD24508/GM17552 approxi-

mates 93% and 95%, respectively. Two paralogs, GM17552 and

GM17556, in D. sechellia as well as the ortholog GD24508 in D.

simulans are characterized by quite similar patterns of nucleotide

substitutions (Fig. 1, Fig. S4). This similarity may be explained by

duplication of the ancestor gene GM17552 and formation of a

new copy GM17556 in D. sechellia. We found two practically

identical CK2btes-like copies in D. sechellia (GM17557a,

GM17557b) separated by a sequence containing DINE-1 frag-

ments (Fig. 1, Fig. S4). We also detected a fragment of CK2btes-like

gene in D. sechellia and a vestige of its presence in D. simulans in a
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syntenic site where Stellate cluster has been formed in D. melanogaster

(Fig. 1, Fig. S4).

Origination of gene Stellate, a new variant of the CK2btes
gene family

The coding region of testis specific Stellate genes in D. melanogaster

are homologous to the unique autosomal CK2btes gene [14,15],

but Stellate precursor has acquired a promoter region from the

NACbtes gene [20]. A careful comparison of nucleotide sequences

of Stellate and CK2btes-like genes in D. sechellia and D. simulans

revealed the shared diagnostic sequence stretch between Stellates

and orthologs GD15860/GM17570. This sequence is missed in all

the other CK2btes-like copies (Fig. 2). This observation allows us to

consider the ancestor GD15860/GM17570-like copy to be a

partner of illegitimate recombination with NACßtes gene (Fig. 2).

The CK2btes-like genes in D. simulans/D. sechellia (GD15860/

GM17570) and NACßtes (CG13402) in D. melanogaster are located

precisely at the same sites adjacent to orthologs GD17153,

GM17653 and CG12480, respectively (Fig. 1). We suppose that

the ancestor genome contained the juxtaposed CK2btes-like and

NACbtes genes at this site and such an arrangement allowed for

recombination between these genes ensuring the emergence of the

Stellate precursor copy.

The location of the CK2ßtes-like pseudogene in D. sechellia

coincides with the site of the emergence of tandemly repeated

Stellate cluster (Fig. 1). We propose that evolutionary diversification

of genes related to CK2ßtes family has been occurred specifically in

this specific region of the ancestor genome. These events appear to

be quenched in D. simulans/D. sechellia lineage, but have led to the

formation of Stellate cluster in D. melanogaster. The similarity of the

tandemly repeated ORFs of novel young Stellate genes (2,5%

divergency), which may be maintained by an unknown mecha-

nism of homogenization [24,25], is significantly higher than the

extent of similarity of the homologous more ancient CK2ßtes-like

copies in D. sechellia/D. simulans (Fig. S3, Fig. S4).

We detected an expansion of genes CK2ßtes and NACßtes by

duplications. The usual fate of a gene duplicate is pseudogeniza-

tion, but that has not occurred for most amplified NACbtes and

CKb2tes-like copies. Only one of six NACßtes copies in D. melanogaster

is a pseudogene, located on the X-chromosome outside of this

syntenic region, and only one CK2btes-like pseudogene of six

undamaged CK2btes-like genes in D.sechellia is observed. Thus most

duplicate copies remain functional.

Figure 1. Scheme of syntenic X-chromosome regions comprising the CK2btes and NACbtes multigene families in Drosophila species.
The synteny is demonstrated by vertical dashed lines indicating positions of orthologous genes. The sizes of regions are ,400 kb in D. melanogaster
(X:13890387..14275449), ,280–350 kb in D. simulans (X:10696104..10968610)/D. sechellia (scaffold_20:533142..877095) and ,330 kb in D.yakuba
(X:8186055..8516953). Positions of genes related to gene families are depicted by pentagons indicating direction of transcription. Yellow pentagons
designate NACbtes copies, blue pentagons - CK2ßtes-like copies, light blue pentagons – Stellate genes. Promoters are indicated by small rectangles
fused to these signs: light yellow rectangles depict homologous Stellate and NACbtes promoters, blue rectangles depict CK2btes-like ones. Blue
rectangles designate the remnants of CK2btes-like sequences (D. melanogaster X:14189495..14189605 [-], D. sechellia scaffold_20: 574563..574 704[-],
D. simulans X:10724910..10724990[-]). A remnant of CK2btes-like gene represented by the ORF for 37 amino acids is designated in intron of gene
CG9400 in D. melanogaster. Lilac and rose arrowheads designated earlier annotated and newly detected DINE-1 elements, respectively. Orientations
of arrowheads correspond to predicted direction of transcription. Positions of some orthologous genes are depicted by black arrows. In D. simulans
several CK2btes-like copies (GD24508:chrX_Mrandom_708:8043..8830[-], GD24510: chrX_Mrandom_706:885-1556[-]), NACbtes (GD24509:chrX_Mran-
dom_708:6003..6761[-]) and yNACbtes gene are not attributed precisely to the studied syntenic region, these copies are enclosed in an oval frame.
doi:10.1371/journal.pone.0037738.g001
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To summarize the obtained data, we present a chronology of

the events of the NACbtes and CK2btes-like genes amplification as

well as Stellate origination related to the evolutionary tree of

melanogaster group species (Fig. 3). It is evident that amplification

events of NACbtes genes and insertion of a precursor of CK2btes-

lik/Stellate| genes on the X-chromosome have been occurred in the

common ancestor of D. melanogaster, D. simulans and D. sechellia. The

CK2btes-like and NACbtes genes recombination that has led to the

emergence of the Stellate genes is supposed to be proceeded in an

immediate ancestor of D. melanogaster. Amplification of the CK2btes-

like genes has been originated in the common ancestor of D.

simulans and D. sechellia.

DINE-1 transposons and expansion of the CK2btes and
NACbtes genes

Most genes from the CK2btes-like and NACbtes families are

flanked by DINE-1 copies (Fig. 1). It has been reported that the

evolution of new genes in Drosophila genomes is often associated

with the abundant DINE-1 transposons [6,7,26] related to the

enigmatic Helitron family of transposable elements [27–34]. Our

results support this view, providing examples of nonrandom DINE-

1s localization near the amplified members of multigene families

evolved in the course of evolution of the melanogaster subgroup

genomes. The estimation of association of paralogs with DINE-1

elements in D. melanogaser argues in favor of this view: 1180 genes

grouped in 344 paralog families are known in D. melanogaster, and

the fraction of paralogs having at least one DINE-1 within 3 kb

flanking sequences is significantly higher than can be expected by

chance (243 vs. 156, P-value,0.005).

DINE-1 transposons are thought to have invaded the Drosophila

genome before the diversification of the melanogaster subgroup

[27,35]. It seems that DINE-1 has gone through multiple

independent cycles of activation and suppression [26]. These

elements were suggested to be active and then silenced in the

common ancestor of melanogaster subgroup species. D. yakuba is the

only species showing evidence of a second, recent transpositional

burst [35]. D. melanogaster and D. sechellia/D. simulans contain highly

polymorphic DINE-1 copies represented by the remnants of parent

copies. The absence of nearly identical Helitrons at different loci in

one genome indicates that these elements have been silenced for a

long time and have undergone significant disruption processes

[35]. Nevertheless, the analysis of the generalized structures of

DINE-1 sequences from 12 Drosophila genomes allowed the authors

to discriminate some consensus regions including 59- and 39-

subterminal inverted repeats, a core, and a 39-terminal region

containing a stem-loop structure that is supposed to be involved in

the termination of DINE-1 replication [26]. Using this consensus

we were able to detect several profoundly damaged DINE-1 copies

in D. melanogaster, D. sechellia and D. simulans, adjacent to genes

related to two studied multigene families (Fig. 1).

Alignment of nucleotide sequences of DINE-1 copies and D.

melanogaster consensus sequence [26] is shown in Fig. 4A. Although

there are no extended shared regions between some copies (for

example, between INE2976 and INE2978), their relation to DINE-

1 is clearly traced by a comparison with the consensus sequence

[26]. The relation of simINE_ben to DINE-1s is validated by its

comparison to the earlier version of DINE-1 consensus [36]

(Fig. 4B). The vestiges of DINE-1s flanking NACbtes duplications

are detectable in both D. sechellia and D. simulans (Fig. 4A),

confirming the presence of DINE-1s in the common ancestor of D.

melanogaster and D. sechellia/D. simulans. The CK2btes-like solo copies

(GM17570 and GD15860) as well as the duplicated ones are

located adjacent to damaged DINE-1 sequences in D. simulans/D.

sechellia (Fig. 1, Fig. 4, Table S1) at the distances not exceeding

Figure 2. Recombination between the ancestor CK2btes-like gene (GD15860 or GM17570) and NACbtes promoter region. Signature
sequence of putative CK2btes-like partner is designated in bold italics. The distances in nucleotides from the start of signature sequence and ORF start
are indicated in brackets. Broken line shows the site of fusion of the CK2btes-like and NACbtes sequences as a result of recombination. The tree
represents the similarity of the nucleotide sequences in the selected box measured as the number of base differences [42] and was constructed using
the UPGMA method [43]. The percentage of replicate trees in which the associated sequence clustered together in the bootstrap test (500 iterations)
are shown next to the branches. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed.
doi:10.1371/journal.pone.0037738.g002

Figure 3. Fate of multigene families in the course of the
divergence of melanogaster group species.
doi:10.1371/journal.pone.0037738.g003
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,200–1000 bp. Interestingly, the yNACbtes (CR42877) located at

a distance of ,1 Mb from the studied region in D. melanogaster is

also juxtaposed to a DINE-1 copy.

Two non-homologous fragments of DINE-1 flank the Stellate

cluster (Fig. 1, Fig. 4A). The nucleotide sequence of the cluster

including the distal marginal Stellate copy (CG33247), which is

distinct in its 39-noncoding region from the adjacent homogeneous

tandem Stellate repeats, is identical to the ‘‘Stellate orphon’’ (Ste12D

OR) located near the ben gene (Fig. 1). The observed identity of

Ste12D OR and marginal Stellate copy (CG33247) in cluster (Fig.

S3) allows us to propose the role of DINE-1s in duplication of

Ste12D OR followed by its local amplification to generate the Stellate

cluster. While the sequences of the orphon and marginal Stellate

copies are identical to each other, the adjacent DINE-1 copies

(INE1972 and INE2968) contain similar 39-stem-loop sequences,

but have been deeply disrupted in the rest of the DINE-1 sequence.

We propose that diverged DINE-1 copies may participate in the

ancestor genomes causing non-allelic recombination that is

capable to ensure reshuffling of protein coding genes. Alternative-

ly, DINE-1 sequences may be prone to breakages followed by

illegitimate recombination [6]. Thus DINE-1 participation in

evolution of multigene families remains to be mysterious.

While the precise testis specific functions of the members of both

multigene families remain unknown, positive selection has been

shown for NACßtes genes [37]. At the same time, the involvement

of DINE-1 in duplication of the testis specific kep1 gene followed by

formation of a young gene implicated in regulation of the Y-linked

male fertility genes has been demonstrated [7]. The elucidation of

CK2ßtes and NACßtes gene functions in testes will help to

understand whether there is an evolutionary benefit to their

expansion and coupled evolution in Drosophila species.

Materials and Methods

The gene annotation of D. melanogaster (r5.35), D. sechellia (r1.3),

D. simulans (r1.3) and D. yakuba (r1.3) is according to FlyBase

(http://flybase.org/). The degree of nucleotide similarity between

coding regions of CK2btes family genes was evaluated by BLAST

(v. 2.2.26) [38]. All alignments were performed by ClustalW

implemented in Vector NTI program (Invitrogen).

The identification of novel DINE-1s in the D. simulans/D. sechellia

genomes was performed by BLAST (v. 2.2.21) [38] using the

DINE-1 consensus sequences [26,36] as queries. The found

candidate fragments of DINE-1s copies were additionally reverse

BLASTed against D. melanogaster genome assembly to check if they

are matched to known INE-1 repeats only. The evolutionary

history of proteins related to CK2btes family was inferred by using

the Maximum Likelihood method based on the JTT matrix-based

model [39]. All positions containing gaps and missing data were

eliminated. The resulted tree is a bootstrap consensus tree inferred

from 500 replicates [40]. Evolutionary analyses were conducted in

MEGA5 [41].

The list of D. melanogaster paralogs was fetched from Homo-

loGene NCBI database (http://www.ncbi.nlm.nih.gov/

homologene). The expected number of paralogs with nearby

DINE-1s was calculated as a possibility to find the DINE-1 near the

gene (total number of DINE-1s located within 3 kb of RefSeq gene

flanks divided to the total number of all RefSeq genes) magnified

to the total number of paralogs. Statistical significance of

difference between the expected and observed numbers of

paralogs were checked by Chi-square test. The genes and DINE-

1s on chromosomes U and Uextra were not taken into account.

Figure 4. Multiple alignment of DINE-1copies in syntenic regions of D. melanogaster and D. simulans/D. sechellia. (A) Alignment of known
and novel DINE-1 copies with D. melanogaster DINE-1 consensus sequence (DINEYang) [26]; consensus regions are designated according to [26]; (B)
Alignment of the simINE_ben and DNAREP1_DM consensus sequence [36].
doi:10.1371/journal.pone.0037738.g004

X-Linked Testis Specific Multigene Families
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RT-PCR was carried out using RNA from testes, heads and

carcasses of adult flies of D. simulans (stock 199 from Bloomington

Stock Center). Total RNA was extracted by Trizol reagent

(Invitrogene), and first strand cDNA synthesis was performed by

using oligo(dT) primer and SuperScript II reverse transcriptase

(Invitrogen). Sequences of the used primers are 59-GCTGTAAC-

GACGTCTTCAAGC-39 (GD24508_F) and 59-ATTCG-

CAATCGAGGACTCGC-39 (GD24508_R). The PCR products

were sequenced for verification of their specificity.

Supporting Information

Figure S1 Pair alignment of the NACbtes gene and
pseudogene sequences of D. sechellia. yNACßtes is localized

in D. sechellia scaffold_20:807538..808222[-].

(EPS)

Figure S2 RT-PCR validation of testis expression of
CK2btes-like GD24508 gene in D. simulans. Lanes: 1,

100 bp marker; 2, total DNA; 3, 4 and 5, RNA from testes, heads,

and carcasses of adult males, respectively. Specificity of PCR

products was confirmed by sequencing. Designated primers flank

second small intron (,50 nt).

(EPS)

Figure S3 Analysis of proteins related to CK2btes
family. (A) Multiple alignment of CK2btes proteins. Black spots

depict serine phosphorylation sites, asterisks depict zinc-finger

cysteine residues. GE11447, GM11826 and CG13591 are

autosomal unique CK2btes genes in D. yakuba, D. sechellia and D.

melanogaster, respectively. (B) Molecular phylogenetic analysis of

CK2btes proteins inferred by Maximum Likelihood method. The

percentage of replicate trees in which the associated proteins

clustered together in the bootstrap test is shown near the branches.

Initial tree for the heuristic search were obtained automatically as

follows: when the number of common sites was ,100 or less than

one fourth of the total number of sites, the maximum parsimony

method was used; otherwise BIONJ method with MCL distance

matrix was used. The tree is drawn to scale, with branch lengths

measured in the number of substitutions per site. There were a

total of 154 positions of the 11 amino acid sequences in the final

dataset.

(EPS)

Figure S4 Multiple alignment for nucleotide sequences
encompassing exon1, intron and a fragment of exon 2 of
CK2ßtes genes. The designations of genes are the same as in

Fig. 1.

(EPS)

Table S1 Location of DINE-1s and nearby genes.

(PDF)
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