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Abstract: Background: Phytosterols have physiological effects and are used as medicines or food
supplements. Stigmasterol has shown anticancer effects against various cancers such as hepatoma,
cholangiocarcinoma, gall bladder carcinoma, endometrial adenocarcinoma and skin, gastric, breast,
prostate, and cervical cancer. However, there are no reports on stigmasterol’s effects on ovarian
cancer. Methods: We investigated the effects of stigmasterol on proapoptotic signals, mitochondrial
function, reactive oxygen species production, and the cytosolic and mitochondrial calcium levels in
human ovarian cancer cells, to understand the mechanisms underlying the effects of stigmasterol
on ovarian cancer cells. We also conducted migration assay to confirm whether that stigmasterol
inhibits ovarian cancer cell migration. Results: Stigmasterol inhibited development of human ovarian
cancer cells. However, it induced cell apoptosis, ROS production, and calcium overload in ES2 and
OV90 cells. In addition, stigmasterol stimulated cell death by activating the ER-mitochondrial axis.
We confirmed that stigmasterol suppressed cell migration and angiogenesis genes in human ovarian
cancer cells. Conclusions: Our findings suggest that stigmasterol can be used as a new treatment for
ovarian cancer.
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1. Introduction

Over the years, phytosterols have received special attention because of their ability to lower
cholesterol and prevent cardiovascular disease [1,2]. In addition, various pharmacological properties
of phytosterols have been reported, including anti-inflammatory, antidiabetic, and anticancer
properties [3,4]. Stigmasterol is a plant sterol and is a component of the cell membrane that is
responsible for its function [5]. Stigmasterol is an unsaturated phytosterol and is found in many
vegetables, including legumes, nuts, seeds, herbs, and edible oils. It is also found in unpasteurized
milk; however, stigmasterol is weakened by mild heat; thus, it is destroyed during pasteurization
at a low temperature [6]. Stigmasterol is used as an intermediate in the biosynthesis of various
hormones, including progesterone, androgens, estrogens, and corticoids; it also serves as a precursor
to vitamin D3 [4,7,8]. Constant consumption of stigmasterol can reduce blood LDL cholesterol by
8%–10%, which lowers the risk of cardiovascular disease [9]. Further, stigmasterol inhibits the
accumulation of fatty acids [10]. In plant seeds, stigmasterol promotes cell proliferation, maturation,
and germination [11]. Stigmasterol inhibits the survival of human umbilical vein endothelial cells
(HUVECs) and iPSC-derived cardiomyocytes [12]. Notably, stigmasterol suppresses the development
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of various cancers, including hepatoma [13], cholangiocarcinoma [14], gall bladder carcinoma [15],
skin cancer [16], gastric cancer [17], breast cancer [18,19], endometrial adenocarcinoma [18], prostate
cancer [20], and cervical cancer [19].

Among gynecological cancers, ovarian cancer is the fifth-most common cause of death due
to difficulty in its diagnosis, high mortality rate, and frequent relapses [21,22]. Therefore, there is
a need for the development of new anticancer drugs. In this study, we investigated the effects of
stigmasterol on ES2 and OV90 cells. First, we identified whether stigmasterol induces the activity
of apoptosis-related factors in ovarian cancer cells. Next, the effect of stigmasterol on cell death,
free radical production, and mitochondrial function of ovarian cancer cells was observed. We also
investigated the inhibitory effect of stigmasterol on cell proliferation and development of ovarian
cancer. The effects of stigmasterol on intracellular signaling pathways were also studied.

2. Materials and Methods

2.1. Reagents

Stigmasterol (cat number: S2424) was purchased from Sigma-Aldrich (St Louis, MO, USA). It was
diluted in dimethyl sulfoxide (DMSO) before treatment.

2.2. Cell Culture

ES2 and OV90 cells were purchased from American Type Culture Collection (ATCC; Manassas, VA,
USA). ES2 (type—clear cell carcinoma) and OV90 (type—serous adenocarcinoma) cell lines were grown
in McCoy’s 5A medium supplemented with 10% fetal bovine albumin (FBS). Cells were incubated at
37 ◦C with 5% carbon dioxide (CO2). To confirm the effects of stigmasterol, all cells, including those in
the control group, were starved with serum-free medium for 24 h prior to treatment.

2.3. Western Blotting

The antibodies used in the Western blotting analyses are listed in Table 1. The ovarian cancer
cells were cultured on cell culture dishes and incubated with stigmasterol (0, 5, 10, and 20 µg/mL) for
24 h. The cells were rinsed twice with PBS to remove the treatment medium before protein extraction.
The cells were lysed, and protein concentration was calculated via the Bradford assay. Equal amounts
of each protein were mixed with loading buffer. The protein loading mixture was denatured at 95 ◦C for
5 min using a heating block. Denatured proteins were separated based on size using sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The separated proteins were transferred onto
nitrocellulose membranes for immunoblotting. The membranes were sequentially incubated with
primary and secondary antibodies, and chemiluminescence was detected using the ChemiDoc EQ
system (Bio-Rad, Hercules, CA, USA).

Table 1. List of antibodies.

Primary Antibodies Dilution Supplier Catalog Number

Cleaved caspase-3 1:1000 Cell Signaling 9664

Cleaved caspase-9 1:1000 Cell Signaling 9501

Cytochrome c 1:1000 Cell Signaling 11940

BAK 1:1000 Cell Signaling 12105

BAX 1:1000 Cell Signaling 2774

Phospho-PERK (Thr981) 1:1000 Santa Cruz sc-32577

Phospho-eIF2α (Ser51) 1:1000 Cell Signaling 3398

IRE1α 1:1000 Cell Signaling 3294
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Table 1. Cont.

Primary Antibodies Dilution Supplier Catalog Number

GADD153 1:1000 Santa Cruz sc-7351

ATF6α 1:1000 Santa Cruz sc-166659

GRP78 1:1000 Santa Cruz sc-13968

TUBA 1:1000 Santa Cruz sc-5286

VDAC 1:1000 Cell Signaling 4661

IP3R1 1:1000 Invitrogen PA1-901

IP3R2 1:1000 Santacruz sc-398434

VAPB 1:1000 Invitrogen PA5-53023

FAM82A2 1:1000 Abcam ab182105

Phospho-ULK1 (SER555) 1:1000 Cell Signaling 5869

ULK1 1:1000 Cell Signaling 8054

BECN1 1:1000 Cell Signaling 3495

ATG5 1:1000 Cell Signaling 12994

Phospho-AKT (SER473) 1:1000 Cell Signaling 4060

AKT 1:1000 Cell Signaling 9272

Phospho-P70S6K
(Thr421/Ser424) 1:1000 Cell Signaling 9204

P70S6K 1:1000 Cell Signaling 9202

Phospho-S6 (Ser235/236) 1:1000 Cell Signaling 2211

S6 1:1000 Cell Signaling 2217

Phospho-ERK1/2(Thr202/Tyr204) 1:1000 Cell Signaling 9101

ERK1/2 1:1000 Cell Signaling 4695

Phospho-JNK (Thr183/Tyr185) 1:1000 Cell Signaling 4668

JNK 1:1000 Cell Signaling 9252

Phospho-P38 (Thr180/Tyr182) 1:1000 Cell Signaling 4511

P38 1:1000 Cell Signaling 9212

2.4. Spheroid Assay

ES2 and OV90 cells were dropped onto the cover of a culture dish (3 × 103 cells). Vehicle-treated
and stigmasterol-treated cells were cultured for 72 h. Cancer morphology was observed with
a DM3000 microscope (Leica, Wetzlar, Germany). Tumor area was calculated using ImageJ software
(http://rsb.info.nih.gov/ij/docs/index.html). 3D density was estimated using ReViSP software (https:
//sourceforge.net/projects/revisp/).

2.5. Annexin V and PI Staining

ES2 and OV90 cells grown to 50% confluence in 6-well plates. FBS-starved cells were incubated
with stigmasterol (0, 5, 10, and 20 µg/mL) for 48 h. The cells were washed twice with PBS before
being treated with 0.25% trypsin-EDTA. The suspended cells were collected via centrifugation and
washed twice using PBS to remove the 0.25% trypsin-EDTA. The collected cells were stained with
FITC Annexin V (5 µL) and propidium iodide (PI; 5 µL) for 15 min. Fluorescence was detected using
a flow cytometer (BD Bioscience, Franklin Lakes, NJ, USA). All experimental results were estimated by
comparing them to vehicle-treated controls.

http://rsb.info.nih.gov/ij/docs/index.html
https://sourceforge.net/projects/revisp/
https://sourceforge.net/projects/revisp/
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2.6. Cell Cycle Assay

ES2 and OV90 cells were grown to 50% confluence in 6-well plates. FBS-starved cells were
incubated with stigmasterol (0, 5, 10, and 20 µg/mL) for 48 h. The cells were washed twice to
remove the stigmasterol before 0.25% trypsin-EDTA treatment. The suspended cells were collected
via centrifugation and washed twice using PBS to remove the remaining 0.25% trypsin-EDTA.
The collected cells were incubated with RNase A and PI for 30 min. Fluorescence was detected using
a flow cytometer (BD Bioscience). All experimental results were estimated by comparing them to those
of the vehicle-treated control cells.

2.7. JC-1 Staining

ES2 and OV90 cells were grown to 50% confluence in 6-well plates. FBS-starved cells were
incubated with stigmasterol (0, 5, 10, and 20 µg/mL) for 48 h. The cells were washed twice to remove
the stigmasterol before trypsinization. The suspended cells were collected via centrifugation and
washed twice with PBS to remove the 0.25% trypsin-EDTA. The cells were then incubated with
JC-1 (Sigma-Aldrich, St Louis, MO, USA) for 20 min at 37 ◦C. JC-1-stained cells were washed twice
using 1 × JC-1 staining buffer. JC-1 staining was observed using a flow cytometer (BD Bioscience).
All experiments results were calculated by comparing them to those of the cells from the control group.

2.8. Measurement of Reactive Oxygen Species (ROS) Production

ES2 and OV90 cells were grown in 6-well plates. The cells were detached with 0.25% trypsin-EDTA,
and the suspended cells were collected via centrifugation and rinsed twice with PBS. The cells were
treated with 10 µM 2′,7′-dichlorofluorescein diacetate (DCFH-DA; Sigma) for 30 min. The stained
cells were washed twice with PBS and treated with stigmasterol (0, 5, 10, and 20 µg/mL) for 1 h.
After stigmasterol treatment, the cells were rinsed twice with PBS. ROS production was detected using
a flow cytometer (BD Bioscience).

2.9. Cytosolic Ca2+ Level Analysis

ES2 and OV90 cells were grown to 50% confluence in 6-well plates. FBS-starved cells were
incubated with stigmasterol (0, 5, 10, and 20 µg/mL) for 48 h. The cells were washed twice to remove
the stigmasterol before 0.25% trypsin-EDTA was added to trypsinize the cells. The suspended cells
were collected via centrifugation and washed twice with PBS. The cells were incubated with 3 µM
fluo-4 acetoxymethyl ester (AM; Invitrogen) for 20 min at 37 ◦C. The stained cells were rinsed twice
with PBS. Fluo-4 intensity was detected using a flow cytometer (BD Bioscience). All experimental
results were calculated by comparing them to those of the cells from the control group.

2.10. Mitochondrial Ca2+ Level Analysis

ES2 and OV90 cells were grown to 50% confluence in 6-well plates. FBS-starved cells were
incubated with stigmasterol (0, 5, 10, and 20 µg/mL) for 48 h. The cells were washed twice to
remove the stigmasterol before adding 0.25% trypsin-EDTA. The suspended cells were collected via
centrifugation and washed twice with PBS to remove any remaining 0.25% trypsin-EDTA. The collected
cells were incubated with Rhod-2 for 20 min at 37 ◦C and subsequently washed twice using PBS.
Rhod-2 fluorescence was detected using a flow cytometer (BD Bioscience). All experimental results
were calculated by comparing them to those of the cells from the control group.

2.11. Proliferation Assay

The proliferation of ovarian cancer cells was observed using ELISA, a BrdU kit (Roche, Basel,
Switzerland), and a microplate reader (BioTek, Winooski, VT, USA). Cells at 50% confluence were
treated with various concentrations of stigmasterol in a 96-well plate for 48 h. The cells were then
incubated with BrdU for an additional 2 h. BrdU was labeled with anti-BrdU-POD for 90 min.
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The samples in each well were washed three times with PBS, and a color reaction was induced using
a chromogenic substrate. All experiments were calculated by comparison of the results to those of the
cells from the control group.

2.12. Migration Assay

Cell migration was observed using a Transwell migration assay. Ovarian cancer cells were seeded on
Transwell inserts and incubated for 12 h with stigmasterol or vehicle. The Transwell membranes were fixed
with methanol for 10 min and stained with hematoxylin for 30 min. The membranes were washed and
covered using mounting media. Cell migration was observed with a DM3000 microscope (Leica).

2.13. Quantitative Real-Time PCR

Gene expression was measured using quantitative RT-PCR using SYBR green, as previously
described [23] (see in Table 2).

Table 2. List of primers.

Primer Sequence Size

VEGFA
Forward 5′-TTGTACAAGATCCGCAGACG-3′ 100 bp
Reverse 5′-TCACATCTGCAAGTACGTTCG-3′

PLAU
Forward 5′-CAACTGCCCAAAGAAATTCG-3′ 148 bp
Reverse 5′-AAGGACAGTGGCAGAGTTCC-3′

MMP2
Forward 5′-GGCATTCAGGAGCTCTATGG-3′ 137 bp
Reverse 5′-ATCTCACCACGGATCTGAGC-3′

MMP9
Forward 5′-TTGACAGCGACAAGAAGTGG-3′ 145 bp
Reverse 5′-TCAGTGAAGCGGTACATAGGG-3′

MMP14
Forward 5′-GCAGAAGTTTTACGGCTTGC-3′ 117 bp
Reverse 5′-ACATTGGCCTTGATCTCAGC-3′

2.14. Statistical Analysis

The significance of all experiments was identified through the appropriate error terms according to
the expectation of the mean square of the error. P-values less than 0.05 were considered significant. Data
are shown as the least-square means (LSMs) with standard errors [24]. (*** = p < 0.001, ** = p < 0.01,
and * = p < 0.05)

3. Results

3.1. Induction of Cell Apoptosis and Inhibition of Cell Aggregation by Stigmasterol in ES2 and OV90 Cells

Western blotting showed that stigmasterol activated proapoptotic signals in ES2 and OV90 cells.
Stigmasterol (0, 5, 10, and 20 µg/mL) stimulated cleavage of caspase 3 and caspase 9 in a dose-dependent
manner in each cell type. In addition, stigmasterol activated cytochrome c, BAK, and BAX in both cell
types. The levels of alpha-tubulin (TUBA) did not show changes following stigmasterol treatment
(Figure 1A,B). Stigmasterol increased the tumor area by 150.9% and 146.9% in the case of ES2 and
OV90 cells, respectively. However, tumor volume was reduced by 72.8% and 60.1% in ES2 and
OV90 cells, respectively, by administration of stigmasterol (20 µg/mL). We identified that ovarian
cancer cells cannot aggregate in the presence of stigmasterol. In the vehicle-treated control, the 3D
volume of ovarian cancer cells increased, but the 2D area decreased because of cell aggregation.
However, as ovarian cancer cells did not aggregate in response to stigmasterol treatment, the 3D
volume decreased, and the cells spread laterally to increase the 2D area (Figure 1C,D). We investigated
the cell states to confirm the occurrence of programmed cell apoptosis by stigmasterol based on the dot
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population of the upper-right quadrant. In the case of ES2 cells, the proportion of cells showing late
apoptosis was increased by 1.9%, 7.8%, and 29.8% following treatment with 5, 10, and 20 µg/mL of
stigmasterol, respectively, compared to the vehicle-treated controls, which showed a 1.1% increase in
the proportion of cells showing late apoptosis (Figure 1E). In the case of OV90 cells, the proportion of
cells in the upper-right quadrant was increased by 0.6%, 2.5%, and 8.5% following treatments with 5,
10, and 20 µg/mL of stigmasterol, respectively, compared to the vehicle-treated control, which showed
a 0.1% increase in the proportion of cells in the upper-right quadrant (Figure 1F). In the evaluation of
cell cycle progression, in the case of ES2 cells, the proportion of cells in the subG1 phase was increased
by 11.1% following treatment with 20 µg/mL of stigmasterol (vehicle-treated controls showed a 0.8%
increase) (Figure 1G). In the case of OV90 cells, the proportion of cells in the subG1 phase increased
by 5.6% following treatment with 20 µg/mL of stigmasterol (vehicle-treated controls showed a 0.8%
increase) (Figure 1H).Pharmaceutics 2020, 12, x FOR PEER REVIEW 6 of 17 
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Figure 1. Stigmasterol affects ovarian cancer cell apoptosis and tumor formation in ES2 and OV90
cells. (A,B) Western blot bands showed the expression of proapoptotic signaling molecules in both cell
types following stigmasterol treatments (0, 5, 10, and 20 µg/mL). Alpha-tubulin (TUBA) was used as
a control. (C,D) Spheroid formation of ovarian cancer cells was compared between vehicle-treated cells
and stigmasterol-treated cells. (E,F) Annexin V and propidium iodide (PI) staining were performed
to determine cell death in ES2 and OV90 cells. The quadrant of the dot blot represents the state of
apoptosis in ES2 and OV90 cells. The comparative graph represents changes in late apoptosis due
to stigmasterol treatment (0, 5, 10, and 20 µg/mL) compared to the vehicle-treated control (100%) in
ES2 and OV90 cells. (G,H) Histogram presents cell cycle progression in stigmasterol-treated (0, 5, 10,
and 20 µg/mL) ovarian cancer cells. Comparative graph represents the % of cells in the subG1, G0/G1,
S, and G2/M phases in stigmasterol-treated (0, 5, 10, and 20 µg/mL) ovarian cancer cells.
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3.2. Changes in Mitochondrial Function and ROS Levels by Stigmasterol in ES2 and OV90 Cells

Mitochondrial function was dramatically altered by stigmasterol (0, 5, 10, and 20 µg/mL) in ES2
cells. Mitochondrial depolarization was increased to 700%, 1433%, and 3100% by 5, 10, and 20 µg/mL
of stigmasterol, respectively, compared to that in the case of the vehicle-treated control (100%) in ES2
cells (Figure 2A). Similarly, the mitochondrial depolarization in OV90 cells was increased to 292%,
400%, and 492% by 5, 10, and 20 µg/mL of stigmasterol, respectively, compared to that in the case of
the vehicle-treated control (100%) (Figure 2B). ROS production in ES2 cells was dose-dependently
increased by 5.5%, 6.9%, and 10.4% by 5, 10, and 20 µg/mL of stigmasterol, respectively, compared to
that in the case of the vehicle-treated control (5.1%) (Figure 2C). ROS generation in OV90 cells also
increased by 3.8% and 4.1% by 10 and 20 µg/mL of stigmasterol, respectively, compared to that in the
case of the vehicle-treated control (2.8%) (Figure 2D).Pharmaceutics 2020, 12, x FOR PEER REVIEW 7 of 17 
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Figure 2. Alteration of mitochondrial membrane potential and ROS generation by stigmasterol
in both cells. (A,B) JC-1 dye was used to investigate the alteration of mitochondrial membrane
potential by stigmasterol (0, 5, 10, and 20 µg/mL). Quadrant of the dot blot represented the state
of mitochondrial membrane potential in ES2 and OV90 cells. Comparative graph represented the
loss of the mitochondrial membrane potential compared to the control group (100%) in ES2 and
OV90 cells. (C,D) DCF fluorescence intensity was observed to investigate the change by stigmasterol
treatment (0, 5, 10, and 20 µg/mL). The histogram represented the state of ROS production in ES2
(Figure 2C, left) and OV90 (Figure 2D, left) cells. Comparative graph represented ROS production
compared to vehicle-treated control (100%) in ES2 (Figure 2C, right) and OV90 (Figure 2D, right) cells.
DCF: dichlorofluorescein.
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3.3. Upregulation of Cytosolic and Mitochondrial Calcium Levels by Stigmasterol in ES2 and OV90 Cells

To determine the regulation of calcium concentrations in the cytosol and mitochondria,
we incubated ES2 and OV90 cells with 0, 5, 10, and 20 µg/mL of stigmasterol for 48 h. After
this, the calcium levels of the cytosol and mitochondria were observed using Fluo-4-AM and Rhod-2
staining, respectively. The cytosolic calcium level of ES2 cells was increased by 4.1%, 5.8%, and 25.2%
by 5, 10, and 20 µg/mL of stigmasterol, respectively, compared to that in the case of the vehicle-treated
controls (3.9%) (Figure 3A). The cytosolic calcium level in OV90 cells was increased by 3.6%, 5.8%,
and 6.6% by 5, 10, and 20 µg/mL of stigmasterol, respectively, compared to that in the case of the
vehicle-treated control (3.5%) (Figure 3B). In addition, the mitochondrial calcium levels in ES2 cells
were increased by 1.5%, 3.5%, and 4.0% by 5, 10, and 20 µg/mL of stigmasterol, respectively, compared
to that in the case of the vehicle-treated control (1.1%) (Figure 3C). In OV90 cells, the mitochondrial
calcium was upregulated by 5.8%, 8.9%, and 13.2% by 5, 10, and 20 µg/mL of stigmasterol, respectively,
compared to that in the case of the vehicle-treated control (5.0%) (Figure 3D).Pharmaceutics 2020, 12, x FOR PEER REVIEW 8 of 17 
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Figure 3. Calcium concentrations in the cytosol and mitochondria in stigmasterol-treated ovarian cancer
cells. (A,B) Fluo-4 dye was used to determine the intracellular calcium levels. The histogram represents
the change of cytosolic calcium levels following stigmasterol treatments (0, 5, 10, and 20 µg/mL) in
ES2 (Figure 3A, left) and OV90 (Figure 3B, left) cells. The comparative graph represents changes
in intracellular calcium levels following stigmasterol treatments compared to the vehicle-treated
controls (100%) in ES2 (Figure 3A, right) and OV90 (Figure 3B, right) cells. (C,D) Rhod-2 fluorescence
was used to determine the mitochondrial calcium levels in stigmasterol-treated ovarian cancer cells.
The histogram represents changes in mitochondrial calcium levels following stigmasterol treatments (0,
5, 10, and 20 µg/mL) in ES2 (Figure 3C, left) and OV90 (Figure 3D, left) cells. The comparative graph
represents changes in mitochondrial calcium levels following stigmasterol treatments compared to the
vehicle-treated control (100%) in ES2 (Figure 3C, right) and OV90 (Figure 3D, right) cells.
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3.4. Regulation of Endoplasmic Reticulum Stress, the Endoplasmic Reticulum-Mitochondria Axis,
and Autophagy by Stigmasterol in ES2 and OV90 Cells

Endoplasmic reticulum (ER) stress and the ER-mitochondria axis were investigated using Western
blotting analysis. Activation of representative unfolded protein response (UPR) proteins was observed.
Phosphorylated PKR-like ER resident kinase (p-PERK), phosphorylated eukaryotic translation-initiation
factor 2α (p-eIF2α), inositol-requiring enzyme 1α (IRE1α), growth arrest and DNA damage-induced-153
(GADD153), activating transcription factor 6α (ATF6α), and glucose-regulated protein 78 (GRP78)
were activated by stigmasterol (0, 5, 10, and 20 µg/mL) treatments, compared to the case for TUBA,
in ES2 and OV90 cells. p-PERK level increased four point three-fold and two point six-fold in response
to stigmasterol (20 µg/mL) treatment relative to that in vehicle-treated controls in ES2 and OV90
cells, respectively. p-eIF2α level increased six-fold and four point six-fold in response to stigmasterol
treatment relative to that in vehicle-treated controls in ES2 and OV90 cells, respectively. IRE1α
levels increased nine point nine-fold and seven point eight-fold in response to stigmasterol treatment
relative to that in vehicle-treated controls in ES2 and OV90 cells, respectively. GADD153 expression
increased three point nine-fold and six point two-fold in response to stigmasterol treatment relative
to that in vehicle-treated controls in ES2 and OV90 cells, respectively. ATF6α expression increased
three point six-fold and three point seven-fold in response to stigmasterol treatment relative to that
in controls in ES2 and OV90 cells, respectively. GRP78 expression was upregulated two-fold and
three-fold in response to stigmasterol treatment relative to that in vehicle-treated controls in ES2
and OV90 cells, respectively (Figure 4A,B). In addition, voltage-dependent anion channel (VDAC),
inositol 1,4,5-triphosphate receptor 1 (IP3R1), IP3R2, vesicle-associated membrane protein-associated
protein B/C (VAPB), family with sequence similarity 82, member a2 (FAM82A2), beclin-1 (BECN1),
phosphorylated UNC-51-like kinase 1 (p-ULK1), and autophagy-related 5 (ATG5) were activated
in a dose-dependent manner by stigmasterol (0, 5, 10, and 20 µg/mL), compared to the case for
TUBA, in ES2 and OV90 cells. VDAC expression increased two point six-fold and three point
seven-fold in response to stigmasterol (20 µg/mL) treatment relative to that in vehicle-treated controls
in ES2 and OV90 cells, respectively. IP3RI expression was upregulated three point seven-fold and
three-fold upon stigmasterol treatment relative to that in vehicle-treated controls in ES2 and OV90 cells,
respectively. IP3R2 expression increased three point eight-fold and one point six-fold upon stigmasterol
treatment in ES2 and OV90 cells, respectively. VAPB expression increased three point seven-fold
and one point eight-fold upon stigmasterol treatment relative to that in vehicle-treated controls in
ES2 and OV90 cells, respectively. FAM82A2 expression increased five point two-fold and three point
four-fold upon stigmasterol treatment relative to that in vehicle-treated controls in ES2 and OV90 cells,
respectively. p-ULK1 level increased two point four-fold and two point eight-fold upon stigmasterol
treatment relative to that in vehicle-treated controls in ES2 and OV90 cells, respectively. BECN1 was
upregulated four point two-fold and three point four-fold upon stigmasterol treatment relative to
that in vehicle-treated controls in ES2 and OV90 cells, respectively. ATG5 expression increased two
point four-fold and two point three-fold upon stigmasterol treatment relative to that in vehicle-treated
controls in ES2 and OV90 cells, respectively (Figure 4C–F).

3.5. Restriction of Growth and Inactivation of Intracellular Signals by Stigmasterol in ES2 and OV90 Cells

Stigmasterol inhibited cell growth in both ES2 and OV90 cells. The cell growth of ES2 cells
was decreased by up to 50.0% when treated with 20 µg/mL of stigmasterol (Figure 5A). The cell
proliferation of OV90 cells was restricted by up to 54.3% when treated with 20 µg/mL of stigmasterol
(Figure 5B). Additionally, the phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, and P38 was inhibited
by stigmasterol in a dose-dependent manner (Figure 5C,D). Next, we used inhibitors to verify the
correlation of stigmasterol with the intracellular signaling mechanism. We used the PI3K inhibitor
(LY294002; 20 µM), ERK1/2 inhibitor (U0126; 20 µM), JNK inhibitor (SP600125; 20 µM), and P38
inhibitor (SB203580; 20 µM) with stigmasterol. ES2 and OV90 cells were treated with these inhibitors
prior to stigmasterol treatment (Figure 6). Phosphorylation of AKT in ES2 cells was almost completely
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inhibited by all these inhibitors but was only inhibited by LY294002 and SB203580 in OV90 cells.
The phosphorylation of P70S6K was almost completely inactivated by LY294002, U0126, and SB203580
in ES2 cells and by LY294002, SP600125, and SB203580 in OV90 cells. The phosphorylation of S6 protein
was almost completely blocked by all inhibitors except U0126 in ES2 cells and was completely blocked
by all inhibitors except SP600125 in OV90 cells. The phosphorylation of ERK1/2 was completely
blocked by U0126 and SB203580 in both cell types and only slightly blocked by LY294002 in ES2 cells.
JNK phosphorylation was completely blocked by all inhibitors in both cells. The phosphorylation of
P38 was completely blocked by all inhibitors except SP600125 in both cell lines.
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Figure 4. Increased expression of endoplasmic reticulum (ER) stress sensor proteins and ER-288 
mitochondrial axis proteins due to stigmasterol treatment in ovarian cancer cells. (A,B) Immunoblots 289 

Figure 4. Increased expression of endoplasmic reticulum (ER) stress sensor proteins and
ER-mitochondrial axis proteins due to stigmasterol treatment in ovarian cancer cells. (A,B) Immunoblots
representing the expression of unfolded protein response (UPR) proteins following stigmasterol
treatments (0, 5, 10, and 20 µg/mL). TUBA was used as a control and is shown at the bottom of the
figure. (C,D) Immunoblots representing the expression of ER-mitochondrial axis proteins following
stigmasterol treatments (0, 5, 10, and 20 µg/mL). TUBA was used as a control and is shown at the
bottom of the figure. (E,F) Immunoblots representing the expression of autophagy proteins following
stigmasterol treatment. TUBA was used as a control and is shown at the bottom of the figure.

3.6. Calcium Regulation by Stigmasterol in the Death of ES2 and OV90 Cells

Ruthenium red, an inhibitor of calcium overload, inhibited cell apoptosis induced by stigmasterol
in ES2 and OV90 cells. Additional treatment of ruthenium red to stigmasterol decreased cell apoptosis
from 9.3% (stigmasterol alone) to 3.6% and from 7.7% to 3.4% in ES2 and OV90 cells, respectively
(Figure 7A,B). Further, the stigmasterol-increased mitochondrial depolarization was decreased from
7.0% to 2.1% and from 5.9% to 2.6% in ES2 and OV90 cells, respectively, following cotreatment
with stigmasterol and ruthenium red (Figure 7C,D). Mitochondrial calcium levels were increased by
stigmasterol by up to 8.9% and 6.9% in ES2 and OV90 cells, respectively. However, treatment with
stigmasterol and ruthenium red reduced the mitochondrial calcium from 8.9% to 3.8% and from 6.9%
to 3.7% in ES2 and OV90 cells, respectively (Figure 7E,F).
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Figure 5. Restriction of cell growth and cell growth-related signals in ovarian cancer cells following
stigmasterol treatments. (A,B) Cell proliferation data shows the cell viability (%) following the treatment
of ovarian cancer cells with stigmasterol. The comparative graph represents the relative proliferation of
each cell type following treatments with stigmasterol, compared to vehicle-treated control cells (100%).
(C,D) Western blots present the changes of PI3K and MAPK expression following the treatments of
ovarian cancer cells with stigmasterol (0, 5, 10, and 20 µg/mL).
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Figure 6. Cotreatment of stigmasterol and inhibitors in ovarian cancer cells. (A,B) Western blots showed
changes of PI3K and MAPK by cotreatment with stigmasterol or each inhibitor in ovarian cancer cells.
Comparative graph represented the change of phosphorylation compared to the vehicle-treated control
(100%) in ES2 and OV90 cells.
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Figure 7. Calcium regulation and cell apoptosis by stigmasterol in ovarian cancer. (A,B) Annexin
V and PI were observed to investigate the cell death of ES2 and OV90 cells. Quadrant of the dot
blot represented the state of cell apoptosis in ES2 and OV90 cells. Comparative graph represented
the change of late apoptosis by stigmasterol or a combination with ruthenium red compared to the
control (100%) in ES2 and OV90 cells. (C,D) JC-1 dye was used to investigate the alteration of the
mitochondrial membrane potential by stigmasterol or a combination with ruthenium red. Quadrant
of the dot blot represented the state of the mitochondrial membrane potential. Comparative graph
represented the loss of the mitochondrial membrane potential compared to the control group (100%).
(E,F) Rhod-2 fluorescence was observed to investigate the mitochondrial calcium levels in stigmasterol
or a combination with ruthenium red. The histogram represented a change of the mitochondrial
calcium. Comparative graph represented the change of the mitochondrial calcium levels.
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3.7. Decreased Migration Activity of ES2 and OV90 Cells Following Stigmasterol Treatment

Cell migration was inhibited by stigmasterol treatment, decreasing to 28.2% in ES2 cells and to
27.4% in OV90 cells compared to the respective vehicle-treated control cells (Figure 8A,B). Expression
of genes that played a pivotal role in cancer cell migration, including VEGFA, PLAU, MMP2, MMP9,
and MMP14, were reduced in dose-dependent manner of stigmasterol in both cell lines (Figure 8C,D).
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Figure 8. Reduced cell migration by stigmasterol in ovarian cancer cells. (A,B) Cell migration was
observed using Transwell inserts. Migrated cells through the membrane were measured on images of
five nonoverlapping locations. (C,D) Gene expression of migration-related genes were investigated by
quantitative real-time (RT)-PCR. All experiments were conducted in triplicate. Scale bar represents 100 µm.

4. Discussion

The pharmacological functions of phytosterol, a plant-derived natural product, have been
highly studied. Stigmasterol, a type of phytosterol, has been reported to have various physiological
effects [4]. Recently, stigmasterol has been shown to have anticancer effects against various cancers.
However, the anticancer effects of stigmasterol on ovarian cancer have not yet been reported.
Stigmasterol suppresses skin cancer by increasing the lipid peroxide levels and causing DNA
damage [16] and inhibits the development of cholangiocarcinoma via the downregulation of TNF-alpha
and VEGFR-2 [14]. Stigmasterol represses the development of prostate cancer by inducing p53 protein
expression, while inhibiting p21 and p27 protein expression [20] and induces an increase of proapoptotic
signals (BAX and p53) while decreasing antiapoptotic signals (Bcl-2) in liver cancer. Further, stigmasterol
promotes the mitochondrial apoptosis signaling pathway, including the upregulation of caspase-8 and
-9, in hepatoma. Additionally, stigmasterol induces DNA damage and increases apoptosis in HepG2
cells [13]. Similarly, our results illustrated that stigmasterol induced the activity of apoptotic proteins,
including cleaved caspase-3, cleaved caspase-9, cytochrome c, BAK, and BAX.

Mitochondria are important organelles that control cell survival [25]. Mitochondria regulate
the cleavage of caspases, production of cytochrome c, and activation of BAX and BAK to induce
programmed cell apoptosis [26]. Moreover, increased mitochondrial calcium levels can promote the
activation of proapoptotic factors via destruction of the mitochondria. This causes an increase in
calcium concentration in the cytosol and induces cell apoptosis [27]. Increased calcium levels in the
cytosol stimulate proapoptotic signals, while repressing antiapoptotic signals [28]. Cisplatin increases
ROS in cancer cells, leading to irreversible cell death. Excessive ROS production activates antitumor
signals and programmed cell death [29]. In our study, stigmasterol induced the apoptosis of ovarian
cancer cells by causing mitochondrial malfunction, ROS production, and calcium overload in the
mitochondria and cytosol. In addition, the subG1 phage was significantly increased upon stigmasterol
treatment in ovarian cancer cells. Ruthenium red prevents mitochondrial calcium overload [30].
The cotreatment of stigmasterol and ruthenium red reduced mitochondrial depolarization and cell
death, compared to treatment with stigmasterol alone. These results suggest that stigmasterol-induced
cell apoptosis occurs via the accumulation of mitochondrial calcium in ovarian cancer cells.
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The ER is an important organelle that controls protein translocation, folding,
and post-transcriptional modifications in eukaryotic cells. The accumulation of ER stress can induce
cancer cell death [31]. Stigmasterol activated ER stress sensor proteins and ER-mitochondria axis
proteins in ovarian cancer cells, indicating that stigmasterol induces anticancer effects mediated by the
regulation of the ER-mitochondria axis. Additionally, stigmasterol decreased cell proliferation and
inhibited cell cycle progression in ES3 and OV90 cells. The PI3K and MAPK signal cascades are pivotal
in cancer cell proliferation and cell cycle progression [32]. In ovarian cancer, MAPK/PI3K signals are
frequently activated. PI3K pathway inhibition may be the most useful in combination with the MAPK
suppressor in ovarian cancer patients [33] Therefore, the inhibition of PI3K/MAPK signal cascades is
useful for the treatment of ovarian cancer. The spheroid model provides a good opportunity to confirm
the clinical therapeutic effectiveness of various drugs due to their association with the malignant nature
of cancer cells, such as tumorigenicity or chemoresistance [34]. Stigmasterol effectively inhibited the
aggregation of ovarian cancer cells. Ovarian cancer cells failed to form tumors and were scattered.

VEGFA stimulates cell mitogenesis and cell migration in ovarian cancer cells [35]. PLAU induces
migration and metastasis in breast cancer [36]. Metalloproteinases (MMPs) are overexpressed in
several tumor environments and can promote metastasis and migration for cancer development [37].
In ES2 and OV90 cells, VEGFA, PLAU, MMP2, MMP9, and MMP14 expression levels were reduced by
stigmasterol treatments. Taken together, we are the first to show that stigmasterol exerts a complex
anticancer effect in the context of ovarian cancer. This effect can improve the anticancer effect of
standard ovarian cancer drugs used to treat recurrent ovarian cancer. Therefore, these findings suggest
that stigmasterol can be used as a new treatment option for ovarian cancer.

5. Conclusions

Collectively, our results suggest that stigmasterol dose-dependently induced cell apoptotic signals in
ES2 and OV90 cells. It also caused an increase in mitochondrial depolarization and ROS generation and
induced abnormal increases in calcium levels in the cytosol and mitochondria. ER stress sensor protein levels
were increased by stigmasterol (Figure 9). As a result, cell death occurred in ovarian cancer cell lines treated
with stigmasterol. Additionally, stigmasterol inhibited cell growth by controlling cell proliferation and the
cell cycle in the tested ovarian cancer cell lines. Stigmasterol also reduced cell migration and inhibited cell
growth-related signaling cascades (e.g., PI3K/MAPK) in ovarian cancer cells. This evidence suggests that
stigmasterol could be used as a new treatment modality for ovarian cancer.Pharmaceutics 2020, 12, x FOR PEER REVIEW 15 of 17 
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